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Abstract 
Dynamic response and free vibration analysis of stiffened shells 
having parabolic curvatures, with applications to ships and other 
similar structures are the main focus of this study. The energy 
approach is employed to the determination of equivalent ortho-
tropic shell parameters of parabolic stiffened shells. The unstiff-
ened equivalent shell has proper accuracy in predicting free vibra-
tion characteristics as well as dynamic response of the main stiff-
ened shell. Reducing the governing equation difficulties with suit-
able precision in free vibration and dynamic response analyses is 
the most advantage of replacement of stiffened shells with their 
unstiffened equivalences. 
 
Keywords 
Ship structure; Slamming; Stiffened shell; Parabolic curvature; 
Dynamic Analysis; Equivalent orthotropic shell. 

 
 
Free Vibration and Dynamic Response Analysis of 
Stiffened Parabol ic Shel ls using Equivalent Ortho-
tropic Shel l Parameters 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 INTRODUCTION 

Motion of ships in the waves in addition to the operation of their machinery and propelling equip-
ments are the main sources of the forces causing vibration of the hull structures. Slamming is one 
important phenomenon in which local vibratory loads are induced and exerted on the ship hull 
structure especially in the forward and aft regions. These locations in the ship hull structure are 
made of stiffened shell parts with general curvatures. Study of the vibration aspects for the curved 
stiffened shells inside the ship hull structure is of great importance in ship design process. The prob-
lem of vibration for a curved stiffened shell can be reduced to the study of vibration of an equiva-
lent unstiffened orthotropic shell having the same curvature. In line with such an approach, two 
main methods have been adopted by researchers in order to find the parameters for the equivalent 
orthotropic curved shell. One approach that is going to be implemented in this paper is based on 
extracting parameters using this assumption that the natural frequency and mode shape of the stiff-
ened structure are the same as those of the orthotropic structure. In this case the energy method is  
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Nomenclature 

 

 Ri  Radius of curvature in direction of “i”  
 Di  Orthotropic bending stiffness  in “i” 

direction

  

tp
3  Ei

12 1−υxυs( )
 

 dsi  Length of Shell element in direction of 
“i” 

  D  
Isotropic bending stiffness

  

tp
3  E

12 1−υ 2( )
 

 dAi  Cross sectional area of element in di-
rection of “i”  

 ρ  Isotropic material density 

 dV sh  Volume of element  
 ρor  Orthotropic material density 

  U ,V ,W  Displacement function of shell  L Length of shell 

  u,v,w  Displacement function relatedtomi-
dplane of shell 

 b Width of top view of shell 

  u
ls ,vls ,wls  Displacementfunction of centre of lon-

gitudinal stiffeners 
 C Rise of shell in centre point of trans-

verse direction 

  θ x ,θs  Rotation function  
 
tp  Shell thickness 

  
ei ,γ ij  Strains of Shell  hls Height of web of longitudinal stiffe-

ners 

  
σ i ,τ ij  Stresses of shell  tls Thickness of web of  longitudinal 

stiffeners 

  Ei ,Gxs  Elasticity modules related to orthotro-
pic shell 

 nls Number of longitudinal stiffeners 

 υi  
Poisson’s ratio related to orthotropic 
shell 

 Als Longitudinal cross sectional area 

  
ei

ls ,γ ij
ls  Strains related to longitudinal stiffeners  

 
I yy

ls  Longitudinal cross sectional moment 
of inertia about local axis “y” 

  
σ i

ls ,τ ij
ls  Stresses related to longitudinal stiffe-

ners 
 T Kinetic energy 

E, G Elasticity modules related to isotropic 
material 

 
  U*  Strain Energy 

υ  Poisson’s ratio related to isotropic 
material   

 fiso Natural frequency of stiffened isotro-
pic parabolic shell 

T Time in dynamic response [s]  for Natural frequency of equivalent 
orthotropic shell 

Δt Time interval related to sub-steps in 
dynamic analysis 

 

   
− ,xx...x

n
   

∂n−
∂xn  

PSlamming Slamming induced pressure  
 els  Distance between longitudinal neu-

tral axis and shell midplane 
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usually employed [1]. The other method is obtaining the parameters based on the concept of smear-
ing the stiffeners inside the shell.  

The smearing method has been applied for stiffened plates since the 1970s. Troitsky [2] had re-
viewed extensively the literature pertaining to rectangular stiffened plates for static, dynamic and 
stability analysis which are based on orthotropic plate idealization. This method has been further 
developed and summarized in this field by Szilard [3] in 2004. A comprehensive review has recently 
been given by Xu et al. [4] about vibration of stiffened plates. Replacement of stiffened structures 
with the equivalent unstiffened orthotropic structures has been performed only in the case of stiff-
ened plates [1-7] and curved stiffened shells with constant radius of curvature [8-17]. Srinivasan [16] 
studied dynamic analysis of stiffened conical shell panels wherein the smearing technique is used for 
closely spaced stiffeners and the time domain analysis has been done using the mode superposition 
method. Recently, Luan et al. [17] have applied the smearing method for cross stiffened doubly 
curved shells with constant radius of curvature. They used flat plate smearing relations with some 
modifications for finding orthotropic parameters.   

As can be well understood, there is not any applicable method available for finding equivalent 
orthotropic parameters of curved stiffened shell with a general form of curvature and variable radius 
of curvature. Parabolically curved stiffened shells are one of these types of structures with a wide 
application range within ship structures. 

Free vibration and dynamic response of the stiffened shells incorporating the parabolic curvature 
is the main subject of this study. Although the finite element method can be implemented for de-
tailed modelling and analysis of any kind of complex structure such as a ship hull, it is very time 
consuming to model the details of the structures. An analytical technique is established in order to 
find out the parameters for the equivalent unstiffened shell having the same type of curvature. The 
technique can be simply applied alone or in combination with the other methods such as the finite 
element method, to the free vibration and dynamic response analysis of local and global structures 
as well as complex structures.  
 
2 DETERMINATION OF EQUIVALENT ORTHOTROPIC SHELL PARAMETERS 

Mode shapes and natural frequencies are considered as the main free vibration characteristics of the 
structures. Similarity to the mode shapes and equality of the natural frequencies are the main crite-
ria for two systems to be equivalent from free vibration analysis point of view. This similarity, with 
acceptable precision, leads to the similarity of dynamic responses of the stiffened and equivalent 
structures. In dynamic analysis of structures there are some available methods that are dependent 
to the mode shapes. Mode summation method is one of these mode shape-dependent methods.  

The structures under consideration in this study include a cylindrical parabolic shell as well as a 
number of straight stiffening elements. Thus, the governing equations for these types of elements 
from the geometrical and elasticity points of view are briefly reviewed in Appendix A.  Hence in 
this study, at first the energy equations for the main stiffened shell structure as well as the equiva-
lent unstiffened orthotropic shell structure are written as functions of the displacements. Then the 
displacement function of the main stiffened shell structure is substituted into the above two sets of 
energy equations. This will ensure the similarity of the mode shapes for both structures. Afterwards, 
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imposing the equality condition between the strain energy and kinetic energy of the two main and 
equivalent structures and also applying the equality of their natural frequencies, the material prop-
erties parameters of the equivalent unstiffened orthotropic shell can be easily obtained.  

The displacement function of the shell and also that of the stiffeners are extracted as functions of 
displacement of the shell's mid-plane surface (See Appendix A) [18, 19, 20, 21]. Thus, it is necessary 
to reach the displacement function of the shell's mid-plane surface. The displacement functions are 
two-variable functions and in this study, the method of separation of variables is applied to evaluat-
ing the displacement functions. Applying this method, the two-variable function is reduced to two 
single-variable functions in terms of “x” and “s”, shell local coordinate axis. These single-variable 
functions are evaluated based on curve fitting of the results obtained through experiments or nu-
merical analyses made on the main structure. In order to validate the results, first the obtained 
equivalent orthotropic shell is modelled using the ANSYS commercial FEM code [22] and then a 
modal analysis is performed on it. Finally the calculated mode shapes and natural frequencies are 
compared with those of the main stiffened shell. Figure 1 shows the flowchart of these steps. This 
method has been extended by the authors of this paper [23]. 

 

 
Figure 1   Flowchart of steps 

 
The strain and kinetic energies for the stiffened curved shell and equivalent orthotropic shell are 

written as Eq. (1) and (2) respectively. More details about deriving these relations are given in Ap-
pendix B.  
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 Tiso = Tsh +Tls  
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2
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1
2
ρortp 2π for( )2

sh 5( )  (2.b) 

 
From the equality conditions between the corresponding energy relationships of the main stiff-

ened shell structure (Eq. (1)) and equivalent unstiffened orthotropic shell structure (Eq. (2)), ortho-
tropic shell parameters are extracted as bellow: 
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3 FINITE ELEMENT MODEL 

The structures studied in this paper are divided into two general groups of stiffened and unstiffened 
plates. Two element categories of SHELL63 and BEAM44 were used for modelling the shell and 
stiffeners, respectively [22]. BEAM44 is a uniaxial element with tension, compression, torsion, and 
bending capabilities; andSHELL63 has both bending and membrane capabilities. Both in-plane and 
normal loads are permitted. Both elements have six degrees of freedom at each node: translations in 
the nodal x, y, and z directions and rotations about the nodal x, y, and z-axes.  

In order to model the boundary conditions of finite element models, the translation of the nodes 
related to four edges of the shell were fixed, while their rotation were left free. These boundary con-
ditions are the prevailing conditions considered in studies on the vibration of local structures within 
ship hull girders. Figure 2 depicts a scheme of finite element parametric model. Such considerations 
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as the dimensions of the model and stiffeners as well as the number of stiffeners should be taken 
into account when discretising the finite element model. Since local vibration modes of the stiffeners 
are ignored in the study of the global vibration modes of the structure, then there is no need for 
defining high degrees of freedom for the height of stiffeners in the modelling their local modes. For 
the reason and also for saving the time and costs of calculations, the element dimensions were so 
chosen in this study that there were 1 to 2 elements along the height of the stiffeners. As an exam-
ple, the main geometric specifications and the degrees of freedom for three of finite element models 
out of the studied models are presented in Table 1. 

 
 
 

 
 

Figure 2 Parametric finite element model 

 
 
 

Table 1 Geometrical properties of models adopted for free vibration and dynamic response analyses 
 

Number of 
Degrees of 
Freedom 

nls hls[mm] 
C 

[mm] 
b 

[mm] 
L 

[mm] 

3756 12 100 1440 4300 4300 
4152 10 100 1400 5600 5600 
4512 20 210 1500 7000 7000 

 
 
 
 



M.R. Khedmati et al./ Free Vibration and Dynamic Response Analysis of Stiffened Parabolic Shells using Equivalent Orthotropic Shell Parameters     753 

 
Latin American Journal of Solids and Structures 10(2013) 747 – 766 

 

4 FREE VIBRATION ANALYSIS 

Natural frequency and mode shape are significant characteristics of a structure in free vibration. 
If these characteristics in stiffened and equivalent structures are equal, the stiffened structure can 
be replaced with the equivalent unstiffened that has more simplified governing equation in free vi-
bration analysis. According to above-mentioned, in this study a number of different uni-
directionally stiffened models are considered to the determine effectiveness of this method.  

The geometrical characteristics of the models are given in Table 2 and the material is considered 
to be of normal strength steel type with  E = 200[GPa] ,  υ = 0.3and  ρ = 7800[Kg / m3] . Applying 
the developed method, equivalent orthotropic shell parameters are calculated (Table 3). The simi-
larity between the first five natural frequencies as well as the mode shapes of the main stiffened 
shell and equivalent orthotropic shell is one of the important characteristics of this method. Table 4 
shows the results of comparison between the main and equivalent structures from the natural fre-
quency point of view. Also, in order to improve the quality of the judgment, a comparison between 
the mode shapes of the main stiffened shell and equivalent orthotropic shell structures is provided 
in Table 5. 

It is well understood that the developed method can be effectively employed in derivation of the 
equivalent orthotropic shell parameters with a reasonable level of accuracy. In spite of the fact that 
the equality of only the first natural frequency of both main structure and equivalent structure has 
been one of the conditions imposed in the developed method, it can be realised that a proper con-
vergence trend exists among the other first five natural frequencies.  

 
 
 

Table 2 Geometrical properties of models adopted for free vibration and dynamic response analysis 
 

nls tls[mm] hls[mm] tp[mm] C [mm] b[mm] L [mm] ID 

12 15 100 15 1440 4300 4300 1 

10 15 100 15 1400 5600 5600 2 

20 15 210 15 1500 7000 7000 3 

15 15 150 15 2000 5000 5000 4 
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Table 3 Orthotropic shell parameters based on presented method 

 
 

 
 
 

Table 4 Comparison between the first four natural frequencies of the main stiffened shell and equivalent orthotropic  
shell structures [Htz] 

 
 

ID Mode 1 2 3 4 5 

1 

fiso 43.71 47.25 49.58 55.93 74.32 

for 44.11 46.49 52.07 57.03 68.19 

Error (%) 0.93 1.59 5.02 1.98 8.25 

2 

fiso 30.37 33.12 34.77 40.12 50.63 

for 31.47 33.95 36.50 41.01 50.06 

Error (%) 3.60 2.49 4.97 2.21 1.12 

3 

fiso 20.51 21.57 23.49 25.56 32.50 

for 20.38 20.44 24.19 25.36 31.02 

Error (%) 0.63 5.27 2.97 0.81 4.56 

4 

fiso 34.47 34.61 39.29 40.49 53.15 

for 35.05 35.93 41.55 44.52 53.56 

Error (%) 1.69 3.80 5.75 9.95 0.78 

 
 

ID Ex [GPa] Es [Gpa] Gxs [Gpa] vx ρor[Kg/m3] 

1 317 200 78.88 0.3 9783.16 

2 256 200 88.39 0.3 9202.08 

3 287 200 144.91 0.3 13358.89 

4 335 200 113.04 0.3 10075.61 
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Table 5 Comparison between the modeshapes of the main stiffened shell and equivalent orthotropic shell structures 

 

Mode 
ID 1 ID 2 ID 3 ID 4 

Stiffened 
Shell 

Orthotropic 
Shell 

Stiffened 
Shell 

Orthotropic 
Shell 

Stiffened 
Shell 

Orthotropic 
Shell 

Stiffened 
Shell 

Orthotropic 
Shell 

1 

        

2 

        

3 

        

4 

        

5 
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5 DYNAMIC RESPONSE ANALYSIS 

Applying equivalent orthotropic shells in the dynamic response analysis causes considerable simpli-
fication in the governing equations of motion and provides the possibility of using analytical meth-
ods in their solution. It can be advantageous in dynamic analysis of complex structures such as 
ships where are subjected to vibration induced loads. Hence, the possibility of implementing the 
aforementioned method in dynamic response analysis is investigated in this study. A number of 
models with the geometric and mechanical properties as mentioned in Tables 2 and 3 are considered 
for this purpose.  

Since shells having general curvatures are mostly located in ship’s bow and stern structures and 
are subjected in impact loads such as slamming; these types of loads are considered in this study. A 
simplified model for this type of loads is illustrated in Figure 3. The pressure distribution is consid-
ered constant with respect to spatial variables (x, s). The intensity of this pressure is related to 
several factors and hydrodynamics analysis but in general it can be determined from ships' classifi-
cations rules as a function of ship geometry, general arrangement of the shell structure under study 
[24, 25, 26 and 27]. In this study   

PSlamming = 1 MPa⎡⎣ ⎤⎦  is considered according to current slamming 

relations in the rules. 
 

 
Figure 3 Simplifiedmodelforslammingpressuredistribution 

 
Dynamics analysis has more aspects compared to modal analysis. In finite element model 

SHELL63 is applied for shell modeling as well as BEAM44 for stiffeners [22]. Stiffened and un-
stiffened finite element models are exactly the same from the viewpoints of geometry, boundary and 
load conditions. The material properties in the models for dynamic response analysis are similar to 
those in the modal analysis as listed in Table 3.      

The mode summation method is applied in order to make comparisons between dynamic re-
sponses of stiffened shells and their equivalent orthotropic shells. In this method, the numbers of 
elements has to be sufficient enough to model higher desired number of mode shapes and time in-
terval in sub-steps  Δt  should be less or equal to   1/ (20 ⋅ fmax ) .  
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In this study, the time-normal displacement diagrams in both the main structure and its equiva-
lent structure are extracted at the same nodes and compared with each other in order to assess the 
accuracy level. The response functions in the mode summation method are assumed as finite series 
of the vibration mode shapes. This means that the more the number of modes participated in the 
solution, the more exact the results of dynamic response analysis would be. This is just true from 
theoretical point of view but in real practice, increasing the number of mode shapes leads to grow-
ing the costs and therefore, it is necessary to perform a sensitive analysis in order to find out the 
minimum required mode numbers to achieve dynamic response estimations with appropriate de-
grees of accuracy. A sample of this analysis is performed for model ID01. As seen in Figure 4, as-
suming the number of modes (NOM) to be equal to or above than five, has the same effects on the 
dynamic response and thus, the desirable minimum number of modes (NOM) is taken to be equal 
to 5. It means that with assuming the first five vibration modes for the structures under considera-
tion in the present study, their dynamic responses can be evaluated with suitable accuracy levels. 

 

 
 

Figure 4  Sensitive analysis on the number of modes (NOM) used in mode summation method 
 
According to the results shown in Tables 4 and 5 and also Figure 4, it can be expected that the 

dynamic response of the original stiffened structure is the same as that of the equivalent orthotropic 
un-stiffened structure. Thus, the behavior of the main stiffened structure can be identified using the 
behavior of the equivalent orthotropic structure with an acceptable level of accuracy. This matter is 
confirmed easily based on the results shown in Figures 5 to 8 and its importance can be realized by 
looking at the simple governing equations for the equivalent orthotropic structure in comparison 
with those governing equations for the original stiffened structure. 
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Figure 5   Comparison of deflection-time diagrams for stiffened and equivalent shells for the case of ID01 model 
 

 
 

Figure 6   Comparison of deflection-time diagrams for stiffened and equivalent shells for the case of ID02 model 
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Figure 7   Comparison of deflection-time diagrams for stiffened and equivalent shells for the case of ID03 model 
 

 
 

Figure 8   Comparison of deflection-time diagrams for stiffened and equivalent shells for the case of ID04 model 
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Deflection-time diagrams shown in Figures 5 to 8 and also geometrical properties of the models 
given in Table 2, reveal the fact that when dimensions of stiffeners in comparison with those of the 
shell are large, there would be some difference between dynamic responses of the main and equiva-
lent structures. Such a difference is mainly due to presence of concentrated masses at the location of 
stiffeners in the main structures, which are simplified with added uniform distributed masses in 
equivalent structures. 

When a similar material is being used for both stiffeners and the shell itself, the increase in 
lumped mass through increasing the dimensions and the number of stiffeners is concurrently fol-
lowed by the increase in the structural stiffness. The increase in structural stiffness is, in practice, 
accompanied with the increase in lumped mass since the arrangement of the stiffeners must have a 
specific pattern considering the structural considerations and the constraints imposed on the struc-
ture. For example, it is impossible to use a shell with a higher number of stiffeners having lower 
web heights to produce an exactly equivalent situation to another shell that is stiffened with a lower 
number of stiffeners but possessing higher web heights. 

Nevertheless, the errors in using this method is negligible compared to its advantages in simpli-
fying equations of the motion and improving abilities in solution of complex problems.   

 
 

6 CONCLUSIONS 

Free vibration and dynamic response of the cylindrical stiffened shells with a parabolic type of cur-
vature, as are being used in typical marine structures, were investigated in this study. The main 
outcome of the research can be concluded as follows: 

• An energy-based algorithm was developed in order to find out the mechanical properties of 
the orthotropic shells having the parabolic curvature that is taken equivalent to the original 
unidirectionally stiffened shells with the same parabolic curvature.  

• Similarity of the mode shapes and equality of the natural frequencies were strictly taken as 
the main governing conditions in derivation of equivalent orthotropic shell parameters. 

• Although the above conditions were made when obtaining the equivalent orthotropic shell 
parameters, a relatively good agreement was observed between the first five natural frequen-
cies corresponding to the original stiffened curved shell as well as its equivalent unstiffened 
curved shell. 

• As a result of sensitive analysis, applying first five mode shapes is sufficient to predict the 
dynamic response of the structures in mode summation method.  

• Dynamic analysis was performed on stiffened and equivalent shells under the impact loading 
conditions and acceptable agreement was observed between their dynamic responses.  

Implementation of orthotropic equivalent shell can be considered as suitable and acceptable method 
to vibration analysis of complex structures such as ships. 
 
 
 
 



M.R. Khedmati et al./ Free Vibration and Dynamic Response Analysis of Stiffened Parabolic Shells using Equivalent Orthotropic Shell Parameters     761 

 
Latin American Journal of Solids and Structures 10(2013) 747 – 766 

 

References 

[1] K. T. Sundara Raja Iyengar and R. Narayana Iyengar. Determination of the orthotropic plate parameters of 
stiffened plates and grillages in free vibration, J Applied Scientific Research, 17(6):422-438, 1967.  

[2] M. S. Troitsky. Stiffened Plates Bending Stability and Vibration. Elsevier Scientific Publishing Co, 1976.  
[3] R. Szilard, Theories and Applications of Plate Analysis, John Wiley and Sons, Hoboken, NJ, 2004. 
[4] H. Xu, J. Du, W. L. Li. Vibrations of rectangular plates reinforced by any number of beams of arbitrary 

lengths and placement angles. Journal of  Sound and Vibration, 329:3759–3779, 2010. 
[5] Yu Luan, M. Ohlrich, F. Jacobsen. Improvements of the smearing technique for cross-stiffened thin rectangular 

plates. Journal of  Sound and Vibration, 330:4274-4286, 2011.  
[6] C. Omd’varan. Free vibration of grid-stiffened plates. Journal of Sound and Vibration. 19(4):463-472, 1971.    
[7] A. Deb, M. K. Deb, M. Botoon. Analysis of orthotropically modeled stiffened plates. Journal of Solids Struc-

tures, 27(5):647-664, 1991.  
[8] MikulasJr MM, McElman JA. On the free vibration of eccentrically stiffened cylindrical shells and plates. 

NASA TN-D 3010, 1965. 
[9] Ruotolo R. A comparison of some thin shell theories used for the dynamic analysis of stiffened cylinders. Jour-

nal of Sound and Vibration. 243(5):847–860, 2001. 
[10] B. A. J. Mustafa, R. Ali. An Energy method for free vibration analysis of stiffened circular cylindrical shells. 

Computers & Structures, 32(2):355-363, 1989.  
[11] X. Zhao, K. M. Liew, T.Y. Ng. Vibration of rotating cross-ply laminated circular cylindrical shells with stringer 

and ring stiffeners. International  Journal of Solids Structures, 39:529–545, 2002.  
[12] A. A. Jafari, M. Bagheri. Free vibration of non-uniformly ring stiffened cylindrical shells using analytical, ex-

perimental and numerical methods. Thin-Walled Structures, 44:82-90, 2006.  
[13] Zhi Pan, Xuebin Li, Janjun Ma. A study on free vibration of a ring-stiffened thin circular cylindrical shell with 

arbitrary boundary conditions. Journal of Sound and Vibration, 314:330-342, 2008.  
[14] Lin Gan, Xuebin Li, Zheng Zhang. Free vibration analysis of ring-stiffened cylindrical shells using wave propa-

gation approach. Journal of Sound and Vibration, 326:633-646, 2009.   
[15] Sh. Torkamani, H. M. Navazi, A. A. Jafari, M. Bagheri. Structural similitude in free vibration of orthogonally 

stiffened cylindrical shells. Thin-Walled Structures, 47:1316-1330, 2009. 
[16] R.S. Srinivasan, P.A. Krishnan. Dynamic analysis of stiffened conical shell panels. Computers & Structures, 

33(3):831-837, 1989. 
[17] Yu Luan, MogensOhlrich, Finn Jacobsen. Smearing technique for vibration analysis of simply supported cross-

stiffened and doubly curved thin rectangular shells. Joutnal of Acoustial Society of America, 129(2):707-716, 
2010.  

[18] Arthur Leissa, Vibration of Shells, Acoustical Society of America, 1993. 
[19] I. S. Sokolnikoff, Mathematical Theory of Elasticity, McGRAw-HILL Book Company Inc., 1946. 
[20] Philippe G. Ciarlet, Mathematical Elasticity, Vol3: Theory of shells, Elsevier Science B. V., 2000. 
[21] Werner Soedel, Vibrations of Shells and Plates, Marcel Dekker, Inc., Third edition, 2005. 
[22] ANSYS®, Online Manuals, United States of America: ANSYS Inc. Release 11.0: 2007.   
[23] P. Edalat, M. R. Khedmati, C. G. Soares. Determination of Equivalent Orthotropic Shell Parameters for Free 

Vibration Analysis of Stiffened Shells with Parabolic Curvature. Submitted to Thin-Walled Structure. 
[24] American Bureau of Shipping. Rules for building and classing steel ships. Pt. 5, Ch. 3, Section 3, 2003. 
[25] Det Norske Veritas. Rules for classification of ships, Pt. 3, Ch. 1, Section 6H, 2003. 
[26] Bureau Veritas. Rules for classification of steel ships, Pt. B, Ch. 9, Section 1, 2007.  
[27] Lloyd’s Register of Shipping. Rules and Regulations for the classification of ships, Pt. 3, Ch. 5, 2000. 
 

 



762      M.R. Khedmatiet al./ Free Vibration and Dynamic Response Analysis of Stiffened Parabolic Shells using Equivalent Orthotropic Shell Parameters 

 
Latin American Journal of Solids and Structures 10(2013) 747 – 766 

 

Appendix A 

Governing geometrical and elasticity relationships for cylindrical shell element with parabolic curva-
ture: 
 
 

 
 

Figure A1 An element of cylindrical parabolic shell 
 
 
Geometrical Properties: 

 Rx →∞  (A1.a)  
 
Rs = Rs s( ) = r  (A1.b) 

  
dss z( ) = 1+ z / r( )ds  (A1.c)  

  
dAs z( ) = 1+ z / r( )dxds  (A1.d) 

 
dAx z( ) = dxds  (A1.e)  

  
dV sh z( ) = 1+ z / r( )dxdsdz  (A1.f) 

 
 
Displacement functions: (satisfying the Kirchhoff hypothesis) 

  
U x,s, z( ) = u x,s, z( ) + zθ x x,s( )  (A2.a)    

  
V x,s, z( ) = v x,s, z( ) + zθs x,s( )  (A2.b)  

  
W x,s, z( ) = w x,s, z( )  (A2.c) 

 
 
Strain-displacement relations: (General relations) 

  
ex =U ,x  (A3.a)    

es =V,s +W / r  (A3.b) 

  
ez =W,z  (A3.c)  

  
γ xs =U ,s +V,x  (A3.d) 

  
γ xz =W,x +U ,z  (A3.e)  

  
γ sz =W,s +V,z  (A3.f) 
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Rotation functions: Based on the Love’s first approximation in order to satisfy the thin shell 

theory and Kirchhoff’s hypothesis, the shear strains  γ xz and  γ sz are neglected. Hence: 
 

  
θ x x,s( ) = −w,x  (A4.a)    

θs x,s( ) = v / r − w,s  (A4.b) 

 
Strain-displacement relations: (In terms of the shell mid-plane displacement function) 

  
ex = u,x − zw,xx  (A5.a)  

  
es = v,s +

w
r
+ z v / r( ),s

− w,ss( )  (A5.b) 

  
γ xs = u,s + v,x − 2zw,xs + 2z  v,x / r  (A5.c)    

 
Stress-strain relationship: (For the general case of orthotropic material) 
 

 
 

Figure A2 Stress components on the mid-plane of shell element 
 
 

  
σ x =

1
1−υxυs

Exex +υx Eses( ) (A6.a) 
 

  
σ s =

1
1−υxυs

Eses +υsExex( )  (A6.b) 

 τ xs = Gxsγ xs  (A6.c)    

 
Governing geometrical and elasticity relationships for longitudinal stiffener element: 
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Figure A3 Longitudinal stiffener element 
 
Relation between the displacement of the stiffeners and displacement of the shell: 

  
uls = u + elsw,x  (A7.a)  

  
vls = v + els w,s − v / r( )  (A7.b) 

 wls = w  
(A7.c)    

Where the magnitude of the variable  els  depended on the arrangement of the longitudinal stiffen-
ers is 
 

 
 
External Stiffener 

 
 
Central Stiffener 

 

 
 
Internal Stiffener 

 
Figure A4 Longitudinal stiffener arrangement in shell 

 

  
els = − tp + hls( ) / 2   External Stiffener (A8.a)    els = 0      Central Stiffener  (A8.b) 

  
els = tp + hls( ) / 2    Internal Stiffener (A8.c)    

 
Strain-displacement relations:  

  
ex

ls = u,x + (els − zls )w,xx  (A9.a)  
  es

ls = 0  (A9.b) 

  
γ xs

ls = v,x + els(w,xs − v,x / r)  (A9.c)    

 
Stress-strain relationship: (The effect of the Poisson’s ratio is neglected) 

  σ x
ls = E  ex

ls

 (A10.a)  
  σ s

ls = 0  (A10.b) 
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  τ xs
ls = E  γ xs

ls / 2  (A10.c)    
 
Appendix B 

The general well known energy expression in elastic materials is 
 

  
U* =

1
2

σ xex +σ ses +τ xsγ xs( )∫ dV  (B1. a) 
 

  
T = 1

2
U ,t

2 +V,t
2 +W,t

2( )∫ dV  (B1. b) 

  
 

The energy expression for any structural element is derived after substitution of its corresponding 
geometrical and elasticity relationships from appendix A into above equations and taking integra-
tion over the whole element volume. These expressions are as follow:   

Orthotropic Shell 

  
Uor =

1
2

Dxsh 1( ) + Dssh 2( ) + 2υsDxsh 3( ) +Gxssh 4( )⎡⎣ ⎤⎦  

(B2.a) 

  
Tor =

1
2
ρor  tp 2π for( )2

sh 5( )  

(B2. b) 

Isotropic Shell 

  
Ush =

1
2

D sh 1( ) + sh 2( )⎡⎣ ⎤⎦ + 2υD sh 3( ) +G  sh 4( ){ }  (B3.a) 

  
Tsh =

1
2
ρ  tp 2π fiso( )2

sh 5( )  (B3. b) 

Longitudinal Stiffeners 

  
Uls =

E
2

AlsLS 1( ) + I yy
ls LS 2( )⎡⎣ ⎤⎦ +

G
2

AlsLS 3( )  (B4.a) 

  
Tls =

1
2
ρAls 2π fiso( )2

LS 4( )  (B4. b) 

Where the coefficients sh(i) and LS(i) are: 

  
sh 1( ) = 12

tp
2 u,x

2 + w,xx
2 − 2

u,xw,xx

r

⎛

⎝
⎜

⎞

⎠
⎟

0

L

∫
0

S

∫ dxds  (B5.a) 
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sh 2( ) = 12
tp

2 v,s +
w
r

⎛
⎝⎜

⎞
⎠⎟

2

+ w,ss −
v
r

⎛
⎝⎜

⎞
⎠⎟ ,s

⎛

⎝
⎜

⎞

⎠
⎟

2

+ 2
v,s

r
+ w

r 2

⎛

⎝⎜
⎞

⎠⎟
v
r

⎛
⎝⎜

⎞
⎠⎟ ,s

− w,ss

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟0

L

∫
0

S

∫ dxds  (B5. b) 

  
sh 3( ) = 12

tp
2 u,s −

w,xx

r

⎛

⎝
⎜

⎞

⎠
⎟ v,s +

w
r

⎛
⎝⎜

⎞
⎠⎟
+ w,xx −

u,x

r

⎛

⎝⎜
⎞

⎠⎟
w,ss −

v
r

⎛
⎝⎜

⎞
⎠⎟ ,s

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

0

L

∫
0

S

∫ dxds

 

(B5. c) 

  

sh 4( ) = tp u,s + v,x( )2
+

tp
3

3
v,x

r
− w,xs

⎛

⎝⎜
⎞

⎠⎟

2

+
tp

3

3r
u,s + v,x( ) v,x

r
− w,xs

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟0

L

∫
0

S

∫ dxds
 

(B5. d) 

  

sh 5( ) = u − zw,x( )2
+ v + z  v

r
− w,s

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

2

+ w2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟0

L

∫
0

S

∫
0

tp

∫ dxdsdz
 

(B5. e) 

 
And 
 

            
  
LS i( ) = LS i( ) j

j=1

nls

∑
                 

at s=sj (B6.a) 

 

  
LS 1( )

j
= u,x + elsw,xx( )2

0

L

∫ dx  (B6. b) 

 

  
LS 2( )

j
= w,xx

2

0

L

∫ dx

 

(B6. c) 

 

  
LS 3( )

j
= v,x + elsw,xs( )2

0

L

∫ dx
 

(B6. d) 

 

  

LS 4( )
j
= u + elsw,x( )2

+ v + els w,s −
v
r

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

2

+ w2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

L

∫ dx
 

(B6. e) 

 


