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Abstract 
This paper presents analytical and mathematical modeling and 
optimization of the dynamic behavior of the fiber metal laminates 
(FMLs) subjected to low-velocity impact. The deflection to thick-
ness (w/h) ratio has been identified through the governing equa-
tions of the plate that are solved using the first-order shear defor-
mation theory as well as the Fourier series method. With the help 
of a two degrees-of-freedom system, consisting of springs-masses, 
and the Choi’s linearized Hertzian contact model the interaction 
between the impactor and the plate is modeled. Thirty-one exper-
iments are conducted on samples of different layer sequences and 
volume fractions of Al plies in the composite Structures. A reliable 
fitness function in the form of a strict linear mathematical func-
tion constructed. Using an ordinary least square method, response 
regression coefficients estimated and a zero-one programming 
technique proposed to optimize the FML plate behavior subjected 
to any technological or cost restrictions. The results indicated that 
FML plate behavior is highly affected by layer sequences and 
volume fractions of Al plies. The results also showed that, embed-
ding Al plies at outer layers of the structure significantly results in 
a better response of the structure under low-velocity impact, in-
stead of embedding them in the middle or middle and outer layers 
of the structure.  
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1 INTRODUCTION 

Nowadays, fiber metal laminates (FMLs) are advanced hybrid materials consisting of differ-
ent metals and fiber reinforced plastic (FRP) layers. They were made to combine the good 
properties (such as impact resistance) of the metals with the better lightweight characteristic 
of FRPs by Vlot (1997), Caprino et al. (2004, and 2007), Atas (2007) and Abdullah and 
Cantwell (2006). This makes them to be an alternative to aluminum in aerospace industries 
as presented by Payeganeh et al. (2010), Asundi and Choi (1997) and Marsh (2005). 

Abrate (1991, 1994, and 2001) studied the impact behavior of composite materials in a 
widespread way. Olsson (2000, 2001, and 2003) classified low-velocity impacts in two catego-
ries, the small mass and the large-mass impact, which is based on the ratio of the impactor 
mass to the target mass. Vlot (1997) showed that the damaged zone of FMLs after the im-
pact is smaller than the FRPs. He also demonstrated that the energy to create the first crack 
lamia interfaces between each Aluminum and fiber layer for FMLs is relatively low compared 
to traditional FRPs. One knows that achieving to the complete successful bounding in inter-
faces among lamia interfaces is the main technology challenge in production of FML struc-
tures. So, the cracks usually initiates among lamia interfaces in FML structures having lower 
energy relative to crack initiation energy of fiber composite laminates. It is clear that the 
materials of each two bonded laminas in FMLs are not identical. Caprino et al. (2004) 
showed the correlation between the maximum force and displacement, residual displacement, 
and energy can be described by simple empirical laws, provided that the material is far 
enough from penetration. They also demonstrated that the overall impact force-displacement 
curve of FMLs under low-velocity impact only depends on the impact energy, rather than 
mass and speed of the impactor separately. Caprino et al. (2007) presented a mechanistic 
model with neglecting the macroscopic behavior of the structure (i.e. neglecting local defor-
mation due to indentation, overall deflection, damage initiation and development) to study 
the low-velocity impact. They also showed that the residual displacement after impact, main-
ly due to the plastic deformation of aluminum, is linearly dependent on the square root of the 
impact energy. Atas (2007) has done an experimental investigation to carry out the damage 
process of FMLs under low-velocity impact. He demonstrated that the plastic deformation 
and shear fracture in the aluminum layers as well as fiber fracture and delamination in the 
composite plies were the primary energy-absorbing mechanisms. In addition, the delamination 
between the aluminum layers and the composite plies should not be ignored. Abdullah and 
Cantwell (2006) showed the positive effect of the FMLs in comparison with the FRP lami-
nates in high-velocity impact too. They presented that the membrane stretching, plastic de-
formation and shear fracture in the aluminum layers as well as plastic drawing and delamina-
tion in the nonmetal fiber reinforced layers were the primary sources of energy-absorbing 
mechanisms in FMLs. They investigated that the layer sequence is an important parameter 
on the perforation resistance of FMLs structures. 

It is seen that there is no effort in optimizing the dynamic behavior of FML structures 
under low-velocity impact. The paper presents an analytical and a mathematical model to 
study the dynamic behavior of the FMLs under low-velocity impact in detail. In addition, 
effect of layer sequences and volume fraction of Al layers are studied. Many approaches for 
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multidisciplinary optimization of composite laminates were proposed to save the number of 
fitness function evaluations. In most of them  genetic algorithms have been widely applied to 
laminate design optimization problems, since they are suitable for integer programming and 
are more likely to find global optima (Soremekun, 2001). They do not require gradient or 
sensitivity coefficient evaluations; however, a large number of analyses must be done to ob-
tain the optimal solution. Here, using an experimental design technique in binary space 
(Montgomery, 2008), we first offered a fitness function to deflecting ratio as a function of 
layer sequences and then an integer programming technique to seek the optimum solution to 
decide the layer sequences proposed. In the present approach, any technological or financial 
restrictions could be accessible. 
 
2 ANALYTICAL MODELING 

2.1 Governing Equations 

In this paper, the developed plate equations by Whitney and Pagano (1970) are used as fol-
low as: 
 

u = u0 (x, y,t)+ zψ x (x, y,t);   v = v0 (x, y,t)+ zψ y(x, y,t);   w = w0 (x, y,t)                (1) 

 
u0, v0 and w0 are the plate displacements in x, y and z directions at the plate mid-plane and 
ψ x  and ψ y

 are the shear rotations in the x and y directions. For the specially orthotropic 

form (Bij = 0, A16 = A26 = D16 = D26 = 0) results in: 
 

D11  ψ x ,xx +D66  ψ x ,yy + D12 + D66( )  ψ y ,xy −ksh  A55  ψ x  − ksh  A55  w,x = Iψ
..

x
                                                                             

(D12 + D66 ) ψ x ,xy +D66  ψ y ,xx +D22  ψ y ,yy −ksh  A44  ψ y  − ksh  A44  w,y = Iψ
..

y
                                                                                             

ksh  A55  ψ x ,x +ksh  A55  w,xx +ksh  A44  ψ y ,y  + ksh  A44  w,yy +q = ρw
..

                  (2) 

 
ksh is the shear correction factor introduced by Mindlin (1951), usually equals to π2/12 and q 
is the dynamic normal load over the plate and also: 

 

(Aij ,Bij ,Dij ) = Qij
k (1, z, z2 ) dz

−h/2

h/2

∫ ; ρ, I( ) =  ρ0  1, z2( )
−h/2

h/2

∫  dz                               (3) 

 
which  ρ0 shows the density of each layer and ρ is the total density of the plate, I is the mo-
ment of inertia and h is the thickness of the plate. (Qij )k  (i, j = 1,  2,  6)  are the reduced in-plane 

stiffness components and (Qij )k  (i, j = 4,  5)  are the reduced transverse shear stiffness compo-

nents as described by Whitney and Pagano (1970). 
Here, a simply supported rectangular plate is chosen to study with the dimensions of a 

and b, with the following boundary conditions: 
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w =ψ x ,x =ψ y = 0     ;     at  x = 0, a   

w =ψ y ,y =ψ x = 0     ;     at  y = 0, b                                       (4) 

 
A FML plate that is in contact with a spherical mass is shown in Fig. 1(Payeganeh et al., 

2010). 

 
Figure 1   Schematic view of the FML impacted by a spherical mass on its center (Payeganeh et al., 2010) 

 
2.2 Constitutive Equations 

Constitutive equations of stress-strain relationship for a FML are as follows (Reddy, 1997):  
 

σ 1

σ 2

τ12

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

=
Q11 Q12 0
Q12 Q22 0
0 0 Q66

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

ε1
ε2
γ 12

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

; τ13
τ 23
⎧
⎨
⎩

⎫
⎬
⎭
=

Q55

0
⎧
⎨
⎩

0
Q44

⎫
⎬
⎭

γ 13
γ 23
⎧
⎨
⎩

⎫
⎬
⎭

                        (5) 

 
which {σ} represents the stresses in the principle directions, the matrix {ε} shows the strains 
in the principle directions, and Qij  denotes the reduced stiffness matrices for the FML struc-

ture. 
The constitutive equation could be determined by considering the force-couple resultants 

in terms of stresses, using integration of Eq. (5) through the plate thickness, which yields 
(Shokuhfar et al., 2008):  

 

N
M

⎧
⎨
⎩

⎫
⎬
⎭

 =  
Aij Bij
Bij Aij

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 ε 0

κ
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  ;   i, j = 1, 2, 6  

S{ }  = [kshAij ] γ{ }  ;    i, j = 4,  5                                             (6) 

 
where N and S are vectors of forces and M is the vector of moments respectively. Aij , Bij , and 

Dij
are the components of extensional and shear, coupling, and bending stiffness matrices re-
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spectively. Also ε 0  and γ  are the midplane and shear strains respectively, κ is the curvatures, 
and ksh is the shear correction factor.  
 
2.3 Contact Force Analysis 

Fig. 2 (Payeganeh et al., 2010) shows a two-degrees of freedom springs-masses model is used 
to determine the impact force (Fig. 2). The motion equation is equal to: 
 

m2 z2

..
+ F = 0   ;     m1 z1

..
+ K1z2 + K2z2

3 − F = 0                                 (7) 
 
 

 
Figure 2   A two-degrees of freedom springs-masses model (Payeganeh et al., 2010) 

 
 
which the index 1 indicates the plate and the index 2 belongs to the impactor.  F is the con-
tact force, m1 =mp and m2=mi represents respectively the mass of the impactor and the FML 
plate, z1 and z2 are respectively the relative displacements of the structure and the impactor 
masses, K1 = Kbs is the bending-shear stiffness the plate. Using of the Choi's linearized model 
(Choi, and Lim, 2004), instead of nonlinear Hertzian contact law, the contact force can be 
obtained as: 
 
 

F(t) = Kl  α = Kl (z2 − z1) ;   Kl = Fm
1/3  Kc

2/3  

Kc =
4
3

  R2
1/2

1−υ2
2

E
+ 1
E22

                                             (8) 

 
 
In the above equations, K2 = Kl represents the linearized contact coefficient in Choi’s linear-
ized contact law, Fm is the maximum predicted contact force, and Kc represents the contact 
stiffness in the improved Hertzian contact law (Choi, and Lim, 2004), where R2 is radius of 
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the curvature, ν2 is the Poisson’s ratio, E and E22 are the elastic modulus of the isotropic 
impactor and the transverse elastic modulus of the top layer of the FML structure respective-
ly.  

Replacing the value of F in Eq. (7) with the values presented by Choi’s differential equa-
tions after some simplifications (Payeganeh et al., 2010): 
 

m1 z1

..
= −K1z1 − K2 (z1 − z2 )   ;    m2 z2

..
= −K2 (z2 − z1)                              (9) 

 
The system of ordinary equations could be solved by the Runge-Kutta method, using of 

the MATLAB ODE solver. The Runge-Kutta method is very good known numerical method 
for solution of ordinary differential equations particularly for linear simple set of ODEs (Eq. 
9). These equations are homogeneous equations with initial value conditions. The initial val-
ues of displacements and velocities are as follow: 
 

Z1(t = 0) = 0;Z2 (t = 0) = 0
Z1(t = 0) = 0;Z2 (t = 0) =V

 

 
These initial conditions must be considered in the MATLAB ODE solver. 

 
 
2.4 Deflection and Stress-Strain Analysis 

The current problem could be converted to a system of ordinary differential equations of se-
cond-order in time for the Fourier coefficients of the transverse deflection (Carvalho, 2000), 
neglecting the effects of rotary inertia (Mindlin, 1951). Therefore the motion equation of the 
FML plate subjected to a point load q(x, y, t) is equal to (Payeganeh et al., 2010, and Khalili 
et al. 2007a): 
 

L11 L12 L13
L12 L22 L23
L13 L23 L33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Amn (t)
Bmn (t)
Wmn (t)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

=
0
0

Pmn (t)− ρhW
..
mn (t)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

                        (10) 

 
where the Lij coefficients are introduced by Payeganeh et al. (2010) as: 
 

q(x, y,t) = Pmn (t) Sin(mπ
a

)x Sin(nπ
b

)y
n
∑

m
∑                                    (11) 

 
where for a concentrated load located at the point (xc , yc), Pmn(t) are the terms of the Fouri-
er series as:  
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Pmn (t) =
4F(t)
ab

 Sin(mπ
a

)xc  Sin(nπ
b

)yc                                     (12) 

 
which F(t) is the impact load (See Eq. (8)). The impact solution for a rectangular plate with 
simply supported boundary conditions is assumed to be in the following form (Christoforou, 
1991, and Khalili, 2007b): 
 

ψ x (x, y,t) =
m,n=1

∞

∑ Amn (t) Cos(
mπ
a

)x  Sin(nπ
b

)y  

ψ y(x, y,t) =
m,n=1

∞

∑ Bmn (t) Sin(mπ
a

)x  Cos(nπ
b

)y  

w(x, y,t) =
m,n=1

∞

∑ Wmn (t) Sin(mπ
a

)x  Sin(nπ
b

)y                                 (13) 

 
 
where Amn(t) , Bmn(t) and Wmn(t) are the time dependent coefficients. Using the changes of 
variables method (Khalili, 2007c), Eq. (11) simplifies as follows: 
 
 

W
..
mn (t)+ωmn

2 Wmn (t) =
Pmn (t)
ρh

                                       (14) 

 
 
where: 
 
 

ωmn
2 = L13  KA + L23  KB + L33

ρ  h
                                        (15) 

 
 

ωmn
2  is the square of the fundamental frequencies of the plate. For m = n = 1, which K1 is 

equal to: 
 

K1 = m1. ω11
2                                              (16) 

 
 
The value of Wmn(t), would be easily calculated based on the Runge-Kutta method of 4th and 
5th ranks and using a software like MATLAB and its ode 45 solver. Substituting the results 
in Eqs. (13), the values of w, ψ x  and ψ y  could be calculated.  
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3 MATHEMATICAL MODELING 

In many practical situations, two or more variables are related and there is an interest to 
develop a strict mathematical model to estimate the relationship between response variable 
respect to the relevant independent variables. For example, in composite materials, the w/h 
ratio of a composite plate is an unknown function of layer sequences. In order to predict the 
desired cases or tracking optimum process setting, fitness function must be obtained using 
regression method (based on a set of experiments). 
In general, the response variable y may be related to k predictor variables named as Xi 
(i=1,2,…,k). The surface regression model could be as (Montgomery, 2009): 
 
 

                                y = β0 + β0x1 + β0x2 + ...+ β0xk + e                                    (17) 
 
 

It is called a multiple linear regression model and may be written in matrix notation 
showed in bold characters as follow as: 

 
 

              y = Xβ + ε                                                    (18) 
 
 

or in expanded form: 
 
 

y1

y2

.

.

.
yn

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

1 x11 x12 . . x1k

1 x21 x22 . . x2k

. . . . . .

. . . . . .

. . . . . .
1 xn1 xn2 . . xnk

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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.

.

.
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⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

+

ε1

ε2

.

.

.
εn

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

                   (19) 

 
 
where the least square estimator of fitness function is equal to: 
 
 

              β̂ = (X 'X)−1X 'y                                           (20) 
 
 

where notations “-1” and “T” show the inverse and transpose of the desired matrix, respective-
ly. The significance of fitness function could be evaluated using a test to determine whether a 
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linear relationship exist between the response variable and a subset of the predictor variables. 
The appropriate statistical hypotheses are equal to: 
 
 

H0 :β1 = β2 = β3 = ...= βk = 0                                       (21) 
 
 
 

1,2,...,k jH j =≠ oneleast at for   0:1 β                    (22) 
 

 
Rejection of H0 in equation implies that at least one of the predictor variables contributes 

significantly to the fitness function. The test procedure involves an analysis of variance, 
ANOVA, portioning of total sum of square due to the model (SS(R)) and the residuals or 
errors (SSE), as follow as: 
 
 

SSERSSSST += )(                                       (23) 
 
 
where the sum of squares may be computed by: 
 
 
 

SST = yTy −
yi∑( )2
n

                                (24) 

 
 
 

 
SS(R) = β

T
XTy −

yi∑( )2
n

                             (25) 

 
 
 
 

 SSE = yTy −β
T
XTy                                  (26) 
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The test procedure for H0 must be computed as: 
 
 
 

F =
SS(R)

k
SSE

(n − k −1)
= MS(R)

MSE
                                 (27) 

 
 
 

In addition, to reject H0 if calculated F exceeds Fα (k,n − k −1) . The test is usually sum-
marized in an ANOVA table such as Table 1. 

 
 

Table 1 ANOVA for significance of multiple regressions 
 

Source of 
variation 

Sum of 
squares 

Degree of 
freedom 

Mean square F 

Regression SS(R) k MS(R) MSE
RSS )(

 
Residuals SSE n-k-1 MSE  

Total SST n-1   

 
 

  
4 RESULTS AND DISCUSSION 

4.1 Analytical Model Verification 

The accuracy is checked by comparison of force-time relationships obtained by the present 
solution with those generated using an analytical method of Pierson, and Vaziri (1996) and 
those obtained from the experimental results of Delfosse et al. (1993). It was shown (Paye-
ganeh, 2010) that a good agreement happens in the results. The effect of number of terms of 
the Fourier series in the solution for the transverse deflection ratio (deflection to thickness) of 
the plate is also verified (Payeganeh, 2010). Good convergence of the present series solution is 
reached by using of only 9 terms, but the full convergence is demonstrated with 100 terms. 

Here, the effect of layer sequences and volume fraction of the Al layers on the impact re-
sponse of FMLs is studied. The FML plate used is cross ply and symmetric. The impactor is 
a heavy spherical object (impactor mass/plate mass>2). Material and geometrical properties 
of the FML plate as well as the impactor are presented in Table 2. The structure consists of 
10 layers and they are numbered from top to bottom.  
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Table 2   Geometrical and material properties of the FML plate and the impactor (Khalili et al., 2007b,  
Malekzadeh et al. 2006, and Krimbalis, 2007). 

 

Geometrical properties of FML plate 

Boundary conditions Simply supported 
Length = Width 200 mm 

Lay-up [0/90/0/90/0]s 
Ply thickness 0.269 mm 

Material properties of FRP layer (Carbon- Epoxy) 

E11 = 141.2 GPa ; E22 = E33 = 9.72  GPa 
G13 = G12 = 5.53  GPa ; G23 =3.74  GPa 

ν12 = ν13 = ν23 = 0.30 
ρ = 1536 kg/m3 

 
Material properties of Al layer (2024-T3) 

E = 72.4 GPa, ν = 0.33,  ρ = 2780  kg/m3 
 

Properties of impactor (Steel) 
E = 207  GPa, ν = 0.3, , ρ = 7800  kg/m3 

Tip diameter =12.7 mm 
Mass = 2.0 kg 

Velocity = 1.0  m/s 
 
 

 
4.2 Mathematical Modeling and Optimization Procedure 

In statistical terms, composite production process could be called as a multivariate problem 
due to simultaneous dealings of more than one variable. In such cases, process setting and 
optimizing should be followed after interpreting response variables in terms of gradient or 
sensitivity coefficient evaluations. Usually a large number of analyses are required to obtain 
the optimal solution. 

Several variables affect dynamic behavior of FMLs subjected to low-velocity impact. Here, 
the effects of changing the volume fraction and layer sequences of the Al plies in FML plates 
are studied in detail. After embedding of some Al plies in 31 simulated random selected layer 
sequences with some volume fractions ks of the Al plies in the FML plate (here, ks = 0.2, 0.4, 
0.6, 0.8 and 1), the w/h (deflection to thickness) ratio calculated through the analytical 
method described (Eq. (14)). If Ks=1 then, the FMLs plate convert to a laminated plate with 
identical Al layers. In other hand, the plate changes to identical  isotropic layered plate with-
out any composite laminate.  
 

 
 



402      F. A. Ghasemi et al / Analytical and Mathematical Modeling and Optimization of FMLs Subjected to Low-Velocity Impact       

 
Latin American Journal of Solids and Structures 10(2013) 391 – 408 

Table 3 shows arrangement of the layer sequences and calculated results of the w/h ratio 
of the structure.  

In order to model layer sequences, we have used five binary variables of X1, X2, X3, X4 
and X5. These variables just get 1 if symmetrical FRP layers numbered as (1,10), (2,9), (3,8), 
(4,7) or (5,6) replaced with Al plies. For example, any structure embedded with Al plies in its 
outer symmetrical layers (1, 10) could be modeled by X1=1, X2=0, X3=0, X4=0 and X5=0. 
Embedding Al plies in the both inner layers (4, 7) and (5, 6) could be modeled as X1=0, 
X2=0, X3=0, X4=1 and X5=1. Using such arrangement, Table 3 could be explained in anoth-
er technical terms through Table 4.  
 

Table 3   Calculated w/h ratio in 31 set of layer sequences with different volume fractions ks of Al plies in the FML structure 
 

No. Layer sequences ks w/h No. Layer sequences ks w/h 

1 (1,10) 0.2 0.5034 17 (1,10)(2,9)(4,7) 0.6 0.4156 

2 (2,9) 0.2 0.521 18 (1,10)(2,9)(5,6) 0.6 0.4369 

3 (3,8) 0.2 0.677 19 (1,10)(3,8)(4,7) 0.6 0.461 

4 (4,7) 0.2 0.8481 20 (1,10)(3,8)(5,6) 0.6 0.4844 

5 (5,6) 0.2 0.9889 21 (1,10)(4,7)(5,6) 0.6 0.5263 

6 (1,10)(2,9) 0.4 0.4173 22 (2,9)(3,8)(4,7) 0.6 0.4483 

7 (1,10)(3,8) 0.4 0.4582 23 (2,9)(3,8)(5,6) 0.6 0.472 

8 (1,10)(4,7) 0.4 0.5004 24 (2,9)(4,7)(5,6) 0.6 0.5226 

9 (1,10)(5,6) 0.4 0.5284 25 (3,8)(4,7)(5,6) 0.6 0.6539 

10 (2,9)(3,8) 0.4 0.4556 26 (1,10)(2,9)(3,8)(4,7) 0.8 0.4029 

11 (2,9)(4,7) 0.4 0.5054 27 (1,10)(2,9)(3,8)(5,6) 0.8 0.4083 

12 (2,9)(5,6) 0.4 0.5359 28 (1,10)(2,9)(4,7)(5,6) 0.8 0.4394 

13 (3,8)(4,7) 0.4 0.6283 29 (1,10)(3,8)(4,7)(5,6) 0.8 0.4836 

14 (3,8)(5,6) 0.4 0.6962 30 (2,9)(3,8)(4,7)(5,6) 0.8 0.4638 

15 (4,7)(5,6) 0.4 0.8673 31 (1,10)(2,9)(3,8)(4,7)(5,6) 1 0.4138 

16 (1,10)(2,9)(3,8) 0.6 0.4     
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Table 4   Amount of w/h ratio when layer sequences with different volume fractions ks of Al plies in the FML structure,  

described using binary variables. 
 

No. X1 X2 X3 X4 X5 ks w/h No. X1 X2 X3 X4 X5 ks w/h 
1 1 0 0 0 0 0.2 0.5034 17 1 1 0 1 0 0.6 0.4156 
2 0 1 0 0 0 0.2 0.5210 18 1 1 0 0 1 0.6 0.4369 
3 0 0 1 0 0 0.2 0.6770 19 1 0 1 1 0 0.6 0.4610 
4 0 0 0 1 0 0.2 0.8481 20 1 0 1 0 1 0.6 0.4844 
5 0 0 0 0 1 0.2 0.9889 21 1 0 0 1 1 0.6 0.5263 
6 1 1 0 0 0 0.4 0.4173 22 0 1 1 1 0 0.6 0.4483 
7 1 0 1 0 0 0.4 0.4582 23 0 1 1 0 1 0.6 0.4720 
8 1 0 0 1 0 0.4 0.5004 24 0 1 0 1 1 0.6 0.5226 
9 1 0 0 0 1 0.4 0.5284 25 0 0 1 1 1 0.6 0.6539 
10 0 1 1 0 0 0.4 0.4556 26 1 1 1 1 0 0.8 0.4029 
11 0 1 0 1 0 0.4 0.5054 27 1 1 1 0 1 0.8 0.4083 
12 0 1 0 0 1 0.4 0.5359 28 1 1 0 1 1 0.8 0.4394 
13 0 0 1 1 0 0.4 0.6283 29 1 0 1 1 1 0.8 0.4836 
14 0 0 1 0 1 0.4 0.6962 30 0 1 1 1 1 0.8 0.4638 
15 0 0 0 1 1 0.4 0.8673 31 1 1 1 1 1 1.0 0.4138 
16 1 1 1 0 0 0.6 0.4000         

 
 

 
 

Figure 3   Amount of calculated deflection to w/h ratio versus the different layer sequences. 
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Figure 3 graphically shows the effect of changing layer sequences on w/h ratio. One sees 
that the biggest amount derived from the 5th, 15th, 25th and 30th sequence numbers and the 
lowest ones belong to 1st, 6th, 16th, 26th and the 31st ones. This means that the worst way of 
embedding the Al layers is embedding them in the middle layers and the best way is embed-
ding them in the outer ones. Using the outer layer sequences (1st, 6th, 16th, 26th and the 31st 
ones) result in an improve of the stiffness of the outer layers of the structure, the layers that 
should stand the most of amount of the impact load. 

Readers could easily reveal that such a composite plate having no Al plies (it means 
FRPs) has a w/h ratio amount of 0.971. In order to investigate fitness function of w/h ratio 
on the five binary layer sequences variables, a linear response surface regression method ap-
plied on the calculated data sets. Tables 5 and 6 show two standard output of ‘‘SPSS’’ statis-
tical software nominated as parameters estimation and analysis of variance (ANOVA) tables 
which show a reliable response surface model fitted to the measurements as: 
 

Y1 = 0.742 − 0.17X1 − 0.17X2 − 0.081X3 − 0.009X4 + 0.034X5 + ε             (28) 
                                                        
where ε  shows the errors term. Standard deviation and percent error were investigated to 
validate the experiments. Errors between predicted and actual values were calculated accord-
ing to: 
 

Error = Actual Value − PredictedValue
Actual Value

×100                         (29) 

 
Percent errors felled within 5 percent beside their normal distribution; indicated that pro-

cess optimization by regression were capable and reliable to optimize w/h ratio. By substitut-
ing the measured amounts in the model, some errors were achieved. The realized regression 
model shows normal random distributed errors with a mean about zero and a low amount of 
constant standard deviation.  
                                              

Table 5   Regression parameter estimation based on 31 described samples 
 

Model 
Unstandardized Coef-
ficients t Sig. 
B Std. error 

(Constant) 0.742 0.036 20.565 0.000 
X1 -0.172 0.027 -6.344 0.000 
X2 -0.174 0.027 -6.441 0.000 
X3 -0.081 0.027 -2.983 0.006 
X4 -0.009 0.027 -0.334 0.041 
X5 0.034 0.027 1.241 0.023 
Dependent Variable: Y1 
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Table 6   Standard ANOVA table for fitted model 
 

Source of  
variation 

Sum of 
squares df 

Mean 
square F Sig. 

Regression 0.499 5 0.100 17.688 0.000 
Residual 0.141 25 0.006 

  
Total 0.640 30    
Predictors: (Constant), X5, X4, X3, X2, X1 
Dependent Variable: Y1 

 
 

Minimization of the w/h ratio could gain by focusing on the signs and coefficients of Eq. 
(28) easily. If the Al plies are embedded in the outer layers of the structure, w/h ratio will be 
reduced more than embedding them in the inner ones. This means that embedding the Al 
plies in layers (1, 10) or (2, 9) results in the minimum value of the w/h ratio of the structure. 
Whereas embedding them in layers (3,8) or (4,7) does not lead to the same results. To com-
pare the value of embedding Al plies in each layer, coefficient of fitness function could be 
employed. From Eq. (28), one also sees that the effective coefficient of X1 (it means, embed-
ding the Al plies in layers (1,10)) and the effective coefficient of X2 (in layers (2, 9)) are both 
-0.17. Whereas the effective coefficient of X3 (embedding the Al plies in layers (3, 8)) equals 
to -0.081 (about one half of X1 or X2), and the effective coefficient of X4 (in layers (4, 7)) 
equals to -0.090 (more than one half of X1 or X2). The more interesting result is that the 
effective coefficient of X5 (embedding the Al plies in layers (5, 6)) is equal to +0.034. The 
positive sign in Eq. (28) means that embedding Al plies in layers (5, 6) of the structure, have 
a full negative effect on dynamic response of these structures.  Fitness function also shows 
that the minimum of Y1 achieves while X1=1, X2=1, X3=1, X4=0 and X5=0. So in order to 
achieve minimum w/h ratio, layers could be embedded by Al plies in all layers except the 
four inner layers (it means layers (4, 7) and (5, 6)). It is also seen that embedding Al plies in 
outer layers of a FRP plate subjected to low-velocity impact results in a better response, in-
stead of embedding them in the middle or middle and outer layers of the structure. 

The impact event usually is the contact local event. In the contact phenomena the outer 
layers play the main role. Indentation usually occurs on outer contacted layer. Therefore, in 
order to increase the ductility of contacted area, using of Al layers in outer layer is sufficient. 
Because, in these plies we have minimum w/h ratio with respect to the other ply sequence. It 
is also seen that embedding Al plies in outer layers of a FRP plate subjected to low-velocity 
impact results in a better response, instead of embedding them in the middle or middle and 
outer layers of the structure. 
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Table 7   Optimum layer sequences based on the desired volume fractions of Al plies 
 

Desired volume frac-
tions of Al plies Optimum layer sequences w/h ratio 

Total weight 
of the struc-
ture(N) 

0.0 No Al plies 0.971 1.8992 

0.2 (1,10) (or (2,9)) 0.5034 
(0.5210) 

2.1072 

0.4 (1,10) and (2,9) 0.4173 2.3142 
0.6 (1,10) and (2,9) and (3,8) 0.4000 2.5212 
0.8 (1,10) and (2,9) and (3,8) and (4,7) 0.4029 2.7272 

1.0 (1,10) and (2,9) and (3,8) and (4,7) 
and (5,6) 

0.4138 2.9342 

 
 

If there are any restriction due to cost or any other constraints, Table 7 could conduct en-
gineers to the optimum layer sequences subjected to their desired volume fractions. Therefore, 
embedding the Al plies only in 4 layers seems to be the best choice. Embedding the Al plies 
in 6 layers, only reduces the w/h ratio about 4 percent, whereas the weight of the structures 
increases about 9 percent that is not an advantage at least in aerospace industries. 

Generally, by solving the following integer programming problem via any operational re-
search computer packages, the optimum layer sequences could be attained subjected to differ-
ent layers embedding cost and threshold on maximum layers enrichment cost: 
 

Minimize   Y1 = 0.742 − 0.17X1 − 0.17X2 − 0.081X3 − 0.009X4 + 0.034X5

subject   to :
C1X1 +C2 X1 +C3X3 +C4 X4 +C5 X5 ≤ TC
W1X1 +W2 X1 +W3X3 +W4 X4 +W5 X5 ≤W

Xi = 0,  1        ∀i = 1,  2,  3,  4,  5

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

     (30) 

                                                                                                    
where iC  and iW  show the cost and weights of the layer i, respectively. In addition, TC

shows the total amount of cost and W  explains total allowed weights of composite plates. 
Interested readers could easily add or remove any required restrictions (such as technological 
restrictions e.g., time consuming) to follow zero-one programming and find optimum solution 
via tradeoff among all technological, economical and available resource limitations.  
 
5 CONCLUSION 

The presented work presents analytical and mathematical modeling and optimization of 
the behavior of the fiber–metal laminates (FML’s) to low-velocity impact. Thirty-one fully 
randomized simulated experiments are conducted on samples of varying layer sequences and 
deflection ratio, w/h, has been identified through the governing equations of the plate that 
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are solved using the first-order shear deformation theory as well as the Fourier series method. 
The interaction between the impactor and the plate is modeled with the help of a two de-
grees-of-freedom system, consisting of springs-masses, and the Choi’s linearized Hertzian con-
tact model.  

The proposed fitness function showed that FMLs are highly affected by layer sequences. 
The results show that, in general, embedding the Al plies in outer layers of the structure re-
sults in smaller w/h ratios respect to embedding them in inner layers. One also sees that em-
bedding about 40 percent of volume fraction of traditional composites with Al plies leads to 
the best response of the structures under low-velocity impact. The place of embedding the Al 
plies is important too. It is shown that embedding the Al plies instead of the outer layers of 
the FRP structure (here, layers (1, 10) and (2, 9)) results in the best response of the structure 
under low-velocity impact. Fitness function also makes known that minimum deflection ratio 
achieves while layers embedded by Al plies in all layers except to the four inner layers. This 
is a brilliant result not also for the researchers who works on this subject, but also for the 
manufacturers especially in aerospace industries.  

Finally, the proposed general set of standard 0-1 programming based on five decision vari-
ables on one minimization object function subject to two less than or equal constraints could 
conduct process engineers to carry out their design in right manners.    
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