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1 INTRODUCTION

The three-phase model of a composite (TPhM) has been used in references [2-5,10,11,15-17] in order
to define effective characteristics of composite structures. The physical meaning of the idealization
introduced by TPhM relies on substitution of the periodic structure being studied by its counter-
part homogeneous homogenized structure with the equivalently reduced parameters (to be defined)
except of only one characteristic structure cell. Further step of the solution requires derivation of
mathematical formulas regarding homogenized coefficients through the application of physical un-
derstanding and mainly via either the energy principle [4,5,10,11,17] or structure geometry
[2,3,15,16].

In particular, in the problem devoted to determination of the equivalent heat transfer coefficient
of a two-phase composite structure with periodic cylindrical inclusions of circular cross-sections lo-
cated on a square net the analysis revealed the following essential features:

(i) For small inclusions size a << 1 heat transfer parameter A is validated for its arbitrary val-

ues;
(i) For large inclusion size a — 1 the TPhM model yields reliable results assuming that heat

transfer of the inclusions is of the order of structure matrix A ~1 ;
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(iii) TPhM may yield even a qualitatively wrong result for either large inclusion size @ — 1 or

large /small conductivity properties, i.e. for A — oo and A — 0.

A construction of the first order TPhM approximation using the method of variations of bound-
ary shapes of the studied structure does not allow us to overcome the earlier mentioned problems,
in particular with respect to the possible wide spectrum of applications. Furthermore, a solution
being limited to the first inclusion approximation does not describe the structure properties ade-
quately for large values of the inclusion size. Namely, it does not allow achieving even a qualitative
picture of the processes which occur in the composite (for example, a validation of the infinite clus-
ter occurrence). The latter commentary can also be expressed mathematically. Namely, the first
terms of the asymptotic series do not influence the further asymptotic sequence being defined
through a zero order approximation.

In this work novel algorithms associated with the application of the composite TPhM are devel-
oped. The main idea and advantages of our proposal are illustrated and discussed taking as an ex-
ample a solution to the heat transfer problem of the composite structure with cylindrical inclusions
of circular cross-sections.

2 SOLVING THE HEAT TRANSFER PROBLEM WITH THE USE OF THE IMPROVED COMPOS-
ITE TPHM

The problem of determination of effective coefficients of the micro non-homogeneous material con-
sisting of a continuous matrix and periodically located cylindrical inclusions with circular cross-
sections is solved in this work. In our study structure size in the direction of the fibre length essen-
tially exceed the remaining size, i.e. L >> ¢ (Figure 2.1).
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Fig. 2.1. Composite structure with periodically located cylindrical inclusions of circular cross-sections.
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We assume that the studied structure is two-periodic with the same period in both directions
and the inclusions are located within the square net. Period 2b is small in comparison with the
characteristic diameter of the composite cross-section, i.e. 2b << £ .

Phases of the composite have different heat transfer coefficients A* and A~ in the matrix (area

Q:r) and inclusions (area ), respectively, where A = A . The characteristic of the periodically
>\+

repeated cell composite is shown in Figure 2.2.

-b

Fig. 2.2. A periodically repeated cell of the composite.

Material behaviour in the area of ] and Q; is governed by the Poisson equations of the fol-

lowing form
AMAut =F in Qf; (2.1)

ANAum =F in Q, (2.2)
where u™, u~ are the functions of temperature distributions regarding the mentioned areas; F
stands for the density of heat sources.
In the interface of the matrix with inclusions the following compatibility conditions hold:

ut =u" on O, ; (2.3)
+ J—

At aai =" %L on 99, (2.4)
n n

where n denotes a contour normal to the inclusion.

Solution to the boundary value problems (2.1)-(2.4), owing to the homogenization method [12],
can be presented in the form of the asymptotic series with respect to a small parameter ¢ of the
following form:
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uE = uy(n,y) + euf (2,9, &) + €2uf (2,5, 6,m) + ...\

where z,y are slow variables, having a measurement in the interval of the whole composite struc-
ture space; & n are fast variables, describing the problem on the structure cell and ¢ <<'1 is the

small parameter characterizing the composite periodicity.

1. Solution to the problem is constructed using the modernized three-phase composite model
(TPhMM) being characterised by the following properties: the whole composite structure , except
one cell, is substituted by the equivalent homogeneous medium Q having the known (to be found)
heat transfer coefficient ) . Furthermore, we introduce two circles to describe the square matrix cell

contour with the following radii (see Figure 2.3):

by =\l+72, 0<p<1 for ogeg%
b ¢ =1+&,0<€E<1 for %segg
The cell problem in polar coordinates r, 6 can be cast to the following form [16]:
ut 1 out 1 9t
O NI e I Sl WY, Sy QF (2.6)
or? r or r? 06*

&u- ouy &Pu-
ow 1oy 1 om0 o (2.7)
ar? r Or rr 96?

Fig. 2.3. Mapping of a square cell contour into TPhMM.
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Om 1 00 1 O

e Ve T =0 in Q (2.8)

u1+ =u; %— aaig: A—1 [%cos@—i—%—?sin@] for r=a (2.9)
uh =1 %—)\N%—ﬂ:: A—1 [%cos@—i—aa—q;osinﬁ] for r=b (2.10)
a1—>0;6:9—€2—>0 for r=0b— oo (2.11)

The solution to the boundary value problem (2.6)-(2.11) is as follows:

C
ut = [Blr +—1]0059 +

u; = Arcosf + Ayrsing,

C.
B,r —{——2]sin0,

r r (2.12)
D D.
i, = —Lcosf + —2sind,
r r
where
AND? P
A =—1+ o
< - ox
A=1 A=1da>— A4+1 A+10
2X A1 0 P
B =—-|1+ ﬂ’
N - oz
A=1 A=1a"— A+1 A+1¥
2X A —1 a%? ou
C, = 94
o ) 9 (2.13)
A—1 A=1a*— A+1 A+1 0
A+1b+ A—1 a ou
D =b|1+2 0
N - dx
A=1 A=1a"— A+1 A+10
d d
A=A, B =B,6C, =C, D,=D |20 20|
ox Jy
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Observe that during the homogenization procedure subjected to the equation

52u0 N 82u0 49 (92ufr 5 82u1+ 32u2+ (92u2 4 82% N 9? (92uf N
83;2 8y2 6.’178{ 8:[/87] 862 87]2 81’2 ayQ 81‘85
5 62uf N 62u; (9216

2 2 2.~ 2.~ 2~ 2.~
X@uo 8u0+28u1 +2du1 ou, O,

=F,
dydn  o¢? on? oz oy? 0x0€ dyon  9¢2  on?
the integration is carried out using Eq. (2.5), i.e. in formula (2.13) we take
) b € :x/1+52, 0<¢<1 in Q),9Q,,Q
= ~ 2.14
b n :\f1+772,0§17§1 in Q,Q,,0, ( )

In Figure 2.4 a quadrant of the three phase area is shown, where the integration via the
TPhMM is carried out.

ni

Fig. 2.4. Approximation of the three phase area used in TPhMM.

After integration using Eqgs. (2.13), (2.14) and the following formula

82 62 82 82 — 82
L ff U u°+ dfdn+)\ff uo u0+ = dé dn +
‘ @) o2 oy? 83:8{ ayan xo€ ayan

of O

I

“0 2u0 0%, n 0%,
0xd¢  Oydn

] d¢ dny|=F,

where
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OF =0x U5, 0=0,U0,, |0

=|9fuo uQl,

and after satisfying the necessary conditions, the following transcendental equation is derived defin-
ing heat transfer coefficient A :

42
1+ l—A aurc‘c&ml—I—ua—arctanl
- A A A+1A A
= > (2.15)
1 1 AX—1a 1
1+ |~ — Alarctan— — —— ~—arctan —
A A A+1A A
where
\—1 A—1
A= \/1 _AztAzln, (2.16)
A1 AN+1

Transcendental Egs. (2.15), (2.16) can be solved numerically in spite of the limiting values of the
heat conductivity parameter: A — oo, a — 1 and A\ — 0,a — 1. In the latter case it is worthwhile

to use the asymptotic representations, which can be obtained on the basis of relations (2.15) and
(2.16).

3 ASYMPTOTIC RELATIONS FOR THE EQUIVALENT HEAT TRANSFER PARAMETER

1) The equivalent heat transfer parameter obtained from the transcendental equations (2.15)-(2.16)
satisfies Keller’s theorem [9]:

AA =1ttt (3.1)
Indeed, we have
1 1 A—1a? 1)
1—|—[—A]arctan+aarctan
51yl = A A A+1A A _
12
1+ i—A :aurctani—ua—arctaunl
A A AN+1A A
1.2
14+ l—A arctanl—ua—arctaunl
A A AN+1A A
- 12
1+ l—A aurctauml—i—ua—arctanl
A A A+1A A

where
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AN =A XN,

and hence (3.1) has been proved.
Furthermore, the structure of equations (2.15) and (2.16) allows for a direct use of A as a natu-
ral small parameter 0 < A <1 for arbitrary values of 0 < A < oo and 0 <a <1.

Now, having this parameter one may define and investigate further the limiting transitions.

2) Let us investigate a composite having heat transfer of the matrix and inclusions of the same or-
der, i.e.

A—1.

In this case for arbitrary values of the inclusion size we have:

A~1 = A—1.

It implies that transcendental Eqs. (2.15) and (2.16) can be reduced to the following forms:

2.1) For inclusions of small geometric size a — 0:

7TCL2

A=1+ A—1 —/.
4

2.2) For inclusions of large geometric size a — 1:

T A—1 T A—1
4 9

1—a .

A=1+

3) Let us study the case of the absolute heat transfer, i.e. when A — oo.

3.1) If size of the inclusions are small, i.e. when a — 0, we have

A~1 = A-—>1,

and consequently

9\ma’
2

X=1+P——
A

3.2) We study the case of inclusions of large geometric size 0 << a < 1.
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The physical meaning of the problem implies that in the case of inclusions with infinitely high
heat transfer properties A\ — oo and geometric size close to the limiting large ones of the order

a ~ 1, the homogenized heat transfer coefficient X is also infinitely large, i.e.

A—oo = A—0.

Therefore, transcendental Egs. (2.15) and (2.16) are transformed to the following form

2
A=1+ 2Laurctan; (3.2)

N1 —a? 1—a®
and for @ — 1 one obtains

™

1—a?

>
Il

—1 (3.3)

It should be emphasized that the main term of the series development (3.3) coincides with the
asymptotic representation qa:;mpt, reported in [13] (with accuracy of the normalisation introduced

in [13]) for the effective heat transfer of a composite with circular cross-sections of large cylindrical
inclusions having absolute heat transfer properties.

4) Below, we study the entirely resistant heat transfer inclusions, i.e. these with A — 0.

4.1) For small additives a — 0 we have A~1 = A—1,and consequently

2
A=1- 1—2AT (3.4)

Formula (3.4) for A = 0 coincides (with accuracy up to the terms of the order of a?) with the
results obtained in [1] for the effective heat transfer of the composite consisting of inclusions with-
out heat transfer property.

4.2) Large inclusions 0 << a <1.

Proceeding in the way analogous to that presented in Section 3.2, we may trace the limiting
transition exhibited by relations of the equivalent heat transfer parameter defined by Eqgs. (2.15),
(2.16) for the non-conductive heat inclusions of large sizes: A — 0; a ~ 1. In this case the homoge-

nized heat transfer coefficient A will be infinitely small, ie. A =0 = A —0.

As a result we obtain
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>

and for a — 1 we get

1

2a* 1 (3.5)

1 + ———arctan -

1—a? 1—a

- 1— a2
A=—-9 (3.6)

T —N1—a?

5) Next, we consider a composite with small size inclusions, i.e. a — 0.

Motivated by physical properties one may conclude that for the case of arbitrary heat transfer

values 0 < A < oo, including the infinite large A — oo and infinitely small A = 0 values, the ho-

mogenized heat transfer is:

Therefore we finally obtain:

A-1 = A—1.

5.1) For inclusions of infinitely large heat transfer property A — oo we have

- wa?  mwa®
A=14——-—.
2 A

5.2) For inclusions of infinitely small A — 0 we have

5.3) For inclusions with A ~ 1 we have

6) In the case of the composite structure with inclusions of large size a — land for 0 < A < oo the

equivalent homogenized heat transfer \ satisfies the following relation

which means that

A—1 A—1

X+1 A41
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AL ATl a0,
A+1 A+1
AL A=l a1,
A+1 A+1
u~u~1for)\_,m
A+1 A+1

Then the transcendental Eq. (2.15) yields a relation to determine A where the formula for A in
Eq. (2.16) takes the form

2
A= 1—[i11]ﬁ (3.7)
In particular we have:

6.1) for inclusions of large heat transfer A\ >> 1:

A= 2dh—1,
2

ND)
6.2) for inclusions of small heat transfer A << 1:
N 2 2
A:£JX+7L
T s
6.3) for inclusions of heat transfer of the order of the matrix heat transfer A\ ~ 1:
A=1+" -1,
4

4 RESULTS OF COMPUTATION OF THE EFFECTIVE HEAT TRANSFER COEFFICIENT FOUND
USING TPHMM

1) In Figures 3.1 to 3.10 graphs of the homogenized heat transfer coefficient yielded by the TPhMM
for various values of the heat transfer inclusions A are reported:

A<<1l A=10"2; A=10"! , see Figures 4.1 and 4.2.

A<l A=0.2; A=0.5 , see Figures 4.3 and 4.4.
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A~1 X=0.8; AN=1.25 , see Figures 4.5 and 4.6.
A>1 A=2; A=5 ,see Figures 4.7 and 4.8.
A>>1 XA=10; A =10% , see Figures 4.9 and 4.10.

In order to compare the obtained results, the Hashin-Shtrickman (H-S) boundaries are also re-
ported |6, 7, 18] which are defined through the following relations

1—La2+)\ 1+7T7a2 Q_La2 ,\LQQ
4b2 4b2 - 4b2 4b2
5 . :gH—SngqH*S:)\ 5 5 for 1 <\ < oo; (4.1)
1+ ™ 1= T al2-T0
4b? 4b* 4b* 4b*
9 2 2 2
A 4b 4b =q, (Sa<qys= for 0 <A<1. (4.2)
ma’ I TR PO (42)
4b* 4b* 4b* 4b*

It is worth noting that the solution obtained via the TPhM identically coincides with the lower
boundary of the H-S estimation for 1 < A < oo and regarding the upper boundary for 0 < A\ <1.

¢y
o
.
<><><><><><><><><>o<>ooo

0 . . . ALELLELYLY, o 02 04 06 08 1
02 04 06 08 1 a
a
Orptwm (2:15) and (2.16) Urppay  (2:15) and (2.16)
0 [9,13] coooooo _

q‘(HJympl q H—S_qTPhM
ooooooo e e

s =Urpns 9y
Al

s

Fig. 4.1. Homogenized heat transfer coefficient

for A = 1072

Fig. 4.2. Homogenized heat transfer coefficient for

A=10""L
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14

09
0.8
07

q 067
051
04

0.3

02y 02 04 06 08 1
a

oy (2:15), (2.16)

ooOo0000
H-S _qTPhM
D

[Ke] O

H-S

Fig. 4.3. Homogenized heat transfer coefficient for
A=0.2.

e ——— »708

.98
.96
.94
092

q 09
.88
.86
.84
0.82

08 [¥] 04 6 (Y] i

oy (2:15), (2.16)

ooOo0000
H-s ™ qTPhM
R R

(e} O

H-S

Fig. 4.5. Homogenized heat transfer coefficient for

A =08

05p 02 04 06 08 1
a
Urop (2:15). (2.16)
ooooood
Qs =0
o e e e
i
Fig. 4.4. Homogenized heat transfer coefficient for
A =0.5.
1.2 A=1.
1.25 f/
1.15 ”#/f
. 1.1 g"f
1.051 “f’,,‘“”
oo®
1-_..-.-:00""'.‘
095 02 04 06 08 1
a
Grenmm (2.15), (2.16)
oooooo0
9, =Y%em
o e e
An-s

Fig. 4.6. Homogenized heat transfer coefficient for
A =1.25.

Latin American Journal of Solids and Structures 10(2013) 197 — 222



210  Andrianov, Awrejcewicz and Starushenko / Application of an improved three-phase model to calculate effective characteristics for a composite ...

1.87 A=2
164

1.4

08y 02 04 06 08 1
a
Orprn (2:15), (2.16)
ooOQooO00
9, =Y
e e —
Qn_s

Fig. 4.7. Homogenized heat transfer coefficient for
A=2.

o 02 04 06 08 i
a
Urom (2:15), (2.16)
Qooo0o0
9His:qTPhM
Al
Qs

Fig. 4.9. Homogenized heat transfer coefficient for
A =10.

o 02 04 06 08 1
a
Orop (2-15), (2.16)
Qooooo0
9, =Y%em
Sl e
Qs
Fig. 4.8. Homogenized heat transfer coefficient for
A =5.
124 + A=107
10 .
8 S
q & N
4] ooo
2:::ﬁ?éé::;i;:sxxsxxzssuss*“"""‘ l
o 02 04 13 08 1
a
Oy (2:15). (2.16)
() [13]
qasympt
oooQoOoo0
9, =Y%em
Gl adl
Qs

Fig. 4.10. Homogenized heat transfer coefficient

for A = 10%

2) Graphs related to the cases of geometrically large inclusions a — 1 , and either large A — oo

or small

A — 0 heat homogenized transfer coefficients and that computed by the TPhMM as

well as those obtained in [9,13] are shown in Figures 4.11 - 4.14. The asymptotic solution obtained

in [13] is as follows
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~ L—7r+1for)\—>f>o,a—>1, (4.3)

qasympt = D)
1—a

whereas that obtained in |9, 13| has the following form

0 V1 —a?
= for A\ —0,a—1. (4.4)

Ay t
e T™T— w—1 \/1—a2

While constructing the dependencies shown in Figures 4.1 to 4.10, a solution to the transcenden-
tal Egs. (2.15) and (2.16) has been found numerically, whereas dependencies in the vicinity of the
limiting values of parameters A — oco,a — 1 and A\ — 0,a — 1 (Figures 4.11 to 4.14) have been

constructed with the help of asymptotic formulas (2.2) and (2.4), respectively.

50 A=10" I 50- e |
I |
| |
40 i an] ’!
| |
i |
n I
3 nn 3] #
§ q |
q / fl
2 / 20 ;
bt J aoood?? 10 . R
-gxzmmmmm%mﬁfo‘o'o'o Pt EEETEL ;xxmwmmxnﬂzﬂﬁ%'o'&'oﬁo oo0oeene?
0808 04 056 088 09 092 034 09 038 1 Ogg0k2 084 086 068 09 092 094 0.9 058 1
a a
Arpiay (3-2) Ay (3-2)
g, 1 g 113
asympt asympt
coooooo coooooo
9 H-S :qT[’hM 9 s :qTPhM

Fig. 4.11. Homogenized heat transfer coefficient Fig. 4.12. Homogenized heat transfer coefficient for A — oo
a— 1.

for A=10", a — 1.
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0.4 A=10-3 044
0.3 0.3

q 02] q 02]

.1 0.1
\ “
%og08> 084 0865 068 09 092 094 096 098 1 Vi T T T 0 T T i 08
a a
Arpians (3-4) ey (34)
© (913 0  [9,13]
qasympt qasympt
Qoooooo Qoooooo0 —_
U b s =Urpas A h-s=Urpn
Fig. 4.13. Homogenized heat transfer coefficient Fig. 4.14. Homogenized heat transfer coefficient for A = 0,
for A\=10°, a — 1. a — 1.

3) For small size of the inclusions a << 1 and various values of heat transfer A\ the equivalent

heat transfer parameter obtained through TPhMM in comparison to the Schwarz alternating meth-
od [1] are given in Figures 4.15 to 4.22.

. A=10"2
1 1‘”’8‘3:0000-00%000
0961 ¢° M
0.9 ¥
0.96 %, Teeees
094 0.8 o(}o
0.92 0.7 %
00
q 0.9 q 0.6 *,
0.88 . "oo
i - 4
0,85 05 .
0.84 0.4 ou
082 0.3 %%%o
08%  "g05 01 016 02 025 03 : , , , oo,
a 02%  "ods 01 0B 02 0% 03
a
Urpay (2:15), (2.16) O (215), (2.16)
Schwarz method [1] Schwarz method [1]
[=Rufuafuieln] —_ _ Qoooo0oQ
H-s _qTPhM q H-S :qTPhM
Gl D
94
Fig. 4.15. Homogenized heat transfer coefficient for Fig. 4.16. Homogenized heat transfer coefficient for
A=0, a<<L A=102, a << 1.
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=1p-1
LR aaais s S A=10
e eeaag,
-
N 5,
0
1,95 “s,
o,
s
*
-
09 v,
oe
+
oe
q 085, v,
S
“
o
-
LIS ®
-
o
B
-
.75, %o
“

0y " Tp0s @1 015 02 025 03

Uy (2:15), (2.16)

Schwarz method [1]

coooooo _
Qs =rpmu

Gl e

A4

Fig. 4.17. Homogenized heat transfer coefficient for
A=10", a << 1.

1.05 h=2 .
o B
.
.
1.04 o
B
.
oA
1.03] K
q o
0
1.021 o
0
000
.
101 Ep@;"v"
me

Qrpany (2:15), (2.16)

Schwarz method [1]

Qooooad

9 Hes =0rpi

Gl il

Qn_s

Fig.4.19. Homogenized heat transfer coefficient for
A=2, a<<l.

197

(2.15), (2.16)

qTPhMM

Schwarz method [1]

ooooood

Qs =

Bl R

945

Fig. 4.18. Homogenized heat transfer coefficient for
A=0.5, a<<1.
1.3, =10

1.251 B
12 @

q 1.15] .

(2.15), (2.16)

qTPhMM

Schwarz method [1]

Qooooad

9 Hes =0rpn

ARy

Qn_s

Fig. 4.20. Homogenized heat transfer coefficient for
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Fig. 4.21. Homogenized heat transfer coefficient for
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4) Figures 4.23 to 4.26 give the dependencies of the homogenized heat transfer coefficient obtained
through the TPhMM for various values of the inclusions size a. Namely, we have small inclusions:
a = 0.2 (Fig. 4.15), inclusions of average size: a = 0.4; a = 0.6 (Figs. 4.16 and 4.17), large inclu-
sions: a = 0.8 (Fig. 4.18).

Upper ¢ ;_g and lower 9y s Hashin-Shtrickman boundaries are marked, and the TPhM solu-
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5) Graphs shown in Figures 4.27 to 4.32 illustrate the behaviour of equivalent heat transfer coeffi-
cient versus conductivity A of the inclusions of large size a — 1. While constructing the graphs

asymptotic formulas (2.15) and (3.7) have been used. In addition, the dependencies qa::mpt and
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Fig. 4.27. Homogenized heat transfer coefficient for

a=099, 0<A<I1.

constructed on the basis of (4.3) and (4.4), are added [9,13].
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Fig. 4.28. Homogenized heat transfer coefficient for
a=099, 1< <o
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6) For the case of a composite structure with absolute heat transfer A — oo and of large size
a — 1 a comparison of the results regarding the effective computations of heat transfer coefficient
found via the TPhMM with those reported by other authors are given in Tables 4.1 and 4.2.

Table 4.1. Numerical results of the estimation of heat transfer coefficient (absolutely conductive inclusions).

Inclusions
concentration ¢ Series Formula Formula Results  Asymptotics
(3.9) (3.12) (3.13) TPhMM
[14] [13]
18] (8] [8]
Inclusion size a
0.1
0.3568 1.210 1.247 1.223 1.222 1.2214 1.2234
02 1.470 1.544 1.506 1.500 1.4973 1.5065
0.5046
03 1.811 1.918 1.879 1.860 1.8546 1.8790
0.6180
0.4
0.7136 2.306 2.417 2.395 2.351 2.3432 2.3955
05 3.270 3.145 3.172 3.080 3.0700 3.1720
0.7979
06 7.106 4.386 4.517 4.342 4.3245 4.5175
0.8740
0.7 - 7.409 7.769 7.433 7.3857 7.7695
0.9441
0.74 - 10.91 11.46 11.01 10.9254 11.4624
0.9707
076 - 15.29 15.99 15.44 15.3284 15.9902
0.9837
0.77
- 20.18 21.04 20.43 20.2952 21.0488
0.9901
0.78 — 35.01 36.60 35.93 35.7525 36.6519
0.9966

Table 4.2. Numerical and analytical results of the estimation of heat transfer coefficient (absolutely conductive

inclusions).

Parameter 1/ V1 —a?

Numerical com- Asymptotics

. TPhMM
putation [13] [13]

Inclusion size a

10 29.4440 29.2743 30.1283
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 pootesTISTO

20
. . 1.6814
59937492180 60.8976 60.6903 61.68
30 92.3575 92.1062 93.1460
0.9994442899 ] ’ '
4
00 123.7734 123.5221 124.5868
50 155.1894 154.9380 156.0179
0.9997999801 ] ] '
100 312.6460 312.0177 313.1276
0.9999499986 ’ ] '
1000
142.592 142.592 140.
59999995001 3142.5927 3142.5927 3140.9037

7) Table 4.3 gives computational results of the homogenized heat transfer coefficient obtained using
the TPhMM and their comparison with the analytical solution given in reference [13] for the case of

the inclusion size 0 << a < 1 and large heat conductivity 0 << A < o0.

Table 4.3. Computational results of the estimation of effective heat transfer coefficient (large size and large conduc-
tivity of inclusions).

Inclusion conductivity A = 10 Inclusion conductivity A\ = 5107
Inleusion Asy@ptotic TPhMM In'clusion Asyr.nptotic TPhMM
size a solution [13] size a solution [13]
0.9 4.9108 5.0044 0.9 5.0347 5.2456
0.91 5.2473 5.3449 0.91 5.3980 5.6282
0.92 5.6413 5.7411 0.92 5.8277 6.0792
0.93 6.1112 6.2097 0.93 6.3467 6.6213
0.94 6.6841 6.7753 0.94 6.9901 7.2893
0.95 7.4037 7.4765 0.95 7.8164 8.1407
0.96 8.3438 8.3770 0.96 8.9315 9.2776
0.97 9.6432 9.5934 0.97 10.5536 10.9067
0.98 11.5936 11.3680 0.98 13.2351 13.5334
0.99 14.8171 14.3260 0.99 19.0663 18.9367
0.991 15.2200 14.7431 0.991 20.1058 19.8518
0.992 15.6149 15.1940 0.992 21.3187 20.8999
0.993 15.9721 15.6836 0.993 22.7595 22.1169
0.994 16.2297 16.2179 0.994 24.5101 23.5539
0.995 16.2513 16.8041 0.995 26.7012 25.2868
Heat transfer of inclusions Heat transfer of inclusions
A =10° A =10°
Inclusion Asymptotic TPhMM Inclusion Asymptotic TPhMM
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size a solution [13] size a solution [13]
0.9 5.0502 5.2776 0.9 5.0656 5.3099
0.91 5.4168 5.6661 0.91 5.4355 5.7043
0.92 5.8510 6.1249 0.92 5.8741 6.1709
0.93 6.3761 6.6774 0.93 6.4053 6.7342
0.94 7.0283 7.3605 0.94 7.0662 7.4325
0.95 7.8680 8.2343 0.95 7.9190 8.3297
0.96 9.0049 9.4080 0.96 9.0776 9.5418
0.97 10.6674 11.1050 0.97 10.7801 11.3109
0.98 13.4403 13.8868 0.98 13.6435 14.2620
0.99 19.5974 19.8425 0.99 20.1233 20.8685
0.991 20.7166 20.8903 0.991 21.3212 22.0828
0.992 22.0317 22.1070 0.992 22.7376 23.5164
0.993 23.6079 23.5437 0.993 24.4478 25.2448
0.994 25.5452 25.2763 0.994 26.5699 27.3860
0.995 28.0074 27.4232 0.995 29.3006 30.1366

8) In reference [1] for small inclusion size a << 1, the formula for equivalent heat transfer coeffi-

cient obtained using the Schwarz method of successive approximations is reported. Table 4.4 gives
the computational results of homogenized heat transfer coefficient using ThPM [16] as well as the
Schwarz method [1] and the TPhMM for the case of various heat transfer A and small values of the

inclusion size a .

Table 4.4. Computational results of the estimation of effective heat transfer coefficient (small size of inclusions).

Inclusion conductivity A = 0

Inclusion conductivity A = 1072

In'clusion TPhM Schwarz TPLMM In.clusion TPhM Schwarz TPLMM
size a [16] method [1] size a [16] method [1]
0.05 0.9961 0.9961 0.9961 0.05 0.9962 0.9962 0.9962
0.1 0.9844 0.9844 0.9844 0.1 0.9847 0.9847 0.9847
0.15 0.9653 0.9650 0.9653 0.15 0.9659 0.9657 0.9659
0.2 0.9391 0.9382 0.9391 0.2 0.9403 0.9394 0.9402
0.25 0.9064 0.9044 0.9064 0.25 0.9082 0.9063 0.9082
0.3 0.8680 0.8639 0.8679 0.3 0.8704 0.8666 0.8704

Inclusion conductivity A = 107*

Inclusion conductivity A = 0.5

Inf:lusion TPhM Schwarz TPLMM In.clusion TPhM Schwarz TPLMM
size a [16] method [1] size a [16] method [1]
0.05 0.9968 0.9968 0.9968 0.05 0.9987 0.9987 0.9987
0.1 0.9872 0.9872 0.9872 0.1 0.9948 0.9948 0.9948
0.15 0.9715 0.9714 0.9715 0.15 0.9883 0.9883 0.9883
0.2 0.9499 0.9494 0.9499 0.2 0.9793 0.9794 0.9793
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0.25 0.9228 0.9218 0.9228 0.25 0.9678 0.9681 0.9678
0.3 0.8907 (0.8887 0.8906 0.3 0.9540 0.9546 0.9540
Inclusion conductivity \ = 2 Inclusion conductivity A = 10
In.clusion TPhM Schwarz TPLMM In.clusion TPhM Schwarz TPLMM
size a [16]  method [1] size a [16] method [1]
0.05 1.0013 1.0013 1.0013 0.05 1.0032 1.0032 1.0032
0.1 1.0052 1.0052 1.0052 0.1 1.0129 1.0130 1.0129
0.15 1.0119 1.0118 1.0119 0.15 1.0293 1.0295 1.0293
0.2 1.0212 1.0210 1.0212 0.2 1.0528 1.0532 1.0528
0.25 1.0333 1.0329 1.0333 0.25 1.0839 1.0849 1.0837
0.3 1.0483 1.0475 1.0483 0.3 1.1228 1.1253 1.1228
Inclusion conductivity A = 107 Inclusion conductivity A — oo
In.clusion TPhM ?ﬁg:ﬁilz TPLMM In.clusion TPhM Schwarz TPLMM
size a [16] ] size a [16] method [1]
0.05 1.0039 1.0038 1.0039 0.05 1.0039 1.0039 1.0039
0.1 1.0155 1.0153 1.0156 0.1 1.0158 1.0159 1.0158
0.15 1.0353 1.0343 1.0355 0.15 1.0360 1.0363 1.0360
0.2 1.0635 1.0606 1.0645 0.2 1.0649 1.0659 1.0649
0.25 1.1011 1.0937 1.1034 0.25 1.1032 1.1057 1.1033
0.3 1.1489 1.1334 1.1539 0.3 1.1521 1.1575 1.1522

Table 4.5 gives the mean absolute discrepancy of the computation of effective heat transfer coef-
ficient A using the TPhMM versus known results obtained by other authors.

Table 4.5. Mean value of the absolute discrepancy of the estimation of heat transfer coefficient using the TPhMM
and results obtained by other authors in %

Mean size : 0.3568 < a < 0.8740
1. Inclusions:
Absolute conductivity: A — oo
Formula (3.9) | Formula Formula Results Asymptotics
8] (3.12) [8] (3.13) [8] [14] [13]
3.2790 2.3457 0.0119 2.4839 2.8573
Large size : 0.9441 < a < 0.9966
2. Inclusions:
Absolute conductivity: A — oo
Formula (3.12) Formula (3.13) Results Asymptotics
3] 3] [14] [13]
4.6594 0.0515 3.1776 3.8654
Large size : 0.99498744 < a < 99999950
3. Inclusions:
Absolute conductivity: A — oo
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Numerical computation Asymptotics
[13] [13]
0.5899 0.7884

4. Inclusions:

Large size : 0.9 < a <995
Large conductivity: 10* < A < 10°

Asymptotics [13]

3.1354

5. Inclusions:

Small size: 0 <a < 0,3

Non-conductivity: A = 0

TPhM [16]

Schwarz method [1]

0.0016

0.1159

6. Inclusions:

Small size: 0 <a <0.3
Small conductivity: 102 <Ax<107t

TPhM [16]

Schwarz method [1]

0.0016

0.0814

7. Inclusions:

Small size: 0<a <0.3
Matrix magnitude conductivity: 0.5 < A < 2

TPhM [16]

Schwarz method [1]

0.0000

0.0178

8. Inclusions:

Small size: 0 < a < 0,3
Large conductivity: 10 < A <100

TPhM [16]

Schwarz method [1]

0.0561

0.2585

9. Inclusions:

Small size: 0 <a <0,3

Absolute conductivity: A\ — oo

TPhM [16]

Schwarz method [1]

0.0030

0.1346

5 CONCLUSIONS

One may conclude from the data reported in Table 4.1 and from the paper text body that our re-

sults constructed through the proposed improved TPhM allow us to improve the results obtained

via the classical TPhM approach regarding the estimation of effective heat transfer parameter of the
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composite structure with periodically located cylindrical inclusions of circular cross-sections on the
square net.

Finally, let us emphasise that the TPhMM is practically validated and gives reliable results in
the whole area of both composite parameters variation, i.e. with respect to:
(i) geometric parameter regarding the size of inclusions a: 0 < a < 1;
(i) physical parameter regarding the inclusion conductivity A: 0 < A\ < oo, including the limiting

casesia — 0, a—1 and A - 0, A — 00.
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