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Abstract 
The current paper implementates a simple fully non-linear Kirchhoff-lovel shell penalty based finite element. 
The 6 nodes and 21 DoF triangular element developed in this work has a quadratic displacement field 
associated to it and the C1 continuity required by Kirchhoff-Love Hyphotesis is approximated by an internal 
penalty. The biggest novelty in this article is the simultaneous use of penalty and a Rodrigues incremental 
Rotation parameter (scalar DOF) between neighboring elements further explained in the text. The nonlinear 
finite element model developed in this article is compared to analytical results, commercial finite element 
code and another FEM model developed in bibliography. Simulations have demonstrated consistency when 
comparing results to other models and it is deemed that reliable mesh generation together with a powerfull 
triangular finite element is a good option for trustworthy thin shell simulations. 
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1 INTRODUCTION 

A numerical approach solution usually is an effective method of obtaining the structural response for situations 
where the load distribution, material non-linearity or geometrical properties are complex, thus turning the attainment 
of an analytical solution into a real challenge. Shells are a very important structural model, which can be regarded as a 
MOR (Model Order Reduction) of Solid Mechanics (Nigro et al., 2019) and are consistently applicable to engineering 
structural problems. 

Theories for Plates, Shells and Membranes have been developed in the past decades by many researchers due to 
its importance in mechanics. Kirchhoff-Love and Reissner–Mindlin theories are example of shell/plate models used in 
engineering. In the current paper, the authors address a non-linear Kirchhoff-Love element implemented in the AceGEN 
/ AceFEM code environment, which is a Mathematica based code suitable for developing optimized code for 
computational mechanics (Korelc, J.A., Wriggers, P., 2016). 

In Finite Element Methods, this structural problem may be implemented and studied by three-dimensional 
elements. As stated in Korelc and Wriggers (2016) this strategy is, however, inadequate for certain occasions. It is shown 
that for especially thin shells, the locking-phenomena may occur, causing the simulated structure to appear stiffer than 
what it really is. Hence, special attention must be taken regarding the interpolation of 3-D elements for Shell modeling. 

Another approach that have been used by some researches is the use of kinematical simplification for shells. With 
these models, the system can be modeled as a surface (2D) with a specified thickness, consequently with less degrees of 
freedom, but can yet deal with nonlinear phenomena and with finite deflections and Rotations. Some pioneer work has 
been developed by Simo and Fox (1989) and Pimenta (1993) developing new shell models before 2000’s and departing 
from the traditional so-called degenerated solid approach. Campello et al. (2003) and Pimenta et al. (2004) developed 
shear flexible models (Reissner-Mindling) based on kinematics proposed by Pimenta (1993). These works had successfully 
implemented a shear flexible nonlinear six-parameter triangular shell finite element. In the same work, finite rotations 
were treated by using Euler-Rodrigues formula in a very conviniet way (due to its incremental formulation). Viebahn et al. 
(2017), Costa e Silva et al. (2018), Costa e Silva (2020) and Costa e Silva et al. (2020) built finite element models based on 
Kirchoff-Love Hypothesis and are the basis for the current article. The main advantage for using Kirchoff-Love shells is 
that the element will carry less degrees of freedom per element, simplifying the numerical problem. However, as shown 
in the next sections, one must ensure C1-continuity in domain due to kinematical formulation. As the displacement field 
is quadratic, this continuity is guaranteed inside the element. The present work and the work of Viebahn et al. (2017) 
and Costa e Silva (2020) differ in the methodology to enforce C1 continuity in the element interfaces. The procedure 
adopted in this article can be regarded as a discrete Galerking approach (see Brezzi and Fortin, 1991). 

2 OBJECTIVES 

In the current paper, a simple non-linear finite element for Kirchhoff-Love shells undergoing finite deflections and 
rotations is developed and it is implemented with the use of AceGen and AceFem. In the first part of this paper the 
kinematical description of the model is made and in the second part three numerical simulations are done and results 
are comparared to outputs from commercial software (Nastran) and from the model developed in Costa e Silva (2020). 
The simulations are performed with different dimensions, mesh discretization and loads in order to evaluate its reliability 
and response for different system conditions. 

3 METHODOLOGY 

3.1 Shell Kinemátics 

Plates and shell theories are very diverse, and many models may be found in the bibliography considering different 
kinematical hypothesis. The current work is based on the Kirchhoff Plate theory which has three kinematical constrains, 
also known as Kirchhoff hypothesis (see Reddy, 2006): 

1. Straight perpendicular lines (transverse normals) to the middle surface stay straight after any deformation. 

2. These transverse normals are inextensible. Their length (thickness) are constant. 

3. These transverse normals remain perpendicular to the middle surface during any deformation imposed to the shell. 
There is no shear strain in any shell cross section. 

The Kirchhoff-Love shell model, also known as shear rigid because of the absence of shear strain in consequence of 
its kinematical assumptions, developed in this paper may be understood as a continuation of the work developed by 
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Costa e Silva et al. (2018), Costa e Silva et al. (2020). and Viebahn et al. (2017). It includes a new methodology to 
approcimate C1 continuity between adjacent elements with penalty and is also is valid for finite deflections, rotations 
and strains. 

A plane reference configuration is assumed, however initial curved shells may be represented by a a stress-free 
deformation (Pimenta and Campello, 2009). The model is illustrated by Figure 1: 

 
Figure 1 - Non-linear finite element for Kirchhoff-Love shells undergoing finite deflections and rotations. Shell description and basic 

kinematical quantities. 

The main kinematic properties of the shell developed in this article are based on Pimenta, P.M., et al. (2010) and 
are defined by: 

• An arbitraty point is parametrized in the reference configuration by the vector 𝝃𝝃 ∈ ℝ3 and in the current 
configuration by the vector 𝒙𝒙 ∈ ℝ3. 

• The projection of the arbitrary point in Middle surface in the reference configuration is parametrized by the vector 
𝜻𝜻 ∈ Ω𝑟𝑟 ⊂ ℝ2 and in the current configuration by the vector 𝒛𝒛 ∈ Ω ⊂ ℝ3. 

• The vector that connects the arbitrary point to its projection in the middle surface is 𝒂𝒂𝒓𝒓 and in the current 
configuration by 𝒂𝒂. It is important to notice that 𝒂𝒂𝒓𝒓 and 𝒂𝒂 are perpendicular to Ù𝑟𝑟  and Ù respectively. 

• The shell volume and thickness of the reference shell is defined such as 𝑉𝑉𝑟𝑟  and 𝐻𝐻𝑟𝑟 = [−ℎ𝑏𝑏𝑟𝑟 ,ℎ𝑡𝑡𝑟𝑟]. The Shell total 
thickness is ℎ𝑟𝑟 = ℎ𝑏𝑏𝑟𝑟 + ℎ𝑡𝑡𝑟𝑟 

An orthonormal right-handed coordinate system 𝒆𝒆𝒊𝒊𝒓𝒓 is defined in the reference configuration such as any point in 
the shell may be defined by equation (1) (Pimenta, P.M., et al., 2010) 

𝝃𝝃 = 𝜻𝜻 + 𝒂𝒂𝒓𝒓 , 𝜻𝜻 = 𝜉𝜉𝛼𝛼𝒆𝒆𝜶𝜶𝒓𝒓 , 𝜉𝜉𝛼𝛼 ∈ Ωr and 𝒂𝒂𝒓𝒓 = 𝜉𝜉3𝒆𝒆𝟑𝟑𝒓𝒓 , 𝜉𝜉3 ∈ 𝐻𝐻𝑟𝑟  .  (1) 

Equivalently, an arbitrary point in the current configuration can also be defined in an associated orthonormal 
coordinate system 𝒆𝒆𝒊𝒊 by position vector 𝒙𝒙, rotation tensor 𝑸𝑸 and displacement 𝒖𝒖 with expressions 

𝒛𝒛 = 𝜻𝜻 + 𝒖𝒖, 𝒂𝒂 = 𝑸𝑸𝒂𝒂𝒓𝒓 and 𝒙𝒙 = 𝒛𝒛 + 𝒂𝒂 .  (2) 

It is important to mention that tensor 𝑸𝑸 rotates vector 𝒂𝒂𝒓𝒓 to 𝒂𝒂, which are always perpendicular to shell middle 
surface, consequently 𝑸𝑸 is important to describe shell curvature and related kinematical quantities. The approach of 
rotational quantities is better explained in further sections of this paper. 
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First and second spatial derivatives of 𝒛𝒛 are defined by 

𝒛𝒛,𝛼𝛼 = 𝜕𝜕(𝜉𝜉𝛼𝛼𝒆𝒆𝜶𝜶𝒓𝒓+𝒖𝒖)
𝜕𝜕𝜉𝜉𝛼𝛼

= 𝒆𝒆𝜶𝜶𝒓𝒓 + 𝒖𝒖,𝛼𝛼, 𝒛𝒛,𝛼𝛼𝛼𝛼 = 𝒖𝒖,𝛼𝛼𝛼𝛼 and (∙)α = 𝜕𝜕(∙)
𝜕𝜕𝜉𝜉𝛼𝛼

 .  (3) 

As one of the kinematical assumptions of Kirchhoff-Love theory is that the director vector 𝒂𝒂 remains orthogonal to 
the middle surface of the shell, then the rotation tensor may be defined by 

𝑸𝑸 = 𝒆𝒆𝒊𝒊 ⨂ 𝒆𝒆𝒊𝒊𝒓𝒓 .  (4) 

The local orthogonal coordinate system in the current configuration is expressed by 𝒆𝒆𝒊𝒊 and its equation is defined 
in further section(See equation (30)). 

The nonlinear deformation map that takes a vector in the reference configuration and takes it to the current 
configuration at any positive time 𝑡𝑡 is defined by 𝜑𝜑𝑡𝑡: ξ → x and the deformation gradient 𝑭𝑭 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝛗𝛗t(𝛏𝛏) is defined by 

𝑭𝑭 = 𝜕𝜕𝒙𝒙/𝜕𝜕𝜉𝜉, 𝑭𝑭 = 𝜕𝜕(𝒛𝒛+𝑸𝑸𝒂𝒂𝒓𝒓)
𝜕𝜕𝜉𝜉𝛼𝛼

⨂𝒆𝒆𝜶𝜶𝒓𝒓 + 𝜕𝜕(𝒛𝒛+𝑸𝑸𝒂𝒂𝒓𝒓)
𝜕𝜕𝜉𝜉3

⨂𝒆𝒆𝟑𝟑𝒓𝒓  and 𝑭𝑭 = 𝒇𝒇𝜶𝜶⨂𝒆𝒆𝜶𝜶𝒓𝒓 + 𝒇𝒇𝟑𝟑⨂𝒆𝒆𝟑𝟑𝒓𝒓  ,  (5) 

where the vectors 𝒇𝒇𝑖𝑖 are defined by 

𝒇𝒇𝜶𝜶 = 𝒛𝒛,𝜶𝜶 + 𝑸𝑸,𝜶𝜶𝒂𝒂𝒓𝒓 and 𝒇𝒇𝟑𝟑 = 𝑸𝑸𝒆𝒆𝟑𝟑𝒓𝒓 = 𝒆𝒆𝟑𝟑 .  (6) 

The Curvature vectors are defined by 

𝑲𝑲𝜶𝜶 = 𝑸𝑸,𝜶𝜶𝑸𝑸𝑻𝑻 and 𝜿𝜿𝜶𝜶 = 𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝑎𝑎(𝑲𝑲𝜶𝜶) ,  (7) 

where 𝜿𝜿𝜶𝜶 can yet be rewritten as 

𝜿𝜿𝜶𝜶 = 𝜞𝜞𝛼𝛼𝒖𝒖,𝛼𝛼𝛼𝛼,  

𝚪𝚪1 = �𝒆𝒆1 ⋅ 𝒛𝒛,1�
−1[Skew(𝐞𝐞1) − �𝐞𝐞1 ⋅ 𝒛𝒛,2��𝒆𝒆2 ⋅ 𝒛𝒛,2�

−1(𝐞𝐞1⨂𝒆𝒆3)] and 

𝚪𝚪2 = �𝒆𝒆2 ⋅ 𝒛𝒛,2�
−1 (𝐞𝐞1⨂𝒆𝒆3) .  (8) 

Consequently, one may write the components of deformation gradient as 

𝒇𝒇𝜶𝜶 = 𝒛𝒛,𝜶𝜶 + 𝜿𝜿𝜶𝜶 × 𝒂𝒂  (9) 

and the Jacobian and cofactor of 𝑭𝑭 may be written as 

𝐽𝐽 = 𝐺𝐺𝑑𝑑𝑡𝑡 𝑭𝑭 = 𝒇𝒇1 ⋅ (𝒇𝒇2 × 𝒇𝒇3) , 𝐶𝐶𝐶𝐶𝐶𝐶 𝑭𝑭 = 𝐽𝐽𝑭𝑭−𝑇𝑇 = 𝒈𝒈𝑖𝑖⨂𝒆𝒆𝑖𝑖 and 
𝒈𝒈1 = 𝒇𝒇2 × 𝒇𝒇3 

  𝒈𝒈2 = 𝒇𝒇3 × 𝒇𝒇1 . 
𝒈𝒈3 = 𝒇𝒇1 × 𝒇𝒇2 

(10) 

Back-rotated counterparts of the deformation gradient and of strains may also be defined by 

𝑭𝑭𝑟𝑟 = 𝑸𝑸𝑻𝑻𝑭𝑭 = 𝑰𝑰 + 𝜸𝜸𝛼𝛼𝑟𝑟⨂𝒆𝒆𝛼𝛼𝑟𝑟 + 𝜸𝜸33𝑟𝑟 ⨂𝒆𝒆3𝑟𝑟  , 𝜸𝜸𝛼𝛼𝑟𝑟 = 𝜼𝜼𝛼𝛼𝑟𝑟 + 𝒌𝒌𝛼𝛼𝑟𝑟 × 𝒂𝒂𝑟𝑟 and 
𝜼𝜼𝛼𝛼𝑟𝑟 = 𝑸𝑸𝑇𝑇𝒛𝒛,𝛼𝛼 − 𝒆𝒆𝛼𝛼𝑟𝑟  

𝜿𝜿𝛼𝛼𝑟𝑟 = 𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝑎𝑎�𝑸𝑸𝑇𝑇𝑸𝑸,𝛼𝛼� . 
(11) 
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The plane stress condition is forced considering vanishing stresses in the normal direction of the mid-plane by the 
expression 

(𝛕𝛕𝒆𝒆3) ⋅ 𝒆𝒆3 = 0 ,  (12) 

where, τ is the decomposition of the first Piola-Kirchhoff stress tensor on the cartesian axes. It is defined by 

𝑷𝑷 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑭𝑭

=:𝜕𝜕𝐹𝐹𝜓𝜓 and 𝑷𝑷 = 𝝉𝝉𝑖𝑖⨂𝒆𝒆𝑖𝑖𝑟𝑟 , 𝝉𝝉 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝒇𝒇𝑖𝑖

 .  (13) 

In the previous equation, 𝜓𝜓 = 𝜓𝜓(𝑭𝑭) is the so-called Helmholtz free energy per unit of reference volume. 

3.2 Weak form of equilibrium 

In solid mechanics, the balance of linear momentum in statics (LAI et al., 2009) may be defined by the differential 
equation (14) as 

𝐷𝐷𝑎𝑎𝐷𝐷 𝑷𝑷 + 𝜌𝜌0�𝒃𝒃�� = 0 .  (14) 

However, classically, the mathematical model implemented on FEM code is based on the weak form of the 
equilibrium equation. The weak form (in this case, variational formulation) can be obtained applying the principle of 
virtual work (Wriggers, 2008) (Viebahn et al., 2017) and consequentily we have 

𝛿𝛿𝛿𝛿 = 𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑡𝑡 − 𝛿𝛿𝛿𝛿𝑒𝑒𝑒𝑒𝑡𝑡 = 0 ,  ∀𝛿𝛿𝒖𝒖 and 𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑡𝑡 = ∫ 𝑷𝑷: 𝛿𝛿𝑭𝑭𝐺𝐺𝑉𝑉𝛣𝛣  

𝛿𝛿𝛿𝛿𝑒𝑒𝑒𝑒𝑡𝑡 = ∫ �̅�𝒕 ⋅ 𝛿𝛿𝒙𝒙𝐺𝐺𝑑𝑑∂Β + ∫ 𝒇𝒇� ⋅ 𝛿𝛿𝒙𝒙𝐺𝐺𝑉𝑉𝛣𝛣  ,  (15) 

where: 
• δw𝑒𝑒𝑒𝑒𝑡𝑡 is virtual work of external forces, 
• δw𝑖𝑖𝑖𝑖𝑡𝑡 is the virtual work of internal forces, 
• 𝑷𝑷 is the first Piola-Kirchhoff stress tensor 
• δ𝑭𝑭 is the virtual deformation gradient (funcition of virtual displacements) 
• 𝒖𝒖 is the displacement; δ𝒖𝒖 is the virtual displacement. 
• 𝒕𝒕 is the boundary forces at Domain’s boundary. 
• 𝒇𝒇 is the volumetric external force. 

The internal virtual work at Equation (15) may be further developed (Pimenta et al., 2010) by 

𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑡𝑡 = ∫ (𝝈𝝈𝜶𝜶𝒓𝒓 ⋅ 𝛿𝛿𝜺𝜺𝜶𝜶𝒓𝒓 )𝐺𝐺Ω𝑟𝑟Ω𝑟𝑟  ,  (16) 

where 

𝒏𝒏𝛼𝛼𝑟𝑟 = ∫ 𝝉𝝉𝛼𝛼𝑟𝑟 𝐺𝐺𝐻𝐻𝐻𝐻  and 𝒎𝒎𝛼𝛼
𝑟𝑟 = ∫ (𝒂𝒂𝑟𝑟 × 𝝉𝝉𝛼𝛼𝑟𝑟 )𝐺𝐺𝐻𝐻𝐻𝐻  ,  (17) 

with 
• 𝐻𝐻 =  �− ℎ

2
, ℎ
2
� 

• 𝒏𝒏𝛼𝛼𝑟𝑟 = Back-rotated Forces per unit length 
• 𝒎𝒎𝛼𝛼

𝑟𝑟 = Back-rotated moments per unit length 
• 𝑀𝑀�  = Inertia property of cross section 
• 𝜿𝜿𝛼𝛼𝑟𝑟  = Back-rotated curvature vector 
• 𝜼𝜼𝛼𝛼𝑟𝑟  = Back-rotated membrane strains 

For convenience, 𝝈𝝈𝜶𝜶𝒓𝒓  and 𝜺𝜺𝜶𝜶𝒓𝒓  are defined by 

𝝈𝝈𝜶𝜶𝒓𝒓 = [𝒏𝒏𝛼𝛼𝑟𝑟 𝒎𝒎𝛼𝛼
𝑟𝑟 ]𝑇𝑇, 𝜺𝜺𝜶𝜶𝒓𝒓 = [𝜼𝜼𝛼𝛼𝑟𝑟 𝜿𝜿𝛼𝛼𝑟𝑟 ]𝑇𝑇  (18) 
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and the external virtual work at Equation (15) may also be rewritten as 

𝛿𝛿𝛿𝛿𝑒𝑒𝑒𝑒𝑡𝑡 = ∫ ��̅�𝒕𝒕𝒕 + �̅�𝒕𝒃𝒃 + ∫ 𝐶𝐶�̅�𝐺𝐻𝐻𝑟𝑟
𝐻𝐻𝑟𝑟 � ⋅ 𝛿𝛿𝒙𝒙 𝐺𝐺Ω𝑟𝑟Ω𝑟𝑟 + ∫ ∫ �̅�𝒕𝒍𝒍𝐺𝐺𝐻𝐻𝑟𝑟

𝐻𝐻𝑟𝑟 𝐺𝐺𝜕𝜕Ω𝑟𝑟  ,𝜕𝜕Ω𝑟𝑟   (19) 

where has been considered 

∫ �̅�𝒕𝐺𝐺𝑑𝑑𝜕𝜕𝜕𝜕 = ∫ (�̅�𝒕𝒕𝒕 + �̅�𝒕𝒃𝒃)𝐺𝐺Ω𝑟𝑟Ω𝑟𝑟 + ∫ ∫ �̅�𝒕𝒍𝒍𝐺𝐺𝐻𝐻𝑟𝑟
𝐻𝐻𝑟𝑟 𝐺𝐺𝜕𝜕Ω𝑟𝑟𝜕𝜕Ω𝑟𝑟  ,  (20) 

with 
• �̅�𝒕 = Surface traction 
• �̅�𝒕𝒕𝒕 = Top Surface traction 
• �̅�𝒕𝒃𝒃 = Bottom Surface traction 
• �̅�𝒕𝒍𝒍 = Lateral Surface traction 
• 𝒇𝒇 =Vector of ext. volumetric body forces. 

3.3 Constitutive equations (Elasticity) 

The model implemented in this article uses an elastic material model (neo-Hookean material) suitable for large 
displacements and deformations (Pimenta, P.M, 2006). The strain energy is given by equation (21) 

𝜓𝜓 = 1
2
𝜆𝜆 �1

2
(J2 − 1) − 𝑎𝑎𝑙𝑙(J)� + 1

2
𝜇𝜇�𝐼𝐼1 − 3 − 2𝑎𝑎𝑙𝑙(J)� ,  (21) 

where 𝐼𝐼𝑖𝑖 are the principal invariants of the deformation Cauchy-Green right tensor “C”, defined by 

𝐼𝐼1 = 𝑡𝑡𝐺𝐺 𝑪𝑪 = 𝒇𝒇𝑖𝑖 ⋅ 𝒇𝒇𝑖𝑖, 𝐼𝐼2 = 𝑡𝑡𝐺𝐺[𝐶𝐶𝐶𝐶𝐶𝐶 𝑪𝑪] = 𝒈𝒈𝑖𝑖 ⋅ 𝒈𝒈𝑖𝑖, 𝐼𝐼3 = det𝑪𝑪 = J2 = �𝒇𝒇1 ⋅ (𝒇𝒇2 × 𝒇𝒇3)�
2 ,  (22) 

with: 
• 𝜆𝜆 and μ - Lamé coefficients (Material properties) 
• 𝜓𝜓 = 𝜓𝜓(𝑭𝑭) = Helmholtz free energy 
• 𝑪𝑪 = 𝑭𝑭𝑇𝑇𝑭𝑭 =  deformation Cauchy-Green (right) tensor. 

3.4 Spatial Discretization 

The finite element developed is triangular. Because of the Kirchhoff-Love shell theory, it would be required 𝐶𝐶1 
continuous approximations in order to preserve continuity of the displacement gradient among all domain. This model, 
however, imposes 𝐶𝐶1 displacement field inside the element and enforces rotation between adjacent elements. 
Emforcement of kinking angle between adjacent elements is better explained in further section. 

In the current model, shape functions are based on Area coordinates (Papadopoulos P., 2015). The interpolations 
for position vector (reference configuration), displacement vector and derivatives are defined by equations (23) and (24), 
which are similarly represented in Viebahn et al. (2017). 

𝜻𝜻 ≃ 𝜻𝜻ℎ = �𝑁𝑁𝐼𝐼𝜻𝜻𝐼𝐼

𝑖𝑖𝑒𝑒𝑖𝑖

𝐼𝐼

 , 

𝒖𝒖 ≃ 𝒖𝒖ℎ = �𝑁𝑁𝐼𝐼𝒅𝒅𝐼𝐼

𝑖𝑖𝑒𝑒𝑖𝑖

𝐼𝐼

 𝐺𝐺𝑙𝑙𝐺𝐺 𝒖𝒖,𝛼𝛼 ≃ 𝒖𝒖,𝛼𝛼
ℎ = �𝑁𝑁𝐼𝐼,𝛼𝛼𝐺𝐺𝐼𝐼

𝑖𝑖𝑒𝑒𝑖𝑖

𝐼𝐼

 , 

𝒖𝒖,𝛼𝛼𝛼𝛼 ≃ 𝒖𝒖,𝛼𝛼𝛼𝛼
ℎ = ∑ 𝑁𝑁𝐼𝐼,𝛼𝛼𝛼𝛼𝐺𝐺𝐼𝐼 𝑖𝑖𝑒𝑒𝑖𝑖

𝐼𝐼 .  (23) 

Expressions (24) represents the discretization of the variation and linearization of displacements and spatial 
derivatives 
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Δ𝒖𝒖ℎ = �𝑁𝑁𝐼𝐼Δ𝒅𝒅𝐼𝐼

𝑖𝑖𝑒𝑒𝑖𝑖

𝐼𝐼

 , 

𝛿𝛿𝒖𝒖ℎ = �𝑁𝑁𝐼𝐼𝛿𝛿𝒅𝒅𝐼𝐼

𝑖𝑖𝑒𝑒𝑖𝑖

𝐼𝐼

 ,Δ𝒖𝒖,𝛼𝛼
ℎ = �𝑁𝑁𝐼𝐼,𝛼𝛼Δ𝒅𝒅𝐼𝐼

𝑖𝑖𝑒𝑒𝑖𝑖

𝐼𝐼

 , 

𝛿𝛿𝒖𝒖,𝛼𝛼
ℎ = �𝑁𝑁𝐼𝐼,𝛼𝛼𝛿𝛿𝒅𝒅𝐼𝐼

𝑖𝑖𝑒𝑒𝑖𝑖

𝐼𝐼

 𝐺𝐺𝑙𝑙𝐺𝐺 Δ𝒖𝒖,𝛼𝛼𝛼𝛼
ℎ = �𝑁𝑁𝐼𝐼,𝛼𝛼𝛼𝛼Δ𝒅𝒅𝐼𝐼 ,

𝑖𝑖𝑒𝑒𝑖𝑖

𝐼𝐼

 

𝛿𝛿𝒖𝒖,𝛼𝛼𝛼𝛼
ℎ = ∑ 𝑁𝑁𝐼𝐼,𝛼𝛼𝛼𝛼𝛿𝛿𝒅𝒅𝐼𝐼𝑖𝑖𝑒𝑒𝑖𝑖

𝐼𝐼  .  (24) 

It is important to remark that the current Paper does not focus time-dependent problems. Further development in 
this topic will be approached in future paper under development. 

3.5 Finite element definition 

Figure 2 illustrates the finite element implemented in this article with its degrees of freedom in its 6 nodes. It is 
assumed a quadratic displacement field (with nodal values of 𝑢𝑢(1). .𝑢𝑢(6)) and 3 independent rotation parameters 
(𝜑𝜑Δ

(4),𝜑𝜑Δ
(5),𝜑𝜑Δ

(6)). 

 
Figure 2 - K-L shell finite element. 

3.6 Kinking angle enforcement 

The kinking angle enforcement in the present article follows a methodology similar but different from Costa e 
Silva et al. (2018) and Viebahn et al. (2017). 

 
Figure 3 - Enforcement of C1-continuity; local coordinate system in reference (a) and current (b) configuration. Source: 

Viebahn et al. (2017) 
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The shell kinematics based on Kirchhoff-Love model imposes the necessity of continuity of the displacement 
gradient (See equations (8),(16) and (18)). Consequently, the finite element construction should guarantee 𝐶𝐶1 continuity 
in the whole domain, include inside and the edges of the elements. The finite element structure implemented in this 
article penalizes the kinking angle(See Figure 3) between adjacent elements based on one of the so-called Rodrigues 
rotation parameters developed in Costa e Silva (2020). 

As explained in Viebahn et al. (2017), the enforcement of C1 continuity at element edges is expected to be satisfied 
asymptotically as ℎ → 0 (mesh refinement) if one guarantees that the kinking angle(at the midpoint) between adjacent 
elements does not change during the deformation. Geometrically, the kinking may be understood as the angle between 
mid-surface normal vectors of adjacent elements. 

As seen in equation (2), the tensor 𝑸𝑸 rotates the normal vector of the shell from reference to current configuration. 
As will be shown in further equations, if one imposes that the rotation tensor 𝑸𝑸 (or its incremental part) is the same for 
both adjacents elements, one may guarantee the continuity of the kinking angle. In this sense, the author uses one of 
the characteristics of the Rodrigues rotation parameters, in which the tensor 𝑸𝑸 may be written as function of 𝛂𝛂: 

α = 2tan(θ/2) ,                              𝛂𝛂 =  α𝐞𝐞 ,                           𝐀𝐀 = skew(𝛂𝛂) ,  (25) 

𝐐𝐐�(𝛂𝛂) = �𝐈𝐈 −
1
2

 𝐀𝐀�
−1

�𝐈𝐈 +
1
2

 𝐀𝐀� = 𝐈𝐈 +
4

4 + α2
�𝐀𝐀 +

1
2
𝐀𝐀𝟐𝟐� . 

When working with Rodrigues parameter in rotations, rotation increment is easily treated by equation 

𝑸𝑸𝑖𝑖+1 = 𝑸𝑸∆𝑸𝑸𝑖𝑖, 𝑸𝑸𝑖𝑖+1 = 𝑸𝑸�(𝛂𝛂𝐢𝐢+𝟏𝟏), 𝑸𝑸∆ = 𝑸𝑸�(𝛂𝛂∆), 𝑸𝑸𝑖𝑖 = 𝑸𝑸�(𝛂𝛂𝐢𝐢),  (26) 

where: 

𝛂𝛂𝐢𝐢+𝟏𝟏 = 𝟒𝟒
𝟒𝟒−𝛂𝛂𝐢𝐢⋅𝛂𝛂∆

 �𝛂𝛂𝐢𝐢 + 𝛂𝛂∆  −  𝟏𝟏
𝟐𝟐
𝛂𝛂𝐢𝐢 × 𝛂𝛂∆� .  (27) 

With the previous expressions, one may write the coordinate system in sequential time steps ({𝒆𝒆1𝑖𝑖 , 𝒆𝒆2𝑖𝑖 , 𝒆𝒆3𝑖𝑖 } at 𝑡𝑡𝑖𝑖  and 
{𝒆𝒆1𝑖𝑖+1, 𝒆𝒆2𝑖𝑖+1, 𝒆𝒆3𝑖𝑖+1} at 𝑡𝑡𝑖𝑖+1) by 

𝒆𝒆3𝑖𝑖+1 = 𝑸𝑸∆𝒆𝒆3𝑖𝑖 , 𝒆𝒆3𝑖𝑖+1 − 𝒆𝒆3𝑖𝑖 = 𝛂𝛂∆ × 𝒆𝒆3𝑚𝑚 and 𝒆𝒆3𝑚𝑚 = 1
2
�𝒆𝒆3𝑖𝑖+1 + 𝒆𝒆3𝑖𝑖 � .  (28) 

In (Costa e Silva, 2020), two important expressions are achieved regarding rotation parameters. It is shown that 

𝛂𝛂∆ = ‖𝒆𝒆3𝑚𝑚‖−𝟐𝟐(𝒆𝒆3𝑖𝑖 × 𝒆𝒆3𝑖𝑖+1) + 𝜑𝜑Δ‖𝒆𝒆3𝑚𝑚‖−𝟏𝟏𝒆𝒆3𝑚𝑚 𝐺𝐺𝑙𝑙𝐺𝐺 𝜑𝜑Δ = ‖𝒆𝒆3𝑚𝑚‖−𝟏𝟏𝛂𝛂∆ ⋅ 𝒆𝒆3𝑚𝑚 .  (29) 

The previous equations shows that the normal vector 𝒆𝒆𝟑𝟑 at the edge of the element at time 𝑡𝑡𝑖𝑖+1 may be find if the 
parameter 𝜑𝜑Ä is known, but at the same time one may determine 𝒆𝒆𝟑𝟑 with the displacement field and so far no condition 
has been imposed to guarantee that both normal vectors are the same. In this sense, the penalty approach is used to 
guarantee that the displacement field is compatible with the 𝜑𝜑Ä independent parameters, witch have been introduced, 
before, as a mechanism to guarantee 𝐶𝐶1 continuity with sufficient mesh refinement. The following equations are used 

𝒆𝒆𝟏𝟏 = �𝒛𝒛,1�
−1𝒛𝒛,1 , 𝒆𝒆3 = �𝒛𝒛,1 × 𝒛𝒛,2�

−1
�𝒛𝒛,1 × 𝒛𝒛,2� ,𝒆𝒆𝟐𝟐 = 𝒆𝒆𝟑𝟑 × 𝒆𝒆𝟏𝟏 ,  (30) 

𝒖𝒖,𝟏𝟏
(𝟒𝟒) = 1

𝑙𝑙3
�𝒖𝒖(2) − 𝒖𝒖(1)� ,𝒖𝒖,𝟏𝟏

(𝟓𝟓) = 1
𝑙𝑙1
�𝒖𝒖(3) − 𝒖𝒖(2)� ,𝒖𝒖,𝟏𝟏

(𝟔𝟔) = 1
𝑙𝑙2
�𝒖𝒖(1) − 𝒖𝒖(3)� ,  (31) 

𝒖𝒖,𝟐𝟐
(𝟒𝟒) = �

𝐶𝐶1
2𝑑𝑑
�𝒖𝒖(1) + �

𝐶𝐶2
2𝑑𝑑
�𝒖𝒖(2) + �

𝐶𝐶3
2𝑑𝑑
�𝒖𝒖(3) + �

−𝐶𝐶3
𝑑𝑑
�𝒖𝒖(4) + �

𝐶𝐶3
𝑑𝑑
�𝒖𝒖(5) + �

𝐶𝐶3
𝑑𝑑
�𝒖𝒖(6) , 

𝑤𝑤ℎ𝑑𝑑𝐺𝐺𝑑𝑑 𝐶𝐶1 = 𝑎𝑎3 − 𝑎𝑎2 ,𝐶𝐶2 = 𝑎𝑎1 − 𝑎𝑎3 ,𝐶𝐶3 = 𝑎𝑎2 − 𝑎𝑎1 .                      (32) 
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With the previous equations, one may write 𝜶𝜶𝜟𝜟 based on the displacement field only and consequently 𝜙𝜙Δ may be 
defined by 

𝜶𝜶𝜟𝜟 =
2�𝒆𝒆𝒋𝒋

𝒊𝒊×𝒆𝒆𝒋𝒋
𝒊𝒊+𝟏𝟏�

1+𝒆𝒆𝒌𝒌
𝒊𝒊 ⋅𝒆𝒆𝒌𝒌

𝒊𝒊+𝟏𝟏  ,𝜙𝜙Δ = 𝜶𝜶𝚫𝚫 ⋅
𝒆𝒆𝟏𝟏
𝒎𝒎

�𝒆𝒆𝟏𝟏
𝒎𝒎�

 𝐺𝐺𝑙𝑙𝐺𝐺 𝒆𝒆𝟏𝟏𝒎𝒎 = 1
2
�𝒆𝒆𝟏𝟏𝒊𝒊 + 𝒆𝒆𝟏𝟏𝒊𝒊+𝟏𝟏� .  (33) 

Here, the penalty is summed to Helmholtz free energy to create the penalty function: 

𝛱𝛱𝑝𝑝𝑒𝑒𝑖𝑖 = 𝜓𝜓 + 1
2
𝑘𝑘 �𝜑𝜑𝛥𝛥

(4) − 𝜙𝜙𝛥𝛥
(4)�

2
+ 1

2
𝑘𝑘 �𝜑𝜑𝛥𝛥

(5) − 𝜙𝜙𝛥𝛥
(5)�

2
+ 1

2
𝑘𝑘 �𝜑𝜑𝛥𝛥

(6) − 𝜙𝜙𝛥𝛥
(6)�

2
 .  (34) 

As a note, it is important to remark that it is used similar letters in this paper (𝜑𝜑𝛥𝛥  and 𝜙𝜙𝛥𝛥 ) because the represent the 
same parameter, however, as explainded before, they are calculated in different ways and are forced to be the same by 
equation (34). 

In the previous equation, it is used the only artificial numerical factor of the formulation (“k”). In the examples, it is 
assumed as a multiple of the bending stiffness (𝐸𝐸ℎ3/�12(1 − 𝜐𝜐2)�). Figure 4 illustrates adjacent elements with its 
degrees of freedom (DoF). 

 
Figure 4 - Adjacent elements. 

4 RESULTS 

The FEM model have been implemented in AceGen / AceFEM environment and tested for 3 simple cases: Simply 
supported square plate, Cantiliever Beam and Pinchided Cylinder. For convenience, the finite element model developed 
in this article has been nominated as “KL T63i Pen” by similarity to the model developed in Campello et al. (2003). It is 
used the letters Pen as “Penalty”, in contrast to Lag in “Lagrangean” – Model developed in Costa e Silva (2020). 

4.1 Square Plate 

The square plate is simply supported among all 4 sides and an external normal force is applied in the center of the 
plate. This is a classical problem in theory of elasticity and analytical results may be found in bibliography for small 
displacements. The formulas used in the simulations have been refered to Timoshenko and Krieger (1959) and 
Young et al. (2002). The simulation has been executed for different mesh discretization and for different Thickness and 
its output is compared to analytical results and to commercial software Nastran Triangular Shell Element – Ctria6 (See 
Autodesk Inc, 2019). 

In the simulations and calculations, mechanical properties, dimensions and loads are defined by 

• E = 200 GPa; 

• 𝜈𝜈 = 0,3; 

• Center down Force = 10 N; 

• a(width) =1 m; 

• b(length) = 1 m; 

• h(thickness) = 1mm and 0,2mm; 
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Figure 5 illustrates the simulated model. 

 
Figure 5 - FEM model. rectangular plate with concentrated normal center force. 

Figure 6, Figure 7 and Figure 8 illustrate the main results of this first simulated model. The first (Figure 6) plots the 
total displacement of the center of the plate for different load factors. Each line represents different models used to 
simulate. The second (Figure 7) represents tha same simulation but with different thickiness, the last graph (Figure 8) in 
this subsection compares maximum displacement (at center) for different mesh discretization. 

 
Figure 6 – Square Plate - Thk=1mm. 

 
Figure 7 - Square Plate - Thk=0,2mm. 

 
Figure 8- Square Plate, different mesh refinements - Thk=0,2mm. 
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In these simulations it has been observed that for K-L Lagrange model and Nastran Ctria6 the simulations took longer 
time to converge with finer meshes. In addition, it has been noticed that the K-L Penalty based element has performed 
the faster simulations (compared to the other models with same parameters). Another interesting fact is that the author 
could not simulate successfully the problem using 3D solid tetrahedral Nastran elements for given thickness. In this case, 
the software was unable to solve the numerical problem and presented several warnings and errors. This was expected 
due to the locking phenomena discussed in section 1 of this paper. 

Figure 6 demonstrate great results agreement between different models. For 1mm thickness the model developed 
in this article had practically the same results as the model developed by Costa e Silva (2020) and to the commercial 
software Nastran, with differences smaller than 5%. The analytical solution could only approximate the results at the 
beginning of the curve due to its linearized form. For the thinner(0,2mm) plate (Figure 7) it may be seen that the models 
present some slight differences. The (vertical) displacements at plate center are very similar, however Nastran FEM have 
shown as the stiffer result. For a load factor of 1, the displacements are less than 10% different from one another. Here 
again the analytical formula is suitable only for very low displacements. Figure 8 shows that all the models tend to 
converge to a maximum value when using a bigger number of elements, as it would be expected. However, in the graphic 
the model developed in this article (KL T63i Pen) have presented the fastest convergence in this simulation. Converging 
to the more accurate result with fewer elements is a desirable important feature for a finite element model. 

4.2 Cantilever Beam 

A Cantilever Beam is subject to a transverse force at the free end. The simulation has been executed for different 
mesh discretization and for different thicknesses in order to analyze the FEM model built in this article. The results are 
compared to the Lagrange shell FEM model from Costa e Silva (2020) and to commercial software (Nastran Triangular 
Shell Element – CTRIA6). 

Mechanical properties and dimensions of the beam that have been used are displayed below. 

• E = 210 GPa; 

• 𝜈𝜈 = 0,3; 

• L (beam length) =2400 mm; 

• h(height) = 100 mm; 

• b(width of cross section) = 11,64 mm; 

The beam is subject to vertical down force up to 𝐹𝐹𝑦𝑦 = 10000 N and an horizontal perturbation force is also 
introduced (𝐹𝐹𝑧𝑧 = 𝐹𝐹𝑦𝑦 ⋅ 10−4) in order to induce the buckling phenomena. 

Figure 9 illustrates the simulated model and Figure 10 shows FEM model. 

 
Figure 9 - Cantilever Beam. Image Source: Costa e Silva (2020)  
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Figure 10 - Lateral view, Cantilever Beam. 

The analytical results (Linear elastic) for this problem may be found in Solid mechanics books and is illustrated by 
the formula 

𝑦𝑦m𝑎𝑎𝑒𝑒 = −𝐹𝐹𝑦𝑦𝐿𝐿3/3𝐸𝐸𝐼𝐼 𝐺𝐺𝑙𝑙𝐺𝐺 𝐼𝐼 = 𝑏𝑏ℎ3/12 ,  (35) 

where 
• 𝑦𝑦m𝑎𝑎𝑒𝑒 is the maximum vertical displacement at the center of the free side of the beam. 
• 𝐹𝐹𝑦𝑦 is the concentrated force at the center of the free side of the beam. 

• 𝐿𝐿 is the length of the beam 
• E is the Young modulus of the material. 
• 𝐼𝐼 is the moment of inertia of the rectangular cross section 
• b is the thickness of the cross section. 
• h is the height of the cross section. 
Figure 11 and Figure 12 illustrate the vertical and lateral displacement of the free side of the beam for different 

forces. Each line represents different models. For certain high transversal forces, it is observed flexural buckling of the 
structure. 

 
Figure 11 – Vertical maximum displacement vs load factor. 
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Figure 12- Lateral maximum displacement vs load factor. 

The results shown above demonstrates that both Lagrange and penalty methods led to considerable similar 
(difference smaller than 5% from one another) and consistent results, once they could capture the flexural buckling of 
the beam. Both methods have close results to the analytical model only for low load factors due to the Linear elastic 
limitation of the analytical model. For high loads, the beam buckles and the analytical results loses its physical meaning. 
For this simulation, the commercial software (Nastran Triangular Shell Element – CTRIA6) was unable to converge for 
load factor bigger than 0,24, presenting numerical errors and warnings. This load factor is approximately the step that 
the beam starts to buckle. The simulations were accomplished with approximately 160 elements and in Nastran, it has 
been used the non-linear material setup with the same mechanical properties as described above. The capacity to 
successfully capture the buckling phenomena is an important and desirable feature that was observed in this simulation. 

4.2 Pinched Cylinder 

This example is reproduced in other articles (Ivannikov et al., 2015) (Campello et al, 2003) (Sansour and Kollmann, 
2000) (Costa e Silva, 2020) and is a good benchmark to evaluate the shell model for big displacements and curvatures. It 
consists of a cylinder with rigid ends and subject to a radial vertical force in its center. The Figure 13 illustrates the 
simulated model and Figure 14 FEM simulation. 

 
Figure 13 – Pinched cylinder – Scheme of boundary value problem. Image Source: Viebahn et al (2017)  

 
Figure 14 - Pinched Cylinder - FEM simulation (current model). 
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In the simulations, it has been used the same parameters of the bibliography, then one can compare results. The 
mechanical properties, dimensions and loads, that are used in the simulation, are 

• E = 3 ⋅ 1010 Pa 

• 𝜈𝜈 = 0,3 

• 𝑭𝑭(𝑏𝑏𝐺𝐺𝑏𝑏𝑑𝑑𝐶𝐶𝐶𝐶𝐺𝐺𝑏𝑏𝑑𝑑) = 1000 N 

• L (Cylinder length) =200 mm; 

• R(Cylinder Radius) = 100 mm; 

• b(thickness) =1 mm; 

Figure 15 illustrates the vertical displacement of point A and Figure 16 plots the horizontal displacement of point B 
for different load factors. Each line in the graphics represents a different Finite element model. Results from some 
sources in bibliography have been plotted in the same Graph for comparison. 

 
Figure 15 - Maximum vertical displacement at A 

 
Figure 16 - Maximum Horizontal displacement at B 

Figure 15 and Figure 16 illustrates that all models have similar results for low loading, however for bigger forces, 
and big displacements, Nastran CTRIA6 has different and unstable results. Yet in the same figures, the model developed 
in this article has demonstrated very close results to the lagrange based model (Costa e Silva, 2020) with results differing 
less than 10% from one another even for higher loads. Nastran CTRIA6 presented non-smooth results regarding the 
displacements and presented some warnings in the numerical simulation regarding numerical convergence quality. In 
the simulations, it has been used about 5000 shell elements and in Nastran it has been used non-linear material setup 
with the same mechanical properties as specified above. 
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5 CONCLUSIONS 

The present article develops analytically a very simple finite element and presents results in 3 different simulations 
comparing it to other FEM models and to linear analytical models. All the kinematics is based on Kirshoff-Love 
hyphothesis and the C1 continuity expected between adjacent elements because of the K-L hypothesis is expect to be 
fulfilled by applying penalty method internally to the element enforcing agreement between a rotation degree of 
freedom (that is shared between adjacent elements) and the displacement field (defined by others DoFs). One of the 
advantages of the current model compared to others K-L based elements is that a second mesh for enforcing penalty or 
lagrange multiplyers is not necessary. All the approximation is accomplished internally to the element. 

The promising results obtained so far are coherent and satisfactory, but more tests are going to be made in further 
studies to have a stronger idea of the positives/negatives aspects of the model. An important conclusion of these first 
simulations is that all the simulations presented in this article shows compatible and reliable results regarding the model 
developed. Some differences, however, are observed. The results obtained with commercial software (Nastran CTRIA6) 
were observed as more stiffer than the K-L models (Penalty and Lagrange based models) in the first and third example 
(Square plate and Pinched cylinder) and it is also unstable for large displacements (Second and third Examples). It is also 
possible to check by Figure 8 that the K-L Penalty based model has shown better convergence with fewer elements. It is 
important to remark as well that the analitical models in all examples could not depict the non-linear phenomena that is 
captured with the non-linear Finite element and consequently presents similar results only for small displacements due 
to its linear characteristic. 

For the next studies, the authors plan also to develop a shell element with out the use of penalty or Lagrange 
multipliers as a mechanism to guarantee C1 continuity. The theory behind this new element is still under developement 
and more information is going to be presented in forthcoming work. It is believed that a very reliable and consistent 
thiangular shell finite element as presented in this article combined with powerfull mesh generators is a great option for 
simulations of thin complex structures. 
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SYMBOLS AND ABBREVIATIONS 

As a remark note, throughout the text italic Greek or Latin lowercase letters (𝐺𝐺, 𝑏𝑏, … ,𝛼𝛼,𝛽𝛽, …) represents scalar 
quantities, bold Greek or Latin lowercase letters (𝒂𝒂,𝒃𝒃, … ,𝛂𝛂,𝛃𝛃, . ..) indicate vectors and bold Greek or Latin capital letters 
(A,B, . . .) signify second-order tensors. In summations, Greek indices indicates range from 1 to 2, Latin indices indicate 
from 1 to 3. ℝ3 denotes 3-dimension Euclidian space. 
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