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Abstract 
Logistic train is one of the recent solutions applied in the intralogistics. It bases on the concept of the “milk-
run” delivery method. The main problem in the implementation of intralogistics trains is the possibility to 
determine whether the train is able to pass the given path without a colliding with surrounding objects. 
Dynamic model presented in this paper was performed for the three most common steering systems for the 
trolleys: double Ackermann steering system and two drawbar systems: conventional and virtual clutch. The 
dynamic model was developed following Lagrange’s theorem including the possibility of lateral slip. The 
system of differential equations was numerically solved. In order to calculate the lateral friction forces we 
used three different tire models: simplified, sigmoidal and Pacejka Magic formula. The results obtained for 
different tire models and steering systems are presented in the form of animations presenting train run in 
various conditions. The analyses have shown that the use of simplified tire models is justified under certain 
conditions. 
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1 INTRODUCTION 

The main goal of this paper is to develop a credible dynamic model of the multiple trailers on a tractor system for 
the production logistics application i.e. logistic train. This includes the most common steering system: virtual clutch and 
drawbar system, conventional clutch and drawbar system as well as double Ackermann steering. The objective of this 
paper is also to study the influence of different tire models and steering systems of trolleys on the slip effect. This model 
should contribute to a better understanding of an impact of geometrical relations and friction on the trajectory of such 
systems in motion. This can facilitate the logistic train design for improved maneuverability in narrow corridors through 
choice of applicable number of trailers and selections of the best geometric parameters of the trolley. It can also help to 
estimate collision risk with nearby static objects. 

1.1 Steering systems for the logistic train 

Logistic trains are applied means of transport across all sectors of production supply, especially in the intralogistics 
system (Lieb et al., 2019). A logistic train is usually called a milk-runner. The milk-run concept is derived from the method 
of delivering or receiving supplies in the dairy industry, where one tanker collects milk from many farmers. In the industry, 
one train supplies multiple workstations. The idea is to regularly visit assigned locations by one supplier in a single run 
(Kluska and Pawlewski, 2018). Milk run system minimizes the total distance travelled, as a single vehicle is use instead of 
many (Knez and Gajsek, 2015), especially in case of repeatable flow of materials between the same locations. The 
specificity of the train is that it transports more goods than other intralogistics means of transport per each run 
(Alnahhal et al., 2014). 

The discussed train consists of a tractor and a certain number of towed trailers also called logistics trolleys. The 
tractor is usually equipped with Ackermann steering system. The most common steering systems for trolleys include: a 
conventional or virtual clutch as a drawbar system and double Ackermann steering system (Paszkowiak et al., 2019). The 
main differences in these systems are presented in Figure 1. 

 

Figure 1 A comparison of three kinematics of steering systems for logistic trolleys. 

The classic solution for connecting the trolleys is a long drawbar at the front the unit. This conventional connection 
could be potentially ineffective as it was showed that another two types of steering systems can perform better when 
passing in narrow corridors. The virtual clutch has a longer drawbar at the rear of the trolley. Rear wheels are fixed, 
whereas front ones are castor wheels. A more complex system is a double Ackermann steering, in which a number of 
degrees of freedom is higher than for others, assuming the same number of trolleys. This is due to the presence of a 
rotary drawbar, which turn determine a turn front wheels of the trolley. Rear wheels rotate in the opposite direction 
than front, which direction of turning is consistent with drawbar. A graphical comparison of kinematics of these steering 
system was presented in Figure 2 (Paszkowiak et al., 2019). 
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Figure 2 A comparison of the kinematics of the three steering systems. 

1.2. Vehicle dynamics modelling 

Vehicle dynamics are designed based on the assumption that a rigid vehicle behaves similar to a flat object moving 
on a plane. The modeled vehicle moves in a planar motion with three degrees of freedom (DOFs) (Jazar, 2009). Dynamic 
models of vehicles can be expressed based on Lagrange’s theorem or Newton’s second law (Tzafestas, 2014; Ahmad Abu 
Hatab, 2013). These models are applicable in numerous fields including: mobile robots (Keymasi Khalaji et al., 2014), cars 
(Altche et al., 2017), trucks (Adamiec-Wójcik et al., 2019) agricultural vehicles (Kayacan et al., 2013), airplanes (Gao and 
Jia, 2017), accident reconstruction (Brach and Brach, 2009), autonomous vehicles (Kong et al., 2015) and racing games 
(Hulme et al., 2009). The most common models involve nonholonomic constraints (Bloch et al., 2015). The idea in those 
approaches is based on Chaplygin sleigh model, where lateral friction forces and lateral velocity are not considered for 
wheels (Bravo-Doddoli and García-Naranjo, 2015). This assumption causes the trajectory of vehicle to be known and 
dependent on the kinematics, the drive power and the mass of the vehicle. In those models, it is assumed that the friction 
is not a relevant factor. Nonholonomic constraints appear with the assumption of a non-slip condition. Center points of 
the wheels cannot move along the direction of the wheel own axis of rotation (Lucet et al., 2008). 

The solution that takes into account the slip effect involves the use of the holonomic system of a Lagrange formula 
or equations based on Newton’s second law. This is also possible when using the model for a non-holonomic system. In 
that case, forces acting on the system, as a result of lateral friction force, are expressed as Lagrangian multipliers. The 
torque is included in the input vector (Piyabongkarn et al., 2009). Many authors assume that the lateral friction force 
acting on a tire is proportional to the angle of slip. This assumption is valid for small values of side slip angles. They must 
be smaller than the values of slip angle corresponding to the peak lateral force (Kayacan et al., 2014). It allows 
determination of the slip angles without using trigonometric functions (Martinez et al., 2004). However, this assumption 
has some limitations. The model can represent a drive only in the smooth passing. It does not involve drifting or 
aggressive race (Li et al., 2014). The side-slip angles are determined by analyzing the constituents of the longitudinal and 
lateral velocity vectors of the wheel (Andrzejewski and Awrejcewicz, 2005). 

In order to consider a non-linear slip, a tire model can be used. This model involves friction forces using a coefficient 
of friction and a normal force acting on a wheel. It also takes into account parameters of a tire, road and a condition of 
the slip between a tire and floor. Modeling of the tire can be analytical, numerical or parameterized. The analytical 
method is based on physical parameters and is simple to calculate. Nonetheless, such models do not accurately reflect 
the actual behavior of the tire (Mondek and Hromcik, 2017). Examples of these are: linear, Fiala and Brush models 
(Svendenius and Wittenmark, 2003). The simplest model of the tire exists in two versions. One of them is expressed as a 
sine function. In that case, the maximum of lateral friction force is for side slip angle equal to 90 degrees (Paszkowiak 
and Bartkowiak, 2019). However, for most tires such relationship does not exist in practice. Thus, a linear model in which 
a maximum of a lateral friction force occurring for smaller slip angle, is used more often (Mondek and Hromcik, 2017). 
This happens for side slip angle reaching around 4 degrees. For greater value of this angle the friction force remains 
constant (Heisler, 2002). Numerical methods use look up tables and there is no explicit mathematical form of equations. 
In these models, geometry and material of tire are considered. Numerical models derived from the detailed solution of 
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finite difference and finite element multidimensional models of a tire and are represented as a set of tables. These 
models are difficult to be applied for model-based control development (Baranowski et al., 2012). Parametrized models 
are the most commonly used for vehicle dynamics simulation studies and the control design. They require experiments 
for a specific tire in order to estimate their parameters via statistical fitting. A notable example is Pacejka Magic formula, 
developed by Hans Bastian Pacejka (Pacejka et al., 2012). This tire model requires many experimental parameters and 
coefficients, which are complicated to obtain (Ortiz et al., 2006; Cabrera et al., 2018). 

There are a multitude of tire models, each of them having advantages and disadvantages, depending on the specific 
application. Gang Liu et al. (2013) compared the simplified piecewise linear tire model with the Magic formula on the 
example of a bicycle model representing a car model. This comparison, in which vehicle trajectories and speed were 
compared, proved that the simplified model could be as accurate as the bicycle model with the MF. Comparisons of tire 
models involve fitting the model to the actual curve, represented by the Magic formula. Similar approach was shown by 
Lu et al. (2019). They compared a standard and modified LuGre tire models and Pacejka Magic formula. LuGre is one of 
the most popular analytical tire model (Liang et al., 2008). It can accurately describe the stick-slip motion and frictional 
hysteresis. They also showed that the modified LuGre dynamic tire model could also be applicable for analysis of vehicle 
system (Lu et al., 2019). All these aforementioned works show that new tire models, with better applicability, are still 
being sought. 

Due to the fact that the logistic train is a new solution, its dynamics were not considered taking into account an 
accurate model of the tire. Paszkowiak and Bartkowiak (2019), presented a brief comparison of dynamics of a logistic 
train with different steering systems. They analyzed slip effect using only visualization of trajectory. Input parameters 
and conditions assumed heavily loaded trailers. Therefore, a very small friction coefficient was considered in order to 
trigger slip effect (Paszkowiak and Bartkowiak, 2019). 

In this paper, the authors would like to present a dynamic model of a multibody system, i.e. a tractor towing multiple 
trailers, which can allow comparison of different steering systems with different tire models. The aim is to conduct the 
slip analysis using visualization and output parameters, which can estimate the intensity of the slip. This can facilitate the 
indication the steering system which is the most and least susceptible to slipping and also determine whether simplified 
tire models provide similar results to more complex approaches. The aim is also to show an alternative way to determine 
the side-slip angle without analyzing the velocity vectors. This is possible by calculating the time derivative of the wheel 
position, what simplifies the determination of the slip angle. At an initial stage of this research, the results of the new 
and classical methods were calculated. No significant differences were observed in those pretests. This testifies that use 
of the proposed approach is justifiable. 

2 DYNAMIC MODEL OF A LOGISTIC TRAIN 

2.1 Equation of motion 

For each of three steering systems the main equation of motion remains the same. Due to the identical kinematic 
model of conventional and virtual clutch they also have the same dynamic model. The main equation of motion for 
holonomic system by the Lagrange formula can be given as 

𝐌𝐌(𝐪𝐪)�̈�𝐪 + 𝐂𝐂(𝐪𝐪, �̇�𝐪) = 𝐐𝐐(𝐪𝐪) (1) 

The generalized coordinates vector 𝐪𝐪 is a column matrix and it contains n number of elements in accordance to the 
number of DOFs. This vector can be presented as 

𝐪𝐪 = [𝑞𝑞1 𝑞𝑞2 ⋯ 𝑞𝑞𝑛𝑛]𝑇𝑇 (2) 

Left side of main equation (1) is expressed as column matrix 

𝛇𝛇(𝐪𝐪, �̇�𝐪) = [𝜁𝜁1 𝜁𝜁2 ⋯ 𝜁𝜁𝑛𝑛]𝑇𝑇 (3) 

According to Lagrange formula it can be presented as 

𝛇𝛇(𝐪𝐪, �̇�𝐪) = 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝜕𝜕ℒ
𝜕𝜕�̇�𝐪
� − 𝜕𝜕ℒ

𝜕𝜕𝐪𝐪
 (4) 
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where ℒ is a Lagrangian of the system. For our case, the potential energy is null. It causes Lagrangian ℒ to be equal to 
the kinetic energy of the system 𝑇𝑇. System inertia matrix can be expressed as 

𝐌𝐌(𝐪𝐪) =

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝛇𝛇1
𝜕𝜕�̈�𝐪1

𝜕𝜕𝛇𝛇1
𝜕𝜕�̈�𝐪2

⋯ 𝜕𝜕𝛇𝛇1
𝜕𝜕�̈�𝐪𝑛𝑛

𝜕𝜕𝛇𝛇2
𝜕𝜕�̈�𝐪1

𝜕𝜕𝛇𝛇2
𝜕𝜕�̈�𝐪2

⋯ 𝜕𝜕𝛇𝛇2
𝜕𝜕�̈�𝐪𝑛𝑛

⋮ ⋮ ⋱ ⋮
𝜕𝜕𝛇𝛇𝑛𝑛
𝜕𝜕�̈�𝐪1

𝜕𝜕𝛇𝛇𝑛𝑛
𝜕𝜕�̈�𝐪2

⋯ 𝜕𝜕𝛇𝛇𝑛𝑛
𝜕𝜕�̈�𝐪𝑛𝑛⎦

⎥
⎥
⎥
⎥
⎤

 (5) 

The centripetal and Coriolis matrix can be denoted as 

𝐂𝐂(𝐪𝐪, �̇�𝐪) = 𝛇𝛇(𝐪𝐪, �̇�𝐪) −𝐌𝐌(𝐪𝐪)�̈�𝐪 (6) 

2.2 Friction forces 

The tire model in the dynamic model is included as a function of lateral friction. The necessary parameters for 
determining the forces include load force, friction coefficient and sideslip angle. This is performed for each wheel 
separately. The idealized model of the wheel is shown in Figure 3. The lateral friction force is calculated based on the 
load force, the slip angle and the coefficient of friction between floor and wheel. The slip angle depends on the direction 
of the linear velocity of the wheel center 𝑉𝑉𝑠𝑠. For an empirical model, such as Pacejka Magic formula, there are more 
factors, but in the presented case they have a constant value. 

 
Figure 3 An idealized model of a wheel. 

2.2.1 Simplified model 

Lateral friction forces acting on wheels cannot be treated as a product of a lateral friction coefficient and a load 
force. The reason for this are the specific properties of the tire, mainly shape and material. As a consequence, lateral 
stiffness changes as a function of the slip angle. Nevertheless, the simplified tire model presented in this section contains 
such a relationship between lateral friction forces and side-slip angle. Here, the tire is treated as solid. Lateral friction 
force acting on the wheel can be described as 

𝐹𝐹𝑦𝑦(𝐹𝐹𝑛𝑛, 𝜇𝜇,𝛼𝛼) = 𝐹𝐹𝑛𝑛 𝜇𝜇 sin(𝛼𝛼) (7) 

where 𝐹𝐹𝑛𝑛, 𝜇𝜇, 𝛼𝛼 refer to the individual wheel and they are respectively: lateral friction force, friction coefficient and side 
slip angle at the moment. In this model, considering material and geometric characteristics of a specific tire might be 
limited as only manipulations of friction coefficient are possible. This makes this model potentially accurate in a narrow 
range of a side slip angle. However, because of its undeniable simplicity, it was decided to have it included in this study. 
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2.2.2 Sigmoid function 

Experimental studies presented by Cabrera et al. (2018) and Baffet et al. (2006) showed that the relationship 
between friction force and slip angle was non-linear. The function consists of three distinct phases of vehicle handling 
behaviors, such as: linear, transient and saturation. In the linear phase, the lateral friction forces are linear relative to the 
slip angle. This occurs for small values of the sideslip angle, usually less than 4 degrees (Heisler, 2002). In the next phase, 
the transient function is non-linear and the force reaches its maximum. The last phase is a saturation, in which friction 
force decreases. The second and third phases occur when the vehicle approaches the physical limit of adhesion 
(Baffet et al., 2006). In our sigmoid tire model, we adopted similar stages with one exception. When the force reaches 
its peak, it does not change as the angle of slip increases (Figure 4). The sigmoid function is used instead of the piecewise 
linear function. The piecewise function can cause problems when solving numerically. A sudden change in the partial 
function can complicate the solution of a differential equation for some special conditions. Therefore, the continuous 
function is used as a sigmoidal function. In this case, the function increases linearly in the first stage. When the slip angle 
exceeds 8°, the friction force begins to smoothly reach its maximum value. For greater values of the slip angle, the friction 
does not change. The friction force as a sigmoid function can be expressed as 

𝐹𝐹𝑦𝑦(𝐹𝐹𝑛𝑛, 𝜇𝜇,𝛼𝛼) = 2 𝐹𝐹𝑛𝑛 𝜇𝜇
1+𝑒𝑒−𝑔𝑔𝑠𝑠 sin (𝛼𝛼) − 𝐹𝐹𝑛𝑛 𝜇𝜇 (8) 

where 𝑔𝑔𝑠𝑠 is parameter of sigmoid function and can be obtained from below equation by numerical solving 

2
1+𝑒𝑒−𝑔𝑔𝑠𝑠 sin (𝛼𝛼𝑙𝑙𝑙𝑙𝑛𝑛) − 1 = 1

1.1
 (9) 

where 𝛼𝛼𝑙𝑙𝑙𝑙𝑛𝑛 is an indicative value of angle, where the linear relationship ends. In presented model, 𝛼𝛼𝑙𝑙𝑙𝑙𝑛𝑛 is equal to 𝜋𝜋
15

. 

2.2.3 Pacejka Magic formula 

The one of the most popular way to determine friction forces is Pacejka Magic formula, also known as MF. Lateral 
friction force is a function of normal force, friction coefficient and slip-side angle for an analyzed wheel. That function 
consist of numerous parameters, which make the model more realistic. These parameters describe the tire and the 
conditions in which it operates. This relation can be described as a function of load, friction coefficient and slip angle in 
the form 

𝐹𝐹𝑦𝑦(𝐹𝐹𝑛𝑛, 𝜇𝜇,𝛼𝛼) = 𝑝𝑝𝐷𝐷 sin �𝑝𝑝𝐶𝐶  arctg �𝑝𝑝𝐵𝐵 �𝛼𝛼
180
𝜋𝜋

+ 𝑝𝑝𝐻𝐻� − 𝑝𝑝𝐸𝐸  �𝑝𝑝𝐵𝐵 �𝛼𝛼
180
𝜋𝜋

+ 𝑝𝑝𝐻𝐻� − arctg �𝑝𝑝𝐵𝐵 �𝛼𝛼
180
𝜋𝜋

+ 𝑝𝑝𝐻𝐻����� + 𝑝𝑝𝑉𝑉 (10) 

where the coefficient and tire/road parameters are described in Appendix A. 

2.2.4 Comparison of tire models 

The presented tire models are compared graphically in Figure 4. To visualize the fundamental differences between 
those approach, an arbitrary load of 250 N was assumed which acted vertically on a tire. The lateral friction force for MF 
increases steeply with angle for 𝜇𝜇 = 0.1; 0.5; 1 (Figures 4a, 4b, 4c). For the highest coefficient of friction, it grows more 
gently than the sigmoid function (Figure 4d). Only the Pacejka Magic formula function changes the shape of the curve 
depending on the coefficient of friction. The force increases slower with the angle in a simplified tire model than the 
other two. Saturation effect is included in MF only. The geometric and material parameters in Pacejka model were 
assumed based on Pacejka et al. (2012) and they do not reflect any specific tire. This paper does not focus on the 
characteristics of tires but rather on the dynamic model of logistic train and effects of different friction model of tires. 
We did not want to include any specific tire example in order to make this case more generalized. 
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Figure 4 Comparison tire model curves for parameters from Appendix A and also 𝐹𝐹𝑛𝑛 = 250 𝑁𝑁 and lateral friction coefficient equal to 
respectively: a) 𝜇𝜇 = 0.1, b) 𝜇𝜇 = 0.5, c) 𝜇𝜇 = 1, d) 𝜇𝜇 = 10. Please note that the vertical scale is different in each graph. 

2.3 Dynamic model of a tractor 

In our model, the tractor is treated as a tricycle, where a single front wheel is powered (Yavin, 2007). The input 
parameters for this system are: drive torque 𝜏𝜏 and steering angle of the front wheel 𝜓𝜓𝑓𝑓0. The notation of parameters is 
given in Appendix B. Basic geometrical parameters are shown in Figure 5a. 

For the tractor, generalized coordinate vector contains three constituents: coordinates of B0 point and the angle 
between main axis of tractor relative to the horizontal axis. The steering angle is an input parameter. Therefore, it is not 
included in this vector. Vector can be described as: 𝐪𝐪 = [𝑥𝑥 𝑦𝑦 𝛽𝛽0]𝑇𝑇. 

 

Figure 5 a) geometrical parameters, b) friction forces and slip-side angles for a tractor. 

The configuration of the tractor can be expressed with generalized coordinate vector. In order determine location 
of relevant points tractor dimensions are needed. Table 1 presents position equations for the most important points of 
tractor. 𝑃𝑃0 is a center of mass. 
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Table 1 Position equation of point of the tractor. 

Point Coordinate Expression 

𝐁𝐁𝟎𝟎 𝒙𝒙𝑩𝑩𝟎𝟎 𝒙𝒙 
𝒚𝒚𝑩𝑩𝟎𝟎 𝒚𝒚 

𝐏𝐏𝟎𝟎 𝒙𝒙𝑷𝑷𝟎𝟎 𝒙𝒙 + 𝒄𝒄𝟎𝟎 𝐜𝐜𝐜𝐜𝐜𝐜(𝜷𝜷𝟎𝟎) 
𝒚𝒚𝑷𝑷𝟎𝟎 𝒚𝒚 − 𝒄𝒄𝟎𝟎 𝐜𝐜𝐬𝐬𝐬𝐬(𝜷𝜷𝟎𝟎) 

𝐀𝐀𝟎𝟎 𝒙𝒙𝑨𝑨𝟎𝟎 𝒙𝒙 + 𝒉𝒉𝟎𝟎 𝐜𝐜𝐜𝐜𝐜𝐜(𝜷𝜷𝟎𝟎) 
𝒚𝒚𝑨𝑨𝟎𝟎 𝒚𝒚 − 𝒉𝒉𝟎𝟎 𝐜𝐜𝐬𝐬𝐬𝐬(𝜷𝜷𝟎𝟎) 

𝐃𝐃𝟎𝟎 𝒙𝒙𝑫𝑫𝟎𝟎 𝒙𝒙 − 𝒅𝒅𝟎𝟎 𝐜𝐜𝐜𝐜𝐜𝐜(𝜷𝜷𝟎𝟎) 
𝒚𝒚𝑫𝑫𝟎𝟎 𝒚𝒚 + 𝒅𝒅𝟎𝟎 𝐜𝐜𝐬𝐬𝐬𝐬(𝜷𝜷𝟎𝟎) 

𝐄𝐄𝟎𝟎 𝒙𝒙𝑬𝑬𝟎𝟎 𝒙𝒙 +
𝟏𝟏
𝟐𝟐  𝒗𝒗𝟎𝟎 𝐜𝐜𝐬𝐬𝐬𝐬(𝜷𝜷𝟎𝟎) 

𝒚𝒚𝑬𝑬𝟎𝟎 𝒚𝒚 +
𝟏𝟏
𝟐𝟐  𝒗𝒗𝟎𝟎 𝐜𝐜𝐜𝐜𝐜𝐜(𝜷𝜷𝟎𝟎) 

𝐅𝐅𝟎𝟎 𝒙𝒙𝑭𝑭𝟎𝟎 𝒙𝒙 −
𝟏𝟏
𝟐𝟐  𝒗𝒗𝟎𝟎 𝐜𝐜𝐬𝐬𝐬𝐬(𝜷𝜷𝟎𝟎) 

𝒚𝒚𝑭𝑭𝟎𝟎 𝒚𝒚 −
𝟏𝟏
𝟐𝟐  𝒗𝒗𝟎𝟎 𝐜𝐜𝐜𝐜𝐜𝐜(𝜷𝜷𝟎𝟎) 

The kinetic energy of the tractor 𝑇𝑇𝑏𝑏 can be denoted as 

𝑇𝑇𝑏𝑏 = 𝑚𝑚𝑏𝑏
2

(�̇�𝑥𝑃𝑃02 + �̇�𝑦𝑃𝑃02 ) + 1
2

 𝐼𝐼𝑏𝑏𝛽𝛽0̇
2

+ 𝑚𝑚𝑤𝑤0��̇�𝑥2 + �̇�𝑦2 � + �𝐼𝐼𝑤𝑤0 + 𝑚𝑚𝑤𝑤0  �𝑣𝑣0
2
�
2
� 𝛽𝛽0̇

2
+ 𝑚𝑚𝑤𝑤0

2
(�̇�𝑥𝐴𝐴02 + �̇�𝑦𝐴𝐴02 ) + 𝐼𝐼𝑤𝑤0𝛽𝛽0̇

2
 (11) 

The side-slip angle is obtained for each wheel separately. It is the ratio of longitudinal and lateral velocity of the 
wheel. The idea of marking of the side slip angles is presented in Figure 5b. The side-slip angles for a rear wheels 𝛼𝛼𝑟𝑟𝑟𝑟0, 
𝛼𝛼𝑟𝑟𝑃𝑃0 and the front wheel 𝛼𝛼𝑓𝑓0 are expressed in the arctg function as 

𝛼𝛼𝑟𝑟𝑟𝑟0 = −arctg ��̇�𝑦𝐸𝐸0
�̇�𝑥𝐸𝐸0
� − 𝛽𝛽0 (12) 

𝛼𝛼𝑟𝑟𝑟𝑟0 = −arctg ��̇�𝑦𝐹𝐹0
�̇�𝑥𝐹𝐹0
� − 𝛽𝛽0 (13) 

𝛼𝛼𝑓𝑓0 = −arctg ��̇�𝑦𝐴𝐴0
�̇�𝑥𝐴𝐴0
� − 𝛽𝛽0 − 𝜓𝜓𝑓𝑓0 (14) 

Forces acting on the tractor are depicted in Figure 5b. These forces can be expressed in a form of a vector in a local 
coordinate system of the tractor: 

𝐅𝐅𝐯𝐯 = �
𝐹𝐹𝜏𝜏 cos�𝜓𝜓𝑓𝑓0� + 𝐹𝐹𝑦𝑦𝑓𝑓0 sin�𝜓𝜓𝑓𝑓0� + 𝐹𝐹𝑥𝑥𝐷𝐷0

𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟0 + 𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟0 − 𝐹𝐹𝜏𝜏 sin�𝜓𝜓𝑓𝑓0� + 𝐹𝐹𝑦𝑦𝑓𝑓0 cos�𝜓𝜓𝑓𝑓0� + 𝐹𝐹𝑦𝑦𝐷𝐷0
� (15) 

where: 𝐹𝐹𝜏𝜏 = 𝜏𝜏 𝑟𝑟0𝑓𝑓⁄  is a driven force, 𝐹𝐹𝑥𝑥𝐷𝐷0 and 𝐹𝐹𝑦𝑦𝐷𝐷0 are constituents of 𝐅𝐅𝐯𝐯𝐃𝐃𝟎𝟎. For the tractor without trailers 𝐅𝐅𝐯𝐯𝐃𝐃𝟎𝟎 is a null 
vector, 𝐹𝐹𝑦𝑦𝑓𝑓0, 𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟0, 𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟0 are lateral friction forces acting at the contact point of the wheel with the ground and can be 
calculated according to functions 

𝐹𝐹𝑦𝑦𝑓𝑓0 = 𝐹𝐹𝑦𝑦�𝐹𝐹𝑛𝑛𝑓𝑓0, 𝜇𝜇𝑓𝑓0,𝛼𝛼𝑓𝑓0� (16) 

𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟0 = 𝐹𝐹𝑦𝑦(𝐹𝐹𝑛𝑛𝑟𝑟0, 𝜇𝜇𝑟𝑟0,𝛼𝛼𝑟𝑟𝑟𝑟0) (17) 

𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟0 = 𝐹𝐹𝑦𝑦(𝐹𝐹𝑛𝑛𝑟𝑟0, 𝜇𝜇𝑟𝑟0,𝛼𝛼𝑟𝑟𝑟𝑟0) (18) 

The normal forces acting on the wheels can be denoted as 



Dynamic model of a logistic train with different steering systems and tire models Wojciech Paszkowiak et al. 

Latin American Journal of Solids and Structures, 2021, 18(1), e339 9/27 

𝐹𝐹𝑛𝑛𝑓𝑓0 = g �𝑐𝑐0 𝑚𝑚𝑏𝑏
ℎ0

+ 𝑚𝑚𝑤𝑤0� (19) 

𝐹𝐹𝑛𝑛𝑟𝑟0 = g �(ℎ0−𝑐𝑐0)𝑚𝑚𝑏𝑏
2 ℎ0

+ 𝑚𝑚𝑤𝑤0� (20) 

where g is a gravity acceleration. In order to transform these forces to the global coordinate system, 𝐅𝐅𝐯𝐯𝐯𝐯 can be calculated 
using rotation matrix 𝐑𝐑(−𝛽𝛽0): 𝐅𝐅𝐯𝐯𝐯𝐯 = 𝐑𝐑(−𝛽𝛽0) ∙ 𝐅𝐅𝐯𝐯. For the tractor, a vector of generalized force can be denoted as 
𝐐𝐐(𝐪𝐪) = [𝐹𝐹𝑥𝑥 𝐹𝐹𝑦𝑦 𝐹𝐹𝛽𝛽0]𝑇𝑇 , where 𝐹𝐹𝑥𝑥 is a first and 𝐹𝐹𝑦𝑦 is a second constituents of 𝐅𝐅𝐯𝐯𝐯𝐯. 𝐹𝐹𝛽𝛽0 is a sum of momenta for 
generalized coordinate 𝛽𝛽0: 

𝐹𝐹𝛽𝛽0 = 𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟0𝑐𝑐0 + 𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟0𝑐𝑐0 + 𝐹𝐹𝜏𝜏 sin�𝜓𝜓𝑓𝑓0� (ℎ0 − 𝑐𝑐0) − 𝐹𝐹𝑦𝑦𝑓𝑓0 cos�𝜓𝜓𝑓𝑓0� (ℎ0 − 𝑐𝑐0) + 𝐹𝐹𝑦𝑦𝐷𝐷0(𝑑𝑑0 + 𝑐𝑐0) (21) 

2.4 Dynamic model of conventional and virtual clutch with drawbar system 

As kinematic models for conventional and virtual clutch are identical, one dynamic model was used for both of them 
as well. For this systems, we assume that front wheels have no influence on trajectory. In order to simplify general 
descriptions, we assume that subscript 𝑖𝑖 represents i-th number of trailer for the whole train. Basic geometrical 
parameters for analyzed cases are presented in Figure 6. For the system which consists of 𝑛𝑛𝑑𝑑 number of trailer, the 
configuration can be expressed with generalized coordinate vector as 

𝐪𝐪 = [𝑥𝑥 𝑦𝑦 𝛽𝛽0 𝛽𝛽1 𝛽𝛽2 ⋯ 𝛽𝛽𝑛𝑛𝑡𝑡]𝑇𝑇. The position equation of the most important points of a trailer are shown in 
Table 2. 

Table 2 Position equation of point of the trailer with drawbar system. 

Point Coordinate Expression 

𝐁𝐁𝐬𝐬 𝒙𝒙𝑩𝑩𝑩𝑩 𝒙𝒙 −� 𝒅𝒅𝒋𝒋
𝑩𝑩−𝟏𝟏

𝒋𝒋=𝟎𝟎
𝐜𝐜𝐜𝐜𝐜𝐜�𝜷𝜷𝒋𝒋� −� (𝒉𝒉𝒋𝒋 + 𝒅𝒅𝒇𝒇𝒋𝒋)

𝑩𝑩

𝒋𝒋=𝟏𝟏
𝐜𝐜𝐜𝐜𝐜𝐜�𝜷𝜷𝒋𝒋� 

𝒚𝒚𝑩𝑩𝑩𝑩 𝒚𝒚 + � 𝒅𝒅𝒋𝒋
𝑩𝑩−𝟏𝟏

𝒋𝒋=𝟎𝟎
𝐜𝐜𝐬𝐬𝐬𝐬�𝜷𝜷𝒋𝒋� + � (𝒉𝒉𝒋𝒋 + 𝒅𝒅𝒇𝒇𝒋𝒋)

𝑩𝑩

𝒋𝒋=𝟏𝟏
𝐜𝐜𝐬𝐬𝐬𝐬�𝜷𝜷𝒋𝒋� 

𝐏𝐏𝐬𝐬 𝒙𝒙𝑷𝑷𝑩𝑩 𝒙𝒙𝑩𝑩𝑩𝑩 + 𝒄𝒄𝑩𝑩 𝐜𝐜𝐜𝐜𝐜𝐜(𝜷𝜷𝑩𝑩) 
𝒚𝒚𝑷𝑷𝑩𝑩 𝒚𝒚𝑩𝑩𝑩𝑩 − 𝒄𝒄𝑩𝑩 𝐜𝐜𝐬𝐬𝐬𝐬(𝜷𝜷𝑩𝑩) 

𝐀𝐀𝐬𝐬 𝒙𝒙𝑨𝑨𝑩𝑩 𝒙𝒙𝑩𝑩𝑩𝑩 + 𝒉𝒉𝑩𝑩𝐜𝐜𝐜𝐜𝐜𝐜(𝜷𝜷𝑩𝑩) 
𝒚𝒚𝑨𝑨𝑩𝑩 𝒚𝒚𝑩𝑩𝑩𝑩 − 𝒉𝒉𝑩𝑩𝐜𝐜𝐬𝐬𝐬𝐬(𝜷𝜷𝑩𝑩) 

𝐃𝐃𝐬𝐬 𝒙𝒙𝑫𝑫𝑩𝑩 𝒙𝒙𝑩𝑩𝑩𝑩 − 𝒅𝒅𝑩𝑩 𝐜𝐜𝐜𝐜𝐜𝐜(𝜷𝜷𝑩𝑩) 
𝒚𝒚𝑫𝑫𝑩𝑩 𝒚𝒚𝑩𝑩𝑩𝑩 + 𝒅𝒅𝑩𝑩 𝐜𝐜𝐬𝐬𝐬𝐬(𝜷𝜷𝑩𝑩) 

𝐄𝐄𝐬𝐬 𝒙𝒙𝑬𝑬𝑩𝑩 𝒙𝒙𝑩𝑩𝑩𝑩 +
𝟏𝟏
𝟐𝟐𝒗𝒗𝑩𝑩 𝐜𝐜𝐬𝐬𝐬𝐬(𝜷𝜷𝑩𝑩) 

𝒚𝒚𝑬𝑬𝑩𝑩 𝒙𝒙𝑩𝑩𝑩𝑩 +
𝟏𝟏
𝟐𝟐𝒗𝒗𝑩𝑩 𝐜𝐜𝐜𝐜𝐜𝐜

(𝜷𝜷𝑩𝑩) 

𝐅𝐅𝐬𝐬 𝒙𝒙𝑭𝑭𝑩𝑩 𝒙𝒙𝑩𝑩𝑩𝑩 −
𝟏𝟏
𝟐𝟐𝒗𝒗𝑩𝑩 𝐜𝐜𝐬𝐬𝐬𝐬

(𝜷𝜷𝑩𝑩) 

𝒚𝒚𝑭𝑭𝑩𝑩 𝒙𝒙𝑩𝑩𝑩𝑩 −
𝟏𝟏
𝟐𝟐𝒗𝒗𝑩𝑩 𝐜𝐜𝐜𝐜𝐜𝐜(𝜷𝜷𝑩𝑩) 

The kinetic energy of the i-th trailer 𝑇𝑇𝑑𝑑𝑙𝑙  can be denoted as 

𝑇𝑇𝑑𝑑𝑙𝑙 = 1
2

 𝑚𝑚𝑑𝑑𝑙𝑙��̇�𝑥𝑃𝑃𝑙𝑙2 + �̇�𝑦𝑃𝑃𝑙𝑙2 � + 1
2

 𝐼𝐼𝑑𝑑𝑙𝑙�̇�𝛽𝑙𝑙2 + 𝑚𝑚𝑤𝑤𝑙𝑙 ���̇�𝑥𝐵𝐵𝑙𝑙2 + �̇�𝑦𝐵𝐵𝑙𝑙2 � + ��̇�𝑥𝐴𝐴𝑙𝑙2 + �̇�𝑦𝐴𝐴𝑙𝑙2 �� + 2 �𝐼𝐼𝑤𝑤𝑙𝑙 + 𝑚𝑚𝑤𝑤𝑙𝑙  �1
2

 𝑣𝑣𝑙𝑙�
2
� �̇�𝛽𝑙𝑙2 (22) 

Total energy of the system can be denoted as the sum of the energy of individual units: 𝑇𝑇 = 𝑇𝑇𝑏𝑏 + ∑ 𝑇𝑇nt
1 𝑑𝑑𝑙𝑙. 



Dynamic model of a logistic train with different steering systems and tire models Wojciech Paszkowiak et al. 

Latin American Journal of Solids and Structures, 2021, 18(1), e339 10/27 

 
Figure 6 Drawbar system: a) basic geometrical parameters b) characteristic points. 

Side-slip angles and friction forces acting for this system are presented in Figure 7. The side-slip angles for rear 
wheels of the i-th trailer can be expressed in the arctg function as 

𝛼𝛼𝑟𝑟𝑟𝑟i = −arctg ��̇�𝑦𝐸𝐸i
�̇�𝑥𝐸𝐸i
� − 𝛽𝛽i (23) 

𝛼𝛼𝑟𝑟𝑟𝑟i = −arctg ��̇�𝑦𝐹𝐹i
�̇�𝑥𝐹𝐹i
� − 𝛽𝛽i (24) 

 
Figure 7 Friction forces and slip side angles. 

VsFi and VsEi are the directions of velocity of the wheel for i-th trailer. The forces can be expressed as vectors in a 
local coordinate system of i-th unit: 𝐅𝐅𝐯𝐯𝐬𝐬 = [𝐹𝐹𝑥𝑥𝑙𝑙 𝐹𝐹𝑦𝑦𝑙𝑙]𝑇𝑇, where 𝐹𝐹𝑥𝑥𝑙𝑙, 𝐹𝐹𝑦𝑦𝑙𝑙 is a sum of forces acting longitudinally (subscript x) 
and laterally (subscript y) relative to the unit. These sums can be noted as 𝐹𝐹𝑥𝑥𝑙𝑙 = 𝐹𝐹𝑥𝑥𝐷𝐷𝑙𝑙, and 𝐹𝐹𝑦𝑦𝑙𝑙 = 𝐹𝐹𝑦𝑦𝐷𝐷𝑙𝑙 + 𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟𝑙𝑙 + 𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟𝑙𝑙. 
For a last trailer 𝐹𝐹𝑥𝑥𝐷𝐷𝑙𝑙 and 𝐹𝐹𝑦𝑦𝐷𝐷𝑙𝑙  do not exist, so they are equal to zero. Forces 𝐹𝐹𝑥𝑥𝑙𝑙, 𝐹𝐹𝑦𝑦𝑙𝑙 also act on front trailer (i-1), but 
they must be transformed to the local coordinate system of the antecedent trailer by rotation matrix 𝐑𝐑(𝛽𝛽i−1 − 𝛽𝛽𝑙𝑙) 

𝐅𝐅𝐯𝐯𝐃𝐃(𝐬𝐬−𝟏𝟏) = 𝐑𝐑(𝛽𝛽i−1 − 𝛽𝛽𝑙𝑙) ∙ 𝐅𝐅𝐯𝐯𝐬𝐬 (25) 

This can be presented in another form 

𝐅𝐅𝐯𝐯𝐃𝐃(𝐬𝐬−𝟏𝟏) =  [𝐹𝐹𝑥𝑥𝐷𝐷(𝑙𝑙−1) 𝐹𝐹𝑦𝑦𝐷𝐷(𝑙𝑙−1)]𝑇𝑇 (26) 

The resulting vector involves forces acting on point 𝐷𝐷𝑙𝑙−1. The lateral friction force acting on a wheel can be 
calculated according to the following functions 

𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟𝑙𝑙 = 𝐹𝐹𝑦𝑦(𝐹𝐹𝑛𝑛𝑟𝑟𝑙𝑙 , 𝜇𝜇𝑟𝑟𝑙𝑙 ,𝛼𝛼𝑟𝑟𝑟𝑟𝑙𝑙) (27) 
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𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟𝑙𝑙 = 𝐹𝐹𝑦𝑦(𝐹𝐹𝑛𝑛𝑟𝑟𝑙𝑙 , 𝜇𝜇𝑟𝑟𝑙𝑙 ,𝛼𝛼𝑟𝑟𝑟𝑟𝑙𝑙) (28) 

The normal force acting on the wheel can be denoted as 

𝐹𝐹𝑛𝑛𝑟𝑟i = g �(ℎ𝑙𝑙−𝑐𝑐i)𝑚𝑚𝑡𝑡𝑙𝑙
2 ℎi

+ 𝑚𝑚𝑤𝑤𝑙𝑙� (29) 

For this system, the generalized force vector can be denoted as 𝐐𝐐(𝐪𝐪) = [𝐹𝐹𝑥𝑥 𝐹𝐹𝑦𝑦 𝐹𝐹𝛽𝛽0 𝐹𝐹𝛽𝛽1 𝐹𝐹𝛽𝛽2 ⋯ 𝐹𝐹𝛽𝛽𝑛𝑛𝑡𝑡]𝑇𝑇. 
𝐹𝐹𝛽𝛽𝑙𝑙 for trailers can be expressed as a sum of moment for generalized coordinate 𝛽𝛽𝑙𝑙: 

𝐹𝐹𝛽𝛽i = (𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟i + 𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟i)�ℎ𝑙𝑙 + 𝑑𝑑𝑓𝑓𝑙𝑙� + 𝐹𝐹𝑦𝑦𝐷𝐷𝑙𝑙�𝑑𝑑i + ℎ𝑙𝑙 + 𝑑𝑑𝑓𝑓𝑙𝑙� (30) 

where 𝐹𝐹𝑦𝑦𝐷𝐷𝑙𝑙  does not occur for last trailer. 

2.5 Dynamic model of double Ackermann steering system 

A higher number of articulations (DOFs) causes a greater number of generalized coordinates for the double 
Ackermann steering system. Similarly to the previous ones, the position equations of the characteristic points of a trailer 
are shown in Table 3. 

Table 3 Position equation of point of the trailer with double Ackermann steering system. 

Point Coordinate Position equation 

𝐁𝐁𝑩𝑩 𝒙𝒙𝑩𝑩𝑩𝑩 𝒙𝒙 − 𝒅𝒅𝟎𝟎 𝐜𝐜𝐜𝐜𝐜𝐜(𝜷𝜷𝟎𝟎) −� 𝒅𝒅𝒋𝒋
𝑩𝑩−𝟏𝟏

𝒋𝒋=𝟏𝟏
𝐜𝐜𝐜𝐜𝐜𝐜�𝜷𝜷𝒋𝒋𝟐𝟐� −� 𝒅𝒅𝒑𝒑𝒋𝒋

𝑩𝑩

𝒋𝒋=𝟏𝟏
𝐜𝐜𝐜𝐜𝐜𝐜�𝜷𝜷𝒋𝒋𝟏𝟏� −� 𝒉𝒉𝒋𝒋

𝑩𝑩

𝒋𝒋=𝟏𝟏
𝐜𝐜𝐜𝐜𝐜𝐜�𝜷𝜷𝒋𝒋𝟐𝟐� 

𝒚𝒚𝑩𝑩𝑩𝑩 𝒚𝒚 + 𝒅𝒅𝟎𝟎 𝐜𝐜𝐬𝐬𝐬𝐬(𝜷𝜷𝟎𝟎) + � 𝒅𝒅𝒋𝒋
𝑩𝑩−𝟏𝟏

𝒋𝒋=𝟏𝟏
𝐜𝐜𝐬𝐬𝐬𝐬�𝜷𝜷𝒋𝒋𝟐𝟐� + � 𝒅𝒅𝒑𝒑𝒋𝒋

𝑩𝑩

𝒋𝒋=𝟏𝟏
𝐜𝐜𝐬𝐬𝐬𝐬�𝜷𝜷𝒋𝒋𝟏𝟏� +� 𝒉𝒉𝒋𝒋

𝑩𝑩

𝒋𝒋=𝟏𝟏
𝐜𝐜𝐬𝐬𝐬𝐬�𝜷𝜷𝒋𝒋𝟐𝟐� 

𝐏𝐏𝑩𝑩𝟏𝟏 𝒙𝒙𝑷𝑷𝑩𝑩𝟏𝟏 𝒙𝒙𝑨𝑨𝑩𝑩 + 𝒄𝒄𝑩𝑩𝟏𝟏𝐜𝐜𝐜𝐜𝐜𝐜(𝜷𝜷𝑩𝑩𝟏𝟏) 
𝒚𝒚𝑷𝑷𝑩𝑩𝟐𝟐 𝒚𝒚𝑨𝑨𝑩𝑩 − 𝒄𝒄𝑩𝑩𝟏𝟏𝐜𝐜𝐬𝐬𝐬𝐬(𝜷𝜷𝑩𝑩𝟏𝟏) 

𝐏𝐏𝑩𝑩𝟐𝟐 𝒙𝒙𝑷𝑷𝑩𝑩𝟏𝟏 𝒙𝒙𝑩𝑩𝑩𝑩 + 𝒄𝒄𝑩𝑩𝟐𝟐 𝐜𝐜𝐜𝐜𝐜𝐜(𝜷𝜷𝑩𝑩𝟐𝟐) 
𝒚𝒚𝑷𝑷𝑩𝑩𝟐𝟐 𝒚𝒚𝑩𝑩𝑩𝑩 − 𝒄𝒄𝑩𝑩𝟐𝟐 𝐜𝐜𝐬𝐬𝐬𝐬(𝜷𝜷𝑩𝑩𝟐𝟐) 

𝐀𝐀𝑩𝑩 𝒙𝒙𝑨𝑨𝑩𝑩 𝒙𝒙𝑩𝑩𝑩𝑩 + 𝒉𝒉𝑩𝑩 𝐜𝐜𝐜𝐜𝐜𝐜(𝜷𝜷𝑩𝑩𝟐𝟐) 
𝒚𝒚𝑨𝑨𝑩𝑩 𝒚𝒚𝑩𝑩𝑩𝑩 − 𝒉𝒉𝑩𝑩 𝐜𝐜𝐬𝐬𝐬𝐬(𝜷𝜷𝑩𝑩𝟐𝟐) 

𝐃𝐃𝑩𝑩 𝒙𝒙𝑫𝑫𝑩𝑩 𝒙𝒙𝑩𝑩𝑩𝑩 − 𝒅𝒅𝑩𝑩 𝐜𝐜𝐜𝐜𝐜𝐜(𝜷𝜷𝑩𝑩𝟐𝟐) 
𝒚𝒚𝑫𝑫𝑩𝑩 𝒚𝒚𝑩𝑩𝑩𝑩 + 𝒅𝒅𝑩𝑩 𝐜𝐜𝐬𝐬𝐬𝐬(𝜷𝜷𝑩𝑩𝟐𝟐) 

𝐄𝐄𝑩𝑩 𝒙𝒙𝑬𝑬𝑩𝑩 𝒙𝒙𝑩𝑩𝑩𝑩 +
𝟏𝟏
𝟐𝟐𝒗𝒗𝑩𝑩 𝐜𝐜𝐬𝐬𝐬𝐬(𝜷𝜷𝑩𝑩𝟐𝟐) 

𝒚𝒚𝑬𝑬𝑩𝑩 𝒚𝒚𝑩𝑩𝑩𝑩 +
𝟏𝟏
𝟐𝟐𝒗𝒗𝑩𝑩 𝐜𝐜𝐜𝐜𝐜𝐜

(𝜷𝜷𝑩𝑩𝟐𝟐) 

𝐅𝐅𝑩𝑩 𝒙𝒙𝑭𝑭𝑩𝑩 𝒙𝒙𝑩𝑩𝑩𝑩 −
𝟏𝟏
𝟐𝟐𝒗𝒗𝑩𝑩 𝐜𝐜𝐬𝐬𝐬𝐬

(𝜷𝜷𝑩𝑩𝟐𝟐) 

𝒚𝒚𝑭𝑭𝑩𝑩 𝒚𝒚𝑩𝑩𝑩𝑩 −
𝟏𝟏
𝟐𝟐𝒗𝒗𝑩𝑩 𝐜𝐜𝐜𝐜𝐜𝐜(𝜷𝜷𝑩𝑩𝟐𝟐) 

𝑮𝑮𝑩𝑩 𝒙𝒙𝑮𝑮𝑩𝑩 𝒙𝒙𝑨𝑨𝑩𝑩 −
𝟏𝟏
𝟐𝟐𝒗𝒗𝑩𝑩 𝐜𝐜𝐬𝐬𝐬𝐬(𝜷𝜷𝑩𝑩𝟐𝟐) 

𝒚𝒚𝑮𝑮𝑩𝑩 𝒚𝒚𝑨𝑨𝑩𝑩 −
𝟏𝟏
𝟐𝟐𝒗𝒗𝑩𝑩 𝐜𝐜𝐜𝐜𝐜𝐜

(𝜷𝜷𝑩𝑩𝟐𝟐) 

𝑯𝑯𝑩𝑩 𝒙𝒙𝑯𝑯𝑩𝑩 𝒙𝒙𝑨𝑨𝑩𝑩 +
𝟏𝟏
𝟐𝟐𝒗𝒗𝑩𝑩 𝐜𝐜𝐬𝐬𝐬𝐬(𝜷𝜷𝑩𝑩𝟐𝟐) 

𝒚𝒚𝑯𝑯𝑩𝑩 𝒚𝒚𝑨𝑨𝑩𝑩 +
𝟏𝟏
𝟐𝟐𝒗𝒗𝑩𝑩 𝐜𝐜𝐜𝐜𝐜𝐜

(𝜷𝜷𝑩𝑩𝟐𝟐) 

Comparing with the previous systems, a vector of generalized coordinates has been extended by angles defining 
the position of the drawbar 𝛽𝛽𝑙𝑙2. In this system, angles defining the position of the trolley are marked as 𝛽𝛽𝑙𝑙1. Using the 
above assumptions, a vector of generalized coordinates can be obtained: 
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𝐪𝐪 = [𝑥𝑥 𝑦𝑦 𝛽𝛽0 𝛽𝛽11 𝛽𝛽12 𝛽𝛽21 𝛽𝛽22 ⋯ 𝛽𝛽𝑛𝑛𝑡𝑡1 𝛽𝛽𝑛𝑛𝑡𝑡2]𝑇𝑇. Due to the presence of four steering wheels, it is 
necessary to determine the steering angle of wheel, individually. For the double Ackermann steering system this can be 
denoted as 

𝜓𝜓𝑓𝑓𝑟𝑟𝑙𝑙 = arctg � ℎ𝑙𝑙
𝑣𝑣𝑙𝑙+ℎ𝑙𝑙ctg(𝛽𝛽𝑙𝑙1−𝛽𝛽𝑙𝑙2)� and 𝜓𝜓𝑓𝑓𝑟𝑟𝑙𝑙 = arctg � ℎ𝑙𝑙

−𝑣𝑣𝑙𝑙+ℎ𝑙𝑙ctg(𝛽𝛽𝑙𝑙1−𝛽𝛽𝑙𝑙2)� (31) 

For rear wheels value of the steering angle is the same as in the front, but direction is opposite, so it can be expressed 
as 𝜓𝜓𝑟𝑟𝑟𝑟𝑙𝑙 = 𝜓𝜓𝑓𝑓𝑟𝑟𝑙𝑙, 𝜓𝜓𝑟𝑟𝑟𝑟𝑙𝑙 = 𝜓𝜓𝑓𝑓𝑟𝑟𝑙𝑙. 

The kinetic energy of the i-th trailer 𝑇𝑇𝑑𝑑𝑙𝑙  can be expressed as 

𝑇𝑇𝑑𝑑𝑙𝑙 = 1
2
𝑚𝑚𝑑𝑑𝑑𝑑𝑙𝑙��̇�𝑥𝑃𝑃𝑙𝑙12 + �̇�𝑦𝑃𝑃𝑙𝑙12 � + 𝐼𝐼𝑑𝑑𝑑𝑑𝑙𝑙�̇�𝛽𝑙𝑙12 + 1

2
 𝑚𝑚𝑑𝑑𝑙𝑙��̇�𝑥𝑃𝑃𝑙𝑙22 + �̇�𝑦𝑃𝑃𝑙𝑙22 � + 1

2
 𝐼𝐼𝑑𝑑𝑙𝑙�̇�𝛽𝑙𝑙22 + 𝑚𝑚𝑤𝑤𝑙𝑙 ���̇�𝑥𝐵𝐵𝑙𝑙2 + �̇�𝑦𝐵𝐵𝑙𝑙2 � + ��̇�𝑥𝐴𝐴𝑙𝑙2 + �̇�𝑦𝐴𝐴𝑙𝑙2 �� + 2 �𝐼𝐼𝑤𝑤i +

𝑚𝑚𝑤𝑤i  �
1
2

 𝑣𝑣i�
2
� �̇�𝛽𝑙𝑙22  (32) 

Total energy of the system can be denoted as the sum of the energies of individual units: 𝑇𝑇 = 𝑇𝑇𝑏𝑏 + ∑ 𝑇𝑇𝑛𝑛𝑡𝑡
1 𝑑𝑑𝑙𝑙. 

Geometrical parameters for these systems are presented in Figure 8. 

 

Figure 8 Double Ackermann steering system a) Basic geometrical parameters b) characteristic points. 

Side-slip angles and friction forces acting on the systems are presented in Figure 9. The side slip angles for this 
system of the i-th trailer can be expressed as 

𝛼𝛼𝑓𝑓𝑟𝑟i = −arctg(�̇�𝑦𝐻𝐻i �̇�𝑥𝐻𝐻i⁄ ) − 𝛽𝛽i2 − 𝜓𝜓𝑓𝑓𝑟𝑟𝑙𝑙  (33) 

𝛼𝛼𝑓𝑓𝑟𝑟i = −arctg(�̇�𝑦𝐺𝐺i �̇�𝑥𝐺𝐺i⁄ ) − 𝛽𝛽i2 − 𝜓𝜓𝑓𝑓𝑟𝑟𝑙𝑙  (34) 

𝛼𝛼𝑟𝑟𝑟𝑟i = −arctg(�̇�𝑦𝐸𝐸i �̇�𝑥𝐸𝐸i⁄ ) − 𝛽𝛽i2 + 𝜓𝜓𝑟𝑟𝑟𝑟𝑙𝑙  (35) 

𝛼𝛼𝑟𝑟𝑟𝑟i = −arctg(�̇�𝑦𝐹𝐹i �̇�𝑥𝐹𝐹i⁄ ) − 𝛽𝛽i2 + 𝜓𝜓𝑟𝑟𝑟𝑟𝑙𝑙  (36) 
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Figure 9 Forces and slip angles. 

VsFi, VsEi, VsGi, VsHi are the directions of velocity of the wheel for i-th trailer. The forces can be expressed as vector 
in a local coordinate system of i-th unit: 𝐅𝐅𝐯𝐯𝐬𝐬𝟐𝟐 = [𝐹𝐹𝑥𝑥𝑙𝑙2 𝐹𝐹𝑦𝑦𝑙𝑙2]𝑇𝑇, where 𝐹𝐹𝑥𝑥𝑙𝑙2, 𝐹𝐹𝑦𝑦𝑙𝑙2 is a sum of forces acting longitudinally 
(subscript x) and laterally (subscript y) relative to the unit. These sums can be expressed as 

𝐹𝐹𝑥𝑥𝑙𝑙2 = 𝐹𝐹𝑥𝑥𝐷𝐷𝑙𝑙 − 𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟𝑙𝑙sin(𝜓𝜓𝑟𝑟𝑟𝑟𝑙𝑙) − 𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟𝑙𝑙sin(𝜓𝜓𝑟𝑟𝑟𝑟𝑙𝑙) + 𝐹𝐹𝑦𝑦𝑓𝑓𝑟𝑟𝑙𝑙sin�𝜓𝜓𝑓𝑓𝑟𝑟𝑙𝑙� + 𝐹𝐹𝑦𝑦𝑓𝑓𝑟𝑟𝑙𝑙sin(𝜓𝜓𝑓𝑓𝑟𝑟𝑙𝑙) (37) 

𝐹𝐹𝑦𝑦𝑙𝑙2 = 𝐹𝐹𝑦𝑦𝐷𝐷𝑙𝑙 + 𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟𝑙𝑙cos(𝜓𝜓𝑟𝑟𝑟𝑟𝑙𝑙) + 𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟𝑙𝑙cos(𝜓𝜓𝑟𝑟𝑟𝑟𝑙𝑙) + 𝐹𝐹𝑦𝑦𝑓𝑓𝑟𝑟𝑙𝑙cos�𝜓𝜓𝑓𝑓𝑟𝑟𝑙𝑙� + 𝐹𝐹𝑦𝑦𝑓𝑓𝑟𝑟𝑙𝑙cos(𝜓𝜓𝑓𝑓𝑟𝑟𝑙𝑙) (38) 

For a last trailer 𝐹𝐹𝑥𝑥𝐷𝐷𝑙𝑙 and 𝐹𝐹𝑦𝑦𝐷𝐷𝑙𝑙  are not involved, therefore they are equal to zero. Forces 𝐹𝐹𝑥𝑥𝑙𝑙2, 𝐹𝐹𝑦𝑦𝑙𝑙2 also are acting on 
front drawbar of the trailer, but they must be transformed to its local coordinate system by rotation matrix 𝐑𝐑(𝛽𝛽i1 − 𝛽𝛽𝑙𝑙2): 

𝐅𝐅𝐯𝐯𝐀𝐀𝐬𝐬 = 𝐑𝐑(𝛽𝛽i1 − 𝛽𝛽𝑙𝑙2) ∙ 𝐅𝐅𝐯𝐯𝐬𝐬𝟐𝟐 (39) 

This can be presented in another form as 

𝐅𝐅𝐯𝐯𝐀𝐀𝐬𝐬 =  [𝐹𝐹𝑥𝑥𝐴𝐴𝑙𝑙 𝐹𝐹𝑦𝑦𝐴𝐴𝑙𝑙]𝑇𝑇 (40) 

𝐅𝐅𝐯𝐯𝐬𝐬𝟏𝟏 = 𝐅𝐅𝐯𝐯𝐀𝐀𝐬𝐬, where 𝐅𝐅𝐯𝐯𝐬𝐬𝟏𝟏 = [𝐹𝐹𝑥𝑥𝑙𝑙1 𝐹𝐹𝑦𝑦𝑙𝑙1]𝑇𝑇. Forces 𝐹𝐹𝑥𝑥𝑙𝑙1, 𝐹𝐹𝑦𝑦𝑙𝑙1 also act on front trailer (i-1), but they must be transformed 
to the local coordinate system of antecedent trailer by rotation matrix 𝐑𝐑�𝛽𝛽(i−1)2 − 𝛽𝛽𝑙𝑙1�: 

𝐅𝐅𝐯𝐯𝐃𝐃(𝐬𝐬−𝟏𝟏) = 𝐑𝐑�𝛽𝛽(i−1)2 − 𝛽𝛽𝑙𝑙1� ∙ 𝐅𝐅𝐯𝐯𝐬𝐬𝟏𝟏 (41) 

This can be presented in another form as 

𝐅𝐅𝐯𝐯𝐃𝐃(𝐬𝐬−𝟏𝟏) =  [𝐹𝐹𝑥𝑥𝐷𝐷(𝑙𝑙−1) 𝐹𝐹𝑦𝑦𝐷𝐷(𝑙𝑙−1)]𝑇𝑇 (42) 

The resulting vector involves forces acting on point 𝐷𝐷𝑙𝑙−1. The lateral friction force acting on wheel can be calculated 
according to functions 

𝐹𝐹𝑦𝑦𝑓𝑓𝑟𝑟𝑙𝑙 = 𝐹𝐹𝑦𝑦(𝐹𝐹𝑛𝑛𝑓𝑓𝑟𝑟𝑙𝑙 , 𝜇𝜇𝑓𝑓𝑙𝑙 ,𝛼𝛼𝑓𝑓𝑟𝑟𝑙𝑙) (43) 

𝐹𝐹𝑦𝑦𝑓𝑓𝑟𝑟𝑙𝑙 = 𝐹𝐹𝑦𝑦(𝐹𝐹𝑛𝑛𝑓𝑓𝑟𝑟𝑙𝑙 , 𝜇𝜇𝑓𝑓𝑙𝑙 ,𝛼𝛼𝑓𝑓𝑟𝑟𝑙𝑙) (44) 

𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟𝑙𝑙 = 𝐹𝐹𝑦𝑦(𝐹𝐹𝑛𝑛𝑟𝑟𝑟𝑟𝑙𝑙 , 𝜇𝜇𝑟𝑟𝑙𝑙 ,𝛼𝛼𝑟𝑟𝑟𝑟𝑙𝑙) (45) 
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𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟𝑙𝑙 = 𝐹𝐹𝑦𝑦(𝐹𝐹𝑛𝑛𝑟𝑟𝑟𝑟𝑙𝑙 , 𝜇𝜇𝑟𝑟𝑙𝑙 ,𝛼𝛼𝑟𝑟𝑟𝑟𝑙𝑙) (46) 

The normal force acting on the wheel was determined, considering also the mass of the drawbar. We assume that 
the entire mass of the drawbar is associated with a trailer, for which the drawbar is located at the front. This case is a 
statically indeterminate system. In order to express the normal force, we consider three static equations and one 
equation based on the principle of least work (Garcia et al., 2015): 

⎩
⎪
⎨

⎪
⎧

(𝐹𝐹𝑛𝑛𝑟𝑟𝑟𝑟𝑙𝑙 + 𝐹𝐹𝑛𝑛𝑟𝑟𝑟𝑟𝑙𝑙 − 2𝑔𝑔 ∙ 𝑚𝑚𝑤𝑤𝑙𝑙) ℎ𝑙𝑙 − 𝑔𝑔 (𝑚𝑚𝑑𝑑𝑙𝑙 (ℎ𝑙𝑙 − 𝑐𝑐𝑙𝑙2) +  𝑚𝑚𝑑𝑑𝑑𝑑𝑙𝑙(𝑐𝑐𝑙𝑙1 cos(𝛽𝛽𝑙𝑙1 − 𝛽𝛽𝑙𝑙2))) = 0

�𝐹𝐹𝑛𝑛𝑓𝑓𝑟𝑟𝑙𝑙 + 𝐹𝐹𝑛𝑛𝑟𝑟𝑟𝑟𝑙𝑙 − 2𝑔𝑔 ∙ 𝑚𝑚𝑤𝑤𝑙𝑙� 𝑣𝑣𝑙𝑙 − 𝑔𝑔 �𝑚𝑚𝑡𝑡𝑙𝑙 𝑣𝑣𝑙𝑙
2

−  𝑚𝑚𝑑𝑑𝑑𝑑𝑙𝑙 �𝑐𝑐𝑙𝑙1 sin(𝛽𝛽𝑙𝑙1 − 𝛽𝛽𝑙𝑙2) + 𝑣𝑣𝑙𝑙
2

 � � = 0

�𝐹𝐹𝑛𝑛𝑓𝑓𝑟𝑟𝑙𝑙 + 𝐹𝐹𝑛𝑛𝑟𝑟𝑟𝑟𝑙𝑙 − 2𝑔𝑔 ∙ 𝑚𝑚𝑤𝑤𝑙𝑙� 𝑣𝑣𝑙𝑙 − 𝑔𝑔 �𝑚𝑚𝑡𝑡𝑙𝑙 𝑣𝑣𝑙𝑙
2

+  𝑚𝑚𝑑𝑑𝑑𝑑𝑙𝑙 �𝑐𝑐𝑙𝑙1 sin(𝛽𝛽𝑙𝑙1 − 𝛽𝛽𝑙𝑙2) −𝑣𝑣𝑙𝑙
2

 � � = 0
𝐹𝐹𝑛𝑛𝑟𝑟𝑟𝑟𝑙𝑙 + 𝐹𝐹𝑛𝑛𝑓𝑓𝑟𝑟𝑙𝑙 = 𝐹𝐹𝑛𝑛𝑟𝑟𝑟𝑟𝑙𝑙 + 𝐹𝐹𝑛𝑛𝑓𝑓𝑟𝑟𝑙𝑙

 (47) 

The load forces can be obtained by solving the system of equations (47) and expressed as 

𝐹𝐹𝑛𝑛𝑓𝑓𝑟𝑟i = g
2
�𝑚𝑚𝑡𝑡𝑙𝑙 𝑐𝑐𝑙𝑙2
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𝑐𝑐𝑙𝑙1 cos(𝛽𝛽𝑙𝑙1−𝛽𝛽𝑙𝑙2)
ℎ𝑙𝑙

+ 𝑐𝑐𝑙𝑙1 sin(𝛽𝛽𝑙𝑙1−𝛽𝛽𝑙𝑙2)
𝑣𝑣𝑙𝑙

+ 1� + 2𝑚𝑚𝑤𝑤𝑙𝑙�  (48) 

𝐹𝐹𝑛𝑛𝑓𝑓𝑟𝑟i = g
2
�𝑚𝑚𝑡𝑡𝑙𝑙 𝑐𝑐𝑙𝑙2

ℎ𝑙𝑙
+ 𝑚𝑚𝑑𝑑𝑑𝑑𝑙𝑙 �

𝑐𝑐𝑙𝑙1 cos(𝛽𝛽𝑙𝑙1−𝛽𝛽𝑙𝑙2)
ℎ𝑙𝑙

− 𝑐𝑐𝑙𝑙1 sin(𝛽𝛽𝑙𝑙1−𝛽𝛽𝑙𝑙2)
𝑣𝑣𝑙𝑙

+ 1� + 2𝑚𝑚𝑤𝑤𝑙𝑙� (49) 

𝐹𝐹𝑛𝑛𝑟𝑟𝑟𝑟i = g
2
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𝑐𝑐𝑙𝑙1 cos(𝛽𝛽𝑙𝑙1−𝛽𝛽𝑙𝑙2)
ℎ𝑙𝑙

+ 𝑐𝑐𝑙𝑙1 sin(𝛽𝛽𝑙𝑙1−𝛽𝛽𝑙𝑙2)
𝑣𝑣𝑙𝑙

� + 2𝑚𝑚𝑤𝑤𝑙𝑙� (50) 

𝐹𝐹𝑛𝑛𝑟𝑟𝑟𝑟i = g
2
�𝑚𝑚𝑑𝑑𝑙𝑙 �1 −  𝑐𝑐𝑙𝑙2

ℎ𝑙𝑙
� + 𝑚𝑚𝑑𝑑𝑑𝑑𝑙𝑙 �−

𝑐𝑐𝑙𝑙1 cos(𝛽𝛽𝑙𝑙1−𝛽𝛽𝑙𝑙2)
ℎ𝑙𝑙

− 𝑐𝑐𝑙𝑙1 sin(𝛽𝛽𝑙𝑙1−𝛽𝛽𝑙𝑙2)
𝑣𝑣𝑙𝑙

� + 2𝑚𝑚𝑤𝑤𝑙𝑙� (51) 

For this system generalized force vector can be denoted as  
𝐐𝐐(𝐪𝐪) = [𝐹𝐹𝑥𝑥 𝐹𝐹𝑦𝑦 𝐹𝐹𝛽𝛽0 𝐹𝐹𝛽𝛽11 𝐹𝐹𝛽𝛽12 𝐹𝐹𝛽𝛽21 𝐹𝐹𝛽𝛽22 ⋯ 𝐹𝐹𝛽𝛽𝑛𝑛t1 𝐹𝐹𝛽𝛽nt2]𝑇𝑇. 𝐹𝐹𝛽𝛽𝑙𝑙1 for the drawbar can be denoted as: 

𝐹𝐹𝛽𝛽i1 = 𝐹𝐹𝑦𝑦𝐴𝐴𝑙𝑙 𝑑𝑑𝑑𝑑𝑙𝑙 (52) 

𝐹𝐹𝛽𝛽𝑙𝑙2 for trailers can be expressed as a sum of moment for generalized coordinate 𝛽𝛽𝑙𝑙: 

𝐹𝐹𝛽𝛽i2 = �𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟𝑙𝑙 cos(𝜓𝜓𝑟𝑟𝑟𝑟𝑙𝑙) + 𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟𝑙𝑙 cos(𝜓𝜓𝑟𝑟𝑟𝑟𝑙𝑙)�ℎ𝑙𝑙 + �𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟𝑙𝑙 sin(𝜓𝜓𝑟𝑟𝑟𝑟𝑙𝑙) − 𝐹𝐹𝑦𝑦𝑟𝑟𝑟𝑟𝑙𝑙 sin(𝜓𝜓𝑟𝑟𝑟𝑟𝑙𝑙) − 𝐹𝐹𝑦𝑦𝑓𝑓𝑟𝑟𝑙𝑙 sin�𝜓𝜓𝑓𝑓𝑟𝑟𝑙𝑙� +
𝐹𝐹𝑦𝑦𝑓𝑓𝑟𝑟𝑙𝑙 sin�𝜓𝜓𝑓𝑓𝑟𝑟𝑙𝑙��

1
2
𝑣𝑣𝑙𝑙 + 𝐹𝐹𝑦𝑦𝐷𝐷𝑙𝑙(𝑑𝑑i + ℎ𝑙𝑙) (53) 

where 𝐹𝐹𝑦𝑦𝐷𝐷𝑙𝑙  is not present for the last trailer. 

3 SIMULATIONS RESULTS 

In this section, the results of numerical simulations are presented. For each system, simulations were conducted for 
three different tire models as discussed in section 2. For simulation, it was assumed that the logistic train consists of a 
tractor and four trailers. The geometrical parameters and mass properties of the system are given in Table 4. In order to 
cause slippage, we assumed that trolleys were lightly loaded. This resulted in the greater impact of the trailer own weight, 
especially the drawbar, on the system dynamics. This is due to the different location of the center of gravity of the trailer 
for conventional and virtual clutches. The assumption was that the trolley center of mass, without taking into account 
the drawbar, was ideally in the center of the trailer. Furthermore, the drawbar mass caused a change in the center of 
gravity of the location trolley. Therefore, for double Ackermann steering system, the trolley center of gravity is in the 
middle of the trailer. The drawbar for this system was treated as a separate link. In order to ensure no-slip motion for 
the tractor, under any circumstances, we assumed a very high value of friction coefficient and simplified tire model for 
each numerical experiment (𝜇𝜇 = 1000). The friction coefficient for the trailer wheels for each system was 10; 1; 0.5; 0.1. 
In addition, one more simulation for each system was performed. It was an ideal ride for the whole train. For this variant, 
𝜇𝜇 = 1000 and the simplified tire model were assumed for each wheel. The initial conditions for all scenarios are the 
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same for each simulation and are 𝑞𝑞 = 𝑞𝑞0 and �̇�𝑞 = �̇�𝑞0, where 𝑞𝑞0, �̇�𝑞0 are null vectors. The input values are the steering 
angle of the front wheel and the driving torque applied to the front wheel. These input values are given as a step signal. 
The steering angle of the front wheel of the tractor 𝜓𝜓𝑓𝑓0 is constant and equal 𝜋𝜋/18. The tractor drive torque 𝜏𝜏 is a 
function of time, and its value has been chosen so that the visualization could clearly show the differences between rides 
and causes slippage. For 𝑡𝑡 < 3 𝜏𝜏 = 200 𝑁𝑁𝑚𝑚 and otherwise 𝜏𝜏 = 40 𝑁𝑁𝑚𝑚. The logistic train running time in the simulation 
was 15 seconds. Numerical simulations were performed using Wolfram Mathematica. The results are obtained by solving 
the system of differential equations using the residual method (Chehab and Laminie, 2005). The length of the train was 
chosen so that trolley wheel axes were spaced by the same distance from the tractor in the initial position for each 
system (Figure 10). The visualization did not include the front axle with wheels for conventional and virtual clutch 
(colored with grey). The results of the experiments are presented in Figures 11, 12 and 13. 

Table 4 Geometric parameters and mass properties. 

PARAMETERS Conventional Clutch Virtual Clutch Double Ackermann 

Mass [kg] 𝒎𝒎𝒃𝒃 1100 1100 1100 
𝒎𝒎𝒘𝒘𝟎𝟎 2 2 2 
𝒎𝒎𝒅𝒅𝒑𝒑𝑩𝑩 - - 5 
𝒎𝒎𝒕𝒕𝑩𝑩 50 50 45 
𝒎𝒎𝒘𝒘𝑩𝑩 2 2 2 

Moment of inertia 
[𝒌𝒌𝒌𝒌 𝒎𝒎𝟐𝟐] 

𝑰𝑰𝒃𝒃 30 30 30 
𝑰𝑰𝒘𝒘𝟎𝟎, 𝑰𝑰𝒘𝒘𝑩𝑩 0.02 0.02 0.02 
𝑰𝑰𝒅𝒅𝒑𝒑𝑩𝑩 - - 0.1 
𝑰𝑰𝒕𝒕𝑩𝑩 1 1 1 

Dimensions [m] 𝒉𝒉𝟎𝟎 1 1 1 
𝒗𝒗𝟎𝟎 0.5 0.5 0.5 
𝒄𝒄𝟎𝟎 0.3 0.3 0.3 

𝒄𝒄𝑩𝑩, 𝒄𝒄𝑩𝑩𝟏𝟏 0.4 0.3 0.35 
𝒄𝒄𝑩𝑩𝟐𝟐 - - 0.15 
𝒓𝒓𝟎𝟎𝒇𝒇 0.2 0.2 0.2 
𝒓𝒓𝟎𝟎𝒓𝒓 0.1 0.1 0.1 
𝒅𝒅𝟎𝟎,𝒅𝒅𝑩𝑩 0.2 0.6 0.2 
𝒉𝒉𝑩𝑩 0.7 0.7 0.7 

𝒅𝒅𝒇𝒇𝑩𝑩,𝒅𝒅𝒑𝒑𝑩𝑩 0.6 0.2 0.6 
𝒗𝒗𝑩𝑩 0.3 0.3 0.3 
𝒓𝒓𝑩𝑩𝒓𝒓 0.08 0.08 0.08 

 

Figure 10 Visualization of a train in an initial position with: a) conventional clutch, b) virtual clutch, c) double Ackermann steering 
system. 
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Figure 11 Train trajectories for virtual clutch steering system, where Red, Blue, Green, Orange, Pink and Black are for different time 
values in seconds: 0, 3, 6, 9, 12, 15 respectively. 

 

Figure 12 Train trajectories for conventional clutch steering system, where Red, Blue, Green, Orange, Pink and Black are for 
different time values in seconds: 0, 3, 6, 9, 12, 15 respectively. 
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Figure 13 Train trajectories for double Ackermann steering system, where Red, Blue, Green, Orange, Pink and Black are for different 
time values in seconds: 0, 3, 6, 9, 12, 15 respectively. 

The obtained trajectories differ significantly in individual simulations. The high friction coefficient (µ=10) ensures no 
slip. A low coefficient of friction (0.1 and 0.5) causes the slippage of each system with simplified tire model. Although this 
is least noticeable with the double Ackermann steering system. In contrast, this effect is the most evident in the case of 
conventional and virtual clutch. Based on the visualization, it can be concluded that a conventional clutch is more 
susceptible to slipping under these conditions. The slipping in all systems causes the trolleys to move away from the 
center of the circular trajectory due to centrifugal force. The double Ackermann steering system is less prone to the slip 
than other systems. The reason for this is the influence of the front wheel and the possibility of turning. In this case, the 
presence of four active wheels leads to the situation in which the entire weight of the trolley can affect friction. For 
trailers with double Ackermann steering friction forces act on the trolley both in longitudinal and lateral directions. In 
the other two systems, only lateral friction forces act on the trailer. In those cases, the castor wheels located at the front 
cause the situation in which a large part of the trolley weight does not affect lateral friction (only rear wheels are 
involved). For the smallest considered coefficient of friction, it can be seen that Magic formula tire model is the most 
slip-resistant. Although in the case of double Ackermann steering system, it does not provide an unambiguous 
assessment. In that case, the train traveled a greater distance, but in the last stage of motion the trolleys are positioned 
more transversely to the track when compared with other tire models. For higher coefficient of friction, there is no 
difference between Magic formula and the sigmoid model. The simplified model seems to be the least stable. 

To analyze the influence of different tire models on slip behavior for a higher friction coefficient in a quantitative 
way, the length of the path without slip was examined. For this purpose, ideal trajectories without slipping were used as 
references. It was assumed that the slip effect was significant when the positions of the last trolley differed by 200 mm. 
This value was chosen to allow a clear comparison of simulations. The comparison of the percentage of the path without 
significant slip impact is presented in Figure 14. This Figure shows for which system the slip begins earlier. For given 
conditions, a train with conventional clutch slips first, then the virtual clutch and the last one is the double Ackermann 
steering system. For 𝜇𝜇 = 10, the sigmoid tire model is the most slip-resistant. Magic formula is slightly more prone to 
slip. For other lower coefficients of friction, the Magic formula is definitely the most slip-resistant, while the simplified 
model is the least stable. This confirms the dependence of the curves as shown in Figure 4. 

The slip start time cannot be the only parameter used to assess the slip. Therefore, the maximum values of the 
difference in the position of the last trolley were compared with the ideal trajectories (Figure 15). 
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Figure 14 Percent of path without a significant influence of slip, where V – virtual clutch, C – conventional clutch, A – double 

Ackermann steering system. 

 
Figure 15 Maximum values of the difference in the position of the last trolley reference to the ideal path, where V – virtual clutch, C 

– conventional clutch, A – double Ackermann steering system. 

For each case, as shown in Figure 15, the trend is similar to the one in Figure 14, but with some exceptions. In the 
case of the lowest coefficient of friction used, the virtual clutch slipped more heavily for the sigmoid tire model than a 
conventional clutch. This is indicated by a slightly higher value of position difference. Comparison of tire models for the 
smallest coefficient of friction is not similar as in the previous analysis. In that case, the conventional clutch slipped less 
with the sigmoid tire model than with the Magic formula tire model. However, the virtual clutch slipped more with the 
sigmoid tire model than with the simplified one. The moment at which the position of a trailer deviates mostly from its 
ideal, non-slip, path is important to determine the intensity of the slip. Therefore, the waveforms of the deviations from 
the ideal path covered by the last trailer are shown in Figure 16. Figure 16a shows that waveforms for 𝜇𝜇 = 0.1 are 
fluctuating. It is also noticeable for the simplified model in Figures 16b and 16c. For 𝜇𝜇 = 0.5 and 1, functions are similar 
for the sigmoidal and MF models. It is not noticeable for 𝜇𝜇 = 10 (Figure 16d), where the waveforms for the MF model 
are more similar to the simplified model than to the sigmoidal one. These fluctuations arise during a slip. The more 
susceptible the system is to slippage, the greater there fluctuations. 
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Figure 16 The waveforms of the difference in the position of the last trolley reference to the ideal (without slip) path, where 

V – virtual clutch, C – conventional clutch, A – double Ackermann steering system. 

Another important parameter for assessing slip is the value of the slip angle. Similar to previous analyses, the 
maximum slip angle for the last trailer was recorded during the entire ride. Therefore, the absolute values of maximum 
angle values can be compared (Figure 17). If the value is 90° or close, a full side slip occurs. Figure 17a shows that for 
𝜇𝜇 = 0.1 full slip does not occur only in the case of the double Ackermann steering with a sigmoidal tire model. For other 
variants, with the same values of coefficient of friction, the slip angle is close to 90°. In Figures 17b, c and d, trends are 
similar to previous analyses, but here for a high value of the friction coefficient the differences are more discernible. 

The velocity of the train has a significant influence on the intensity of the slip. Due to the occurrence of lateral 
friction forces that decelerate the train, the maximum speed of the tractor differs for each variant. Figure 18 shows the 
maximum speed of point 𝐴𝐴0. In any case, the tractor speed was less than 12 km/h. For the sigmoid and Magic formula 
tire models, the speed was less than 11 km/h only for 𝜇𝜇 = 0.1. For 𝜇𝜇 = 0.5 and 1, the speed of a tractor with a simplified 
model was definitely smaller than for other tire models. Assuming that intense slip causes deceleration, the values in 
Figure 18 for 𝜇𝜇 = 0.1 have the same trend as the values in Figure 15, where the greatest slip occurred for double 
Ackerman steering system with a simplified tire model. Low tractor speed can cause a significant difference in the 
position of the last trailer relative to the ideal path shown in Figure 15. This can only be seen for these two analyses. This 
cannot be seen in any way considering only Figures 14 and 17. 

In the study by Paszkowiak and Bartkowiak (2019), where other condition were used, they showed that a 
conventional clutch is more prone to slipping than a virtual clutch. In that paper, the trolleys were more heavily loaded, 
the drawbar was longer and center of gravity was the same for both systems. If the trolley is fully loaded, the weight of 
the drawbar has little effect on the center of gravity. In this case, it can be assumed that the center of gravity is in the 
geometric center of the trolley. Another set of simulations was performed to check whether different locations of the 
centers of gravity made the conventional clutch more slippery than the virtual clutch. The results for the new conditions 
are shown in the Figures 19 and 20. To ensure a similar tractor trajectory with the same input parameters, the train 
weight remained the same. Only a few parameters were changed: 𝑚𝑚𝑑𝑑𝑑𝑑𝑙𝑙 = 0, 𝑚𝑚𝑑𝑑𝑙𝑙 = 50 𝑘𝑘𝑔𝑔, 𝑐𝑐𝑙𝑙  and 𝑐𝑐𝑙𝑙1 is equal to 350 
mm. These parameters have been changed for all systems. The comparison of the percentage of the path without 
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significant influence of slip and the maximum values of the difference in the position of the last trolley relative to the 
ideal path were presented. 

 

Figure 17 Maximum values of the slip angle of the last trolley, where V – virtual clutch, C – conventional clutch, A – double 
Ackermann steering system, a) 𝜇𝜇 = 0.1, b) 𝜇𝜇 = 0.5, c) 𝜇𝜇 = 1, d) 𝜇𝜇 = 10. 

 

Figure 18 Maximum speed of 𝐴𝐴0 point of a tractor. 

  

  

 

a) b) 

c) d) 
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Figure 19 Percent of path without a significant influence of slip neglecting weight of the drawbar, where V – virtual clutch, C – 
conventional clutch, A – double Ackermann steering system. 

Neglecting the weight of the drawbar cause the conventional clutch to be more slip-resistant, except for 𝜇𝜇 = 0.1. 
The differences between the virtual and conventional clutch are not as significant as in the previous conditions. 
Therefore, if the front drawbar for conventional and rear drawbar for virtual is longer, the differences are greater. This 
make the virtual clutch less stable and the conventional clutch more stable. 

 

Figure 20 Maximum values of the difference in the position of the last trolley reference to the ideal path neglecting weight of the 
drawbar, where V – virtual clutch, C – conventional clutch, A – double Ackermann steering system. 

Magic formula takes into account more parameters. This make this model more accurate. Other models used in 
study are less complex. However, the use of these models may justify application. One of the arguments is the calculation 
time. The comparison of the average time (with ± 1 × standard deviation) needed to solve the system of differential 
equations is presented in Figure 21. 
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Figure 21 Average calculation time – needed to solve system of differential equations a) conventional and virtual clutch, b) double 

Ackermann steering system. 

Due to the same dynamic model, the calculation time for virtual and conventional clutch is presented in the single 
chart (Figure 21a). For the double Ackermann steering system, the model is more complex than for the drawbar system. 
In particular the number of differential equations is almost twice as greater. The dynamic model with the Magic formula 
tire model definitely needs the most time to solve the equations. Other models need less time to solve the equations, 
and a system with a simplified model needs the least. However, the differences between simplified and sigmoid are not 
as great as when comparing the Magic formula with other simple models. This is caused by the fact that Pacejka model 
includes more parameters. This results in a more complicated expression of the lateral friction force. 

4 CONCLUSION 

In this paper, we showed dynamic models of the three most popular steering systems for logistic trains with three 
different tire models. The results allow a comparison of their behavior in the presence of a slip effect. The slip effect 
affects the analyzed systems differently. The conducted study shows that several parameters are needed for the analysis 
of the slip. The comparison of drawbar systems helped to notice that the length of the longer drawbar and the center of 
gravity have a significant impact on slip. In the presented conditions, Magic formula tire model proved to be the least 
prone to the slip except the highest used coefficient of friction. Sigmoid model is the second in this hierarchy. For the 
smallest coefficient of friction, comparisons do not converge in every case. In such situations, braking is intense and 
depends on the moment when the slip starts and its speed, what causes discrepancies in results even with minimal 
changes in initial conditions and input parameters. The comparison showed that the double Ackermann, out of the three 
compared steering systems, is the least prone to slippage. Only one variant (𝜇𝜇 = 0.1 with simplified tire model) of this 
system slipped more than other systems. This might be due to the presence of more DOFs than in drawbar systems. It 
also shows that comparing the effect on the slip of different systems is not conclusive for low coefficient of friction. The 
comparison of trajectories where there is no full slip is clearer. Taking into account mass of the drawbar and unloaded 
trolleys, the virtual clutch is more stable than a conventional clutch. Due to the change in the location of gravity center, 
the weight of the trailer caused changes in the system dynamics. The greater distance from the center of gravity to the 
rear axle of the trolley, the smaller the proportion of mass in friction. For fully loaded trolleys, the weight of the drawbar 
can be neglected, and then the conventional clutch is more stable. The number of active wheels is a factor favoring the 
double Ackermann steering system. That means that in this system the entire weight of the trolley causes friction forces 
acting on all four wheels. Due to the front castor wheels in other two systems, only the weight acting on the rear axle of 
the trailer participated in the friction forces, because the front castor wheels adjust their movement to the actual 
direction of motion. Another factor favoring double Ackermann may be due to the fact that this system has active swivel 
wheels, which create longitudinal forces acting on the trolley. 

Analysis of calculation time showed that if accuracy was not as important as time, it is worth using a simplified 
method as a simplified or sigmoid model. The presented dynamic model can be used in the development of models of 
automatically or autonomously controlled logistic train, if the accuracy related to slip effect is not needed. The 
computational time of the dynamic model is a crucial parameter, especially in the application for real-time controllers 
with hardware-in-the-loop solutions. 
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The dynamic model of the train can be used for other analyses. These include kinematic analysis, which can facilitate 
to choose the best system for non-slip rides or determining geometrical parameters of the trailers which are optimal for 
a given trajectory. It is also possible to determine whether there is a potential collision with the surroundings before the 
application of the model in a real logistic train. 
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Appendix A: Coefficients and parameters for Pacejka Magic formula  

Table A1 Coefficients for Pacejka Magic formula. 

Coefficient Name Parameters Formula 

𝒑𝒑𝒅𝒅𝒇𝒇𝒅𝒅 Normalized 
change in 

vertical load 

- 𝑭𝑭𝒅𝒅 − 𝑭𝑭𝒅𝒅𝒏𝒏
𝑭𝑭𝒅𝒅𝒏𝒏

 

𝒑𝒑𝑪𝑪 Shape factor 𝝆𝝆𝟎𝟎 𝒑𝒑𝑪𝑪 = 𝝆𝝆𝑪𝑪𝑪𝑪𝟏𝟏 
𝒑𝒑𝑫𝑫 Peak factor 𝝆𝝆𝟏𝟏,𝝆𝝆𝟏𝟏𝟏𝟏 𝒑𝒑𝑫𝑫 =

𝒑𝒑𝝁𝝁 𝑭𝑭𝒅𝒅
𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎 

𝒑𝒑𝝁𝝁 Peak friction 
coefficient 

 �𝝆𝝆𝑫𝑫𝑪𝑪𝟏𝟏 + 𝝆𝝆𝑫𝑫𝑪𝑪𝟐𝟐 𝒑𝒑𝒅𝒅𝒇𝒇𝒅𝒅��𝟏𝟏 − 𝑷𝑷𝑫𝑫𝑪𝑪𝑫𝑫 𝜸𝜸𝟐𝟐� 

𝒑𝒑𝑩𝑩𝑪𝑪𝑫𝑫 Stiffness 𝝆𝝆𝑫𝑫,𝝆𝝆𝟒𝟒,𝝆𝝆𝟏𝟏 𝑭𝑭𝒅𝒅𝒏𝒏 𝝆𝝆𝑲𝑲𝑪𝑪𝟏𝟏
𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎  𝐜𝐜𝐬𝐬𝐬𝐬 �𝟐𝟐 𝐚𝐚𝐚𝐚𝐜𝐜𝐚𝐚𝐚𝐚 �

𝑭𝑭𝒅𝒅
𝝆𝝆𝑲𝑲𝑪𝑪𝟐𝟐 𝑭𝑭𝒅𝒅𝒏𝒏

� � �𝟏𝟏 − 𝝆𝝆𝑲𝑲𝑪𝑪𝑫𝑫 �𝜸𝜸
𝟏𝟏𝟏𝟏𝟎𝟎
𝝅𝝅 �� 

𝒑𝒑𝑩𝑩 Stiffness factor 𝒑𝒑𝑩𝑩𝑪𝑪𝑫𝑫,𝒑𝒑𝑪𝑪,𝒑𝒑𝑫𝑫 𝒑𝒑𝑩𝑩𝑪𝑪𝑫𝑫
𝒑𝒑𝑪𝑪 𝒑𝒑𝑫𝑫

 

𝒑𝒑𝑬𝑬 Curvature factor 𝝆𝝆𝟔𝟔,𝝆𝝆𝟕𝟕,𝝆𝝆𝟏𝟏𝟔𝟔,𝝆𝝆𝟏𝟏𝟕𝟕 
�𝝆𝝆𝑬𝑬𝑪𝑪𝟏𝟏 + 𝝆𝝆𝑬𝑬𝑪𝑪𝟐𝟐 𝒑𝒑𝒅𝒅𝒇𝒇𝒅𝒅�  �𝟏𝟏 − �𝝆𝝆𝑬𝑬𝑪𝑪𝑫𝑫 + 𝝆𝝆𝑬𝑬𝑪𝑪𝟒𝟒 𝜸𝜸

𝟏𝟏𝟏𝟏𝟎𝟎
𝝅𝝅 �  𝐜𝐜𝐬𝐬𝐚𝐚𝐬𝐬 �𝜶𝜶

𝟏𝟏𝟏𝟏𝟎𝟎
𝝅𝝅 + 𝒑𝒑𝑯𝑯�� 

𝒑𝒑𝑯𝑯 Horizontal shift 𝝆𝝆𝟏𝟏,𝝆𝝆𝟗𝟗,𝝆𝝆𝟏𝟏𝟎𝟎 𝝆𝝆𝑯𝑯𝑪𝑪𝟏𝟏 + 𝝆𝝆𝑯𝑯𝑪𝑪𝟐𝟐 𝒑𝒑𝒅𝒅𝒇𝒇𝒅𝒅 + 𝝆𝝆𝑯𝑯𝑪𝑪𝑫𝑫 𝜸𝜸
𝟏𝟏𝟏𝟏𝟎𝟎
𝝅𝝅  

𝒑𝒑𝑽𝑽 Vertical shift 𝝆𝝆𝟏𝟏𝟏𝟏,𝝆𝝆𝟏𝟏𝟐𝟐,𝝆𝝆𝟏𝟏𝑫𝑫,𝝆𝝆𝟏𝟏𝟒𝟒 𝑭𝑭𝒅𝒅
𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎 (𝝆𝝆𝑽𝑽𝑪𝑪𝟏𝟏 + 𝝆𝝆𝑽𝑽𝑪𝑪𝟐𝟐 𝒑𝒑𝒅𝒅𝒇𝒇𝒅𝒅) 

Table A2 Parameters for Pacejka Magic formula. 

Parameter Role Value Parameter Role Value 

𝝆𝝆𝑪𝑪𝑪𝑪𝟏𝟏 Shape factor 1.3 𝝆𝝆𝑲𝑲𝑽𝑽𝟏𝟏 Change of stiffness 
with slip 

1100 

𝝆𝝆𝑫𝑫𝑪𝑪𝟏𝟏 Lateral friction 𝝁𝝁 𝝆𝝆𝑲𝑲𝑪𝑪𝟐𝟐 Change of 
progressivity of 
stiffness / load 

10 

𝝆𝝆𝑫𝑫𝑪𝑪𝟐𝟐 Load influence on 
lateral friction 

coefficient 

0 𝝆𝝆𝑲𝑲𝑪𝑪𝑫𝑫 Camber influence on 
stiffness 

0 

𝝆𝝆𝑫𝑫𝑪𝑪𝑫𝑫 Camber influence on 
lateral friction 

coefficient 

0 𝝆𝝆𝑯𝑯𝑪𝑪𝟏𝟏 Horizontal shift at 
load equal to 0 and 
camber equal to 0 

0 

𝝆𝝆𝑬𝑬𝑪𝑪𝟏𝟏 Curvature factor -2 𝝆𝝆𝑯𝑯𝑪𝑪𝟐𝟐 Load influence on 
horizontal shift 

0 

𝝆𝝆𝑬𝑬𝑪𝑪𝟐𝟐 Curvature change 
with load 

0 𝝆𝝆𝑯𝑯𝑪𝑪𝑫𝑫 Camber influence on 
horizontal shift 

0 

𝝆𝝆𝑬𝑬𝑪𝑪𝑫𝑫 Curvature shift 0 𝝆𝝆𝑽𝑽𝑪𝑪𝟏𝟏 Vertical shift 0 
𝝆𝝆𝑬𝑬𝑪𝑪𝟒𝟒 Curvature change 

with camber 
0 𝝆𝝆𝑽𝑽𝑪𝑪𝟐𝟐 Vertical shift at load 

equal to 0 
0 

𝑭𝑭𝒅𝒅𝒏𝒏 Nominal load 4000 𝜸𝜸 Camber angle 0 
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Appendix B: Notation  

Notation 

Parameter Description 

𝐌𝐌(𝐪𝐪) System inertia matrix 
𝐂𝐂(𝐪𝐪, �̇�𝐪) Centripetal and Coriolis matrix 
𝐐𝐐(𝐪𝐪) Generalized forces vector 
𝓛𝓛 Lagrangian 
𝐪𝐪 Generalized coordinate vector 
𝑻𝑻 Kinetic Energy 
𝝍𝝍 Steering angle 
𝜶𝜶 Side-slip angle 
𝜷𝜷 Yaw angle 
𝑭𝑭 Force 
𝒎𝒎 Mass 
𝑰𝑰 Moment of inertia around the vertical axis 
𝝁𝝁 Lateral friction coefficient 
𝝉𝝉 Torque applied to the front wheel of the tractor 
𝒕𝒕 Time 

𝑺𝑺𝑺𝑺𝒃𝒃𝑺𝑺𝒄𝒄𝒓𝒓𝑩𝑩𝒑𝒑𝒕𝒕  
𝑩𝑩 Unit number 
𝒇𝒇 Front 
𝒓𝒓 Rear 
𝑹𝑹 Right 
𝑳𝑳 Left 
𝒘𝒘 Wheel 
𝒅𝒅 Normal (force) 
𝒃𝒃 Tractor 
𝒕𝒕 Trailer 
𝝉𝝉 Driven 
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