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Abstract 
Developing fragility functions is the essential step in incorporating important uncertainties in next-generation 
performance-based earthquake engineering (PBEE) methodology. The present paper is aimed to involve 
record-to-record variability as well as modelling uncertainty sources in developing the fragility curves at the 
collapse limit state. In this article, in order to reduce the dispersion of uncertainties, Group Method of Data 
Handling (GMDH) in combination with Monte Carlo Simulation (MCS) is used to develop structural collapse 
fragility curve, considering effects of epistemic and aleatory uncertainties. A Steel Moment Resisting Frame 
(SMRF) is chosen as the tested structure. The fragility curves obtained by the proposed method which belongs 
to GMDH approaches are compared with those resulted from simple and well-known available methods such 
as First-Order Second-Moment (FOSM), Approximate Second-Order Second-Moment (ASOSM) and Monte 
Carlo (MC)/Response Surface Method (RSM), somehow, as an accurate method. The results of the application 
of the proposed approach indicate increasing accuracy and precision of the outputs as well as power with the 
same computational time compared to aforementioned methods. The GMDH method introduced here can 
be applied to the other performance levels. 
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Group Method of Data Handling (GMDH) algorithm; Monte Carlo method; Aleatory uncertainty; Epistemic 
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1 INTRODUCTION 

Safety analysis of structures in seismic conditions is one of the significant phases of structural design especially in 
urban areas with high hazard of earthquake. Over the years with collaboration among earthquake engineering research 
centers, the Performance-Based Earthquake Engineering (PBEE) methodology has received more achievements to 
employ more reliable approaches in determining the seismic performance of structures. Considering the limits of the 
first generation of performance-based guidelines and the necessity of explicit inclusion of existing uncertainties, the 
Pacific Earthquake Engineering Research (PEER) Center has provided a new framework for PBEE (Ghobarah, 2001). The 
proposed procedure includes the inclusion of data and models related to seismic hazard, seismic response of structures 
and earthquake damage and losses through triple integration of PEER framework. By combining these data, the ultimate 
result reveals the probable consequences of different earthquake scenarios, e.g., mean annual frequency of exceeding 
direct and indirect damage and fatality after an earthquake. The outcome of this integration as reliable criteria forms a 
common language among different interested groups with different attitudes. The first part of this triple integral is 
devoted to assess the expected mean annual exceedance frequency of Engineering Demand Parameter (EDP) illustrated 
in the following equation: 

𝝀𝝀𝑳𝑳𝑳𝑳 = ∫𝑮𝑮(𝑳𝑳𝑳𝑳|𝑰𝑰𝑰𝑰 = 𝒊𝒊𝒊𝒊). |𝒅𝒅𝝀𝝀(𝒊𝒊𝒊𝒊)|  (1) 

In which, im is intensity measure, λ(im) is mean annual rate of exceedance for a given intensity (seismic hazard 
curve), G(.) is conditional cumulative probability distribution function for specified Limit State (LS) or in fact is constituting 
fragility function. As can be seen, the seismic fragility curves at different limit states are recognized as the crucial parts 
of the PBEE framework. The basic components of fragility curves are more tangible to the damage level at various 
performance level. Among various limit states, collapse safety is more important pertaining to increasing rapidly 
casualties and fatality after strong ground motions. This metric is going to be crucial safety assessment criteria for new 
and excising constructions. Recently, ASCE 7 (2016) would mandate taking the collapse probability of all new buildings 
at the intensity level of a maximum considered earthquake (MCE) less than 10%. 

Collapse of buildings may be triggered through the lack of load carrying capacity of lateral and gravity load resisting 
systems. In this case LLS= LCOLLAPSE is mean annual frequency of collapse, which may be used as metric for safety 
assessment of structures against various probable intensity levels in site specific seismic hazard. Lesson learnt from past 
earthquake disaster indicated that due to the side-sway collapse, the majority of collapse was extended to vertical 
collapse accelerated by P-Delta effects for taller buildings. Side-sway collapse is defined as the total instability of building 
structural system due to lateral displacements of building under intensive ground motions and second-degree impacts 
of P-Δ effect of gravity loads, to the extent that emergent mechanisms cause the whole structural instability and collapse 
(Möller and Beer, 2013). Employing sequential dynamic analyses using a suit of proper seismic records so-called 
Incremental Dynamic Analysis (IDA) may be used for developing fragility curves based on two approaches, IM-based and 
EDP-based perspectives. Although in both cases, the collapse fragility curve is obtained by comparing seismic demand 
and the capacity of structure, difference is attributed to considering the variable in integration “Eq. (1)” where in the first 
one is IM and in the later is EDP. The collapse limit state was defined when the applied demand to structure exceeds its 
collapse capacity. In this study for simplicity and direct usage of last multiple analysis outcomes, IM-based approach is 
used based on direct usage of IM parameter (Sacollapse) in determining the collapse fragility curve [Ibarra and Krawinkler, 
2005]. The collapse capacity in each IDA curve is the intensity measure of scaled record applied to structure before 
dynamic instability occurred in acceptable tolerances. The collapse limit state is assessed here through detecting 
sidesway collapse of the structure (Haselton, 2006). The collapse fragility curve which is collapse probability conditioned 
on the intensity measure is determined using the following IM-based method (Karimi Ghaleh Jough and Şensoy, 2016): 

𝑮𝑮(𝑬𝑬𝑬𝑬𝑬𝑬|𝑰𝑰𝑰𝑰 = 𝒊𝒊𝒊𝒊) = 𝒑𝒑(𝑬𝑬𝑬𝑬𝑬𝑬 > 𝒆𝒆𝒅𝒅𝒑𝒑|𝑰𝑰𝑰𝑰 = 𝒊𝒊𝒊𝒊) = 𝑬𝑬(𝒊𝒊𝒊𝒊 > 𝑰𝑰𝑰𝑰𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒑𝒑𝒄𝒄𝒆𝒆)  (2) 

The important aspects of the seismic performance assessment framework in next generation of PEER approach is 
the quantification and propagation of the various uncertainties throughout the seismic evaluation of structures. The 
fragility functions account for major uncertainty in PBEE methodology. In reliability assessment framework, the 
uncertainty sources are categorized into aleatory and epistemic uncertainties. Aleatory uncertainties are referred to ones 
that according to our current knowledge and data cannot be accurately predicted. Given the limited information 
pertaining to the mechanism of earthquake occurrence, nonce, the exact simulations of the characteristics of future 
ground motions are impossible. The aleatory uncertainty laid in predicting ground motions is categorized in two sources, 
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one from frequencies, amplitudes, phases, and durations is so-called ‘record-to-record’ variability and the others 
associated with variability in ground motion intensity were addressed by site-specific hazard curve. The first term is 
incorporated by sequential dynamic analyses such as IDA, and the second term is treated by computing mean annual 
occurring frequency through integration of the corresponding fragility curve over the mean hazard curve. 

In contrast to aleatory ones, the epistemic uncertainties can be reduced by developing knowledge boarders. The 
effect of these uncertainty factors can be reduced by collecting more data or using more appropriate analytical model. 
The parameters of modeling assumptions (analytical model) are mainly sources of epistemic uncertainties, which are 
propagated into the structure responses through numerical analysis. The parameters of structural modeling, building 
construction quality and computational methods in predicting more accurate structural behavior of buildings can be 
incorporated by epistemic uncertainties (Ibarra et al., 2005). In addition to inherent uncertainties in structural 
idealization and analysis strategies, modeling uncertainties involved in uncertain variables may be divided into physical 
and non-physical ones. Ones which are raised from direct measure of variable involved in analysis such as loading (dead 
loads and live loads), mass, material properties, and they are considered as physical variables. Other modeling 
uncertainties maybe indirectly measured and estimated using predictive function of physical variables such as damping 
and the parameters for definition of generalized force-deformation relationship in analytical models. These are so-called 
non-physical parameters (Bradley, 2013). 

Selecting which types of modeling uncertainties to be considered in analysis depends on the type of analytical 
model. If the material stress-strain relationship is used as primary structural behavior, the mechanical properties of 
members’ materials are the source of uncertainties (such as elastic modulus, yield stress or strain, ultimate strength and 
strain and so on). Two following finite element models belong to this category: 

(i) In microscopic finite-element models where members are modeled by assembly of numerous two or three- 
dimensional finite elements 

(ii) In discrete finite-element modeling of skeletal structures and using fiber sections at integration points along 
frame members for evaluating moment-curvature relationship. This model is categorized into the 
distributed plasticity model where inelasticity may propagate along element at integration point locations. 

In the nonlinear range, the structural behavior may be controlled with formation of plastic hinges at members’ ends. 
This model is categorized as concentrated plasticity model where inelasticity is lumped at members’ end-points or finite 
end-length. Using nonlinear spring at ends and linear behaviour within its length is a usual assumption for this model. 
Epistemic uncertainty in this analytical model is applied at the generalized force-displacement relationship for ends’ 
springs as plastic hinges. Taking benefit of considering inherent uncertainties of analytical assumptions from 
experimental evidence for evaluating generalized force-deformation relationship may be considered as the major 
advantage of this method in respect to distributed plasticity models. 

Where the most research works are conducted on considering the aleatory uncertainty in seismic performance 
assessment, the least works are devoted to incorporating modelling uncertainty pertaining to high computational cost. 
Although in moderate to low-seismic regions using deterministic modeling parameters (mean values) is adequate in 
estimation of seismic response demands, in high-seismic regions, incorporating these uncertainties is an important issue 
in this respect (Celik and Ellingwood, 2010). Not only for ductile buildings designed based on current building codes, but 
also for existing deficient buildings designed based on old codes, the record-to-record variability as well as modeling 
uncertainty is of the source of variability. The modeling uncertainty is more crucial, especially in highly nonlinear range 
of structure deformation (collapse capacity), because more uncertain parameters define the post-strength of material 
(Challa and Hall, 1994 and Vamvatsikos and Fragiadakis, 2010). For example, where the logarithmic standard deviation 
attributed to record-to-record uncertainties ranges between 0.35 and 0.45 depending on the structure of interest, the 
logarithmic standard deviation associated with modeling uncertainties may be as much as 0.45 (Haselton, 2006). 
Combining these uncertainties can make a significant impact on collapse probabilities, revealing the importance of 
incorporating modeling uncertainties in the seismic risk assessment. The modeling uncertainties increase the dispersion 
and also usually decrease the prediction of the median collapse capacity (Liel et al., 2009). 

In this research, GMDH methodology is proposed to consider modelling uncertainties and to derive collapse fragility 
curves, incorporating epistemic and aleatory uncertainties, and it is finally compared with the other methods. 

2 Statistical-based method 

The full Monte Carlo Simulation (MCS) is the common method in estimation of failure probability in the presence of 
various uncertain variables. Employing MCS demands more computational cost and it is known as a time-consuming 
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method to cover all probabilistic distributions allied with each source of uncertainty. Although this approach is not 
feasible for large and huge structure with numerous random variables, it is presently only one to achieve precise and 
more accurate results. 

To reduce computational effort, some reliability-based approaches for incorporating epistemic uncertainties, 
including First-Order Second-Moment (FOSM) (Ibarra and Krawinkler, 2005), (Celarec and Dolšek, 2013), First-Order 
Reliability Method (FORM), Second Order Reliability Method (SORM), Mean Estimate Method, Confidence Interval 
Method (Zareian and Krawinkler, 2007), ASOSM (Liel et al., 2009) and Response Surface Method (Karimi Ghaleh Jough 
and Beheshti Aval, 2018) were utilized. 

The FOSM and FORM methods are more effective when the large number of model random variables wished to 
incorporate in uncertainty treatment. Both methods use the same assumption of linear approximation of failure surface. 
The main difference is that in FORM, the nonlinear failure surface is replaced at the design point (the nearest distance 
to origin in random variable space associated with highest failure probability) by linear approximation through Taylor 
expansion in spite of FOSM where failure probability computed based on two moments of probability distributions, i.e., 
mean and standard deviation of failure surface. For high curvature failure surfaces, using this linear approximation leads 
to imprecise failure probability. To overcome this issue quadratic approximation of SORM was introduced. Due to 
incomplete fitting of quadratic form to the actual failure surface and also more computational cumbersome inherent in 
this method, the linear approximations approach is more attractive than SORM for incorporating modeling uncertainties 
into fragility functions (Liel et al., 2009). Moreover, the application of these approximation methods needs explicit form 
of failure function to find the gradient close to design point. However, for complex structure, using IDA in conjunction 
with accurate nonlinear finite element model provides the implicit failure surface as a bunch of points (Hurtado, 2004). 

To overcome aforementioned restrictions, Response Surface Method (RSM) has been suggested (Bucher and 
Bourgund, 1990). The response surface surrogates the time consuming nonlinear dynamic analyses and hence decreases 
computational cost of MCS. 

Due to requiring reselection of the response function order (usually restricted to quadratic function), achievement 
of the right function is not guaranteed. Indeed, the RSM still requires significant computational cost and hence is 
considered as a time-consuming method for complex structural models (Liel et al., 2009). 

For simplicity and reducing more computational and analysis time, the method like FOSM, so-called approximated 
second order second moment (ASOSM) was recently developed to treat the effects of modeling uncertainties (Liel et al., 
2009). In spite of FOSM, while by incorporating modeling uncertainties, median of fragility function was maintained, in 
this approach, the median was shifted. 

More recently the application of Heuristic based techniques in seismic risk assessment of structures is received more 
attention. Reducing computational effort across limiting results error and generality and efficiency were reported by 
developers. Met-heuristic algorithm doesn’t require certain mathematical and problem solving, regardless of internal 
performance of the problem, optimization is done. This algorithm can solve every goal with every restriction (for 
example, linear or nonlinear), which is the continuous search space, or mixed batch is defined. 

2.1 Heuristic-based methods 

As mentioned, the epistemic uncertainties are a part of factors that cause of change in structure capacity and for 
which, a predictive model can be designed based on the existing data. Recently the soft-computing approaches are 
received much more attentions in pattern recognition science like the Fisher Discrimination, Bayesian Classification, 
Classification Trees, Wavelet Analysis (WA), Artificial Neural Network (ANN) and Probabilistic Support Vector Machines 
(PSUV) (Hurtado, 2004). The last three i.e. WA, ANN, and PSUV were recently utilized in seismic reliability assessment of 
structures (Noh et al., 2012) and (Mahmoudi and Chouinard, 2016). Despite aforementioned traditional uncertainty 
treatment methods explained in previous subsection, these heuristic fitting algorithms can simulate high nonlinear 
functions. 

The WA was successfully proposed as a framework for a probabilistic damage classification model of steel moment-
resisting frame under seismic loading. In this circumstance, the fragility functions were derived from the WA (Noh et al., 
2012). In other effort PSVM was employed to develop the system fragility analysis of an existing bridge structure using 
results of IDA (Mahmoudi and Chouinard, 2016). The efficiency of application of the method in comparison with using 
MCS to develop fragility functions was reported. The epistemic uncertainty was not incorporated in both efforts. 

Among aforementioned Artificial Intelligence approaches, ANN was employed to incorporate a wide range of 
uncertainty in seismic performance of structures, (Lagaros and Fragiadakis, 2007). In this respect, the response surface 
method was substituted by a trained Artificial Neural Network (ANN) method. The application of ANN method not only 
reduces the computational effort but also causes the reduction of estimation error compared with response surface-
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based method. The key success factor of this heuristic method is a substitution of more time consuming performing 
nonlinear finite element analysis with trained associative memory of ANN. After training, ANN can be able to generate 
output responses from multiple realizations of random variables generated by MCS with less computational effort. The 
ANN-based MCS was also used for the sensitivity analysis of non-structure building such as large concrete dams 
(Mitropoulou and Papadrakakis, 2011). In another effort various uncertainties from lexical to informal and stochastic 
types were involved to develop comprehensive collapse fragility function for steel moment resisting frame (Karimi 
Ghaleh Jough and Şensoy, 2020). 

So far, various ANN architectures have been proposed including the multilayer feed-forward, the radial basis 
function, Bayesian regularized networks with self-organizing maps, and recurrent neural networks. Among them, 
recently the multilayer feed-forward (Giovanis et al., 2015) and the radial basis function in Pang et al. (2014) have been 
used to develop fragility curves. 

In this study, a new class of polynomial neural networks combining Group Method of Data Handling (GMDH) with 
ANNs are used to predict mean and standard deviation of fragility curve. This method is explored for modelling highly 
nonlinear and function approximation (Wang and Hu, 1999), (He and Wang, 2012). The GMDH network, that is an 
adaptive machine learning, is used for software reliability to predict variables during analysis. This algorithm has been 
created on the principle of heuristic self-organization. Their versatilities and comparison between these kinds of artificial 
intelligence across regular reliability based method against proposed method is the merit of this research. 

2.1.1 Monte Carlo method based on GMDH approach 

GMDH aims to simulate the elementary operation of biological self-organizing approaches of artificial intelligence 
and presents a computational function to predict approximate results based on input data [Farlow, 1984]. The standard 
description of the recognition problem is to achieve a function g ̅, which could be approximately applied instead of real 

one g, for predicting outcome 𝑶𝑶 for the input data vector  1 2 3, , ,..., nA a a a a  close to its real outcome O. So, the 

following N perceptions of multilayered structure is: 

𝑶𝑶𝒊𝒊 = 𝒈𝒈(𝒄𝒄𝒊𝒊𝟏𝟏,𝒄𝒄𝒊𝒊𝟐𝟐,𝒄𝒄𝒊𝒊𝟑𝟑 … ,𝒄𝒄𝒊𝒊𝒊𝒊) 𝒊𝒊 = 𝟏𝟏,𝟐𝟐,𝟑𝟑, . . . ,𝑵𝑵  (3) 

 
Figure 1: A flowchart of GMDH-type approach. 

To simulate the outcome values 𝑜𝑜𝑙𝑙�  for each input variable𝐴𝐴 = (𝑎𝑎𝑖𝑖1,𝑎𝑎𝑖𝑖2,𝑎𝑎𝑖𝑖3, … ,𝑎𝑎𝑖𝑖𝑖𝑖), it is available to train GMDH-
type neural network. So that: 

𝑶𝑶𝒊𝒊��� = 𝒈𝒈�(𝒄𝒄𝒊𝒊𝟏𝟏,𝒄𝒄𝒊𝒊𝟐𝟐,𝒄𝒄𝒊𝒊𝟑𝟑, … ,𝒄𝒄𝒊𝒊𝒊𝒊) 𝒊𝒊 = 𝟏𝟏,𝟐𝟐, … ,𝑵𝑵  (4) 
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The problem is now to decide the type of GMDH. Therefore, the square of variation in the real outcome and the 
simulated one is minimized, as: 

𝒊𝒊𝒊𝒊𝒊𝒊 = ∑ [𝒈𝒈�(𝒄𝒄𝒊𝒊𝟏𝟏,𝒄𝒄𝒊𝒊𝟐𝟐,𝒄𝒄𝒊𝒊𝟑𝟑, … ,𝒄𝒄𝒊𝒊𝒊𝒊) −𝑶𝑶𝒊𝒊]𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏   (5) 

Complex polynomial function can explain the relation between A and O in the following form: 

𝑶𝑶� = 𝑮𝑮�𝒄𝒄𝒊𝒊,𝒄𝒄𝒋𝒋� = 𝒃𝒃𝟎𝟎 + 𝒃𝒃𝟏𝟏𝒄𝒄𝒊𝒊 + 𝒃𝒃𝟐𝟐𝒄𝒄𝒋𝒋 + 𝒃𝒃𝟑𝟑𝒄𝒄𝒊𝒊𝒄𝒄𝒋𝒋 + 𝒃𝒃𝟒𝟒𝒄𝒄𝒊𝒊𝟐𝟐 + 𝒃𝒃𝟓𝟓𝒄𝒄𝒋𝒋𝟐𝟐  (6) 

A common flowchart GMDH-type is represented in Figure 1. 

 
Figure 2: Final structure of GMDH network. 

It can be usually observed that a tree chart is made by applying the quadratic function in equation 6 which its 
coefficients are calculated in a LSE (Last Square Error). 

𝑹𝑹𝟐𝟐 = ∑ (𝒄𝒄𝒊𝒊−𝒄𝒄�)𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏
∑ 𝒄𝒄𝒊𝒊𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏

   (7) 

The LS method from nonlinear regression results to solve the simple equations in the following form: 

𝒄𝒄 = (𝑨𝑨𝑻𝑻𝑨𝑨)−𝟏𝟏𝑨𝑨𝑻𝑻𝒀𝒀   (8) 

Where, 

𝑨𝑨 = �
𝟏𝟏 𝒄𝒄𝟏𝟏𝒑𝒑 𝒄𝒄𝟏𝟏𝒒𝒒
𝟏𝟏 𝒄𝒄𝟐𝟐𝒑𝒑 𝒄𝒄𝟐𝟐𝒒𝒒
𝟏𝟏 𝒄𝒄𝑰𝑰𝒑𝒑 𝒄𝒄𝑰𝑰𝒒𝒒

 
𝒄𝒄𝟏𝟏𝒑𝒑𝒄𝒄𝟏𝟏𝒒𝒒 
𝒄𝒄𝟐𝟐𝒑𝒑𝒄𝒄𝟐𝟐𝒒𝒒 
𝒄𝒄𝑰𝑰𝒑𝒑𝒄𝒄𝑰𝑰𝒒𝒒

𝒄𝒄𝟏𝟏𝒑𝒑𝟐𝟐

𝒄𝒄𝟐𝟐𝒑𝒑𝟐𝟐

𝒄𝒄𝑰𝑰𝒑𝒑𝟐𝟐

𝒄𝒄𝟏𝟏𝒒𝒒𝟐𝟐

𝒄𝒄𝟐𝟐𝒒𝒒𝟐𝟐

𝒄𝒄𝑰𝑰𝒒𝒒𝟐𝟐
�  (9) 

That is the best vector of the quadratic function of Equation 6 for the entire set of M triple variables. The final 
structure of GMDH network is shown in Figure 2. After training the GMDH, Monte Carlo approach is used based on GMDH 
function. At first, a large number of scenario variables are simulated. This scenario is used to simulate the modeling 
variable and characteristic value of records. Second, mean and standard deviation of Sacollapse are obtained by trained 
GMDH. Figure 3 demonstrates the procedure considered in this study. 

3 Application of the proposed method to the case study structure 

In the proposed method, parameters with aleatory uncertainty are considered as random variables with specified 
probability distributions while parameters with epistemic uncertainty are taken as 125 scenarios of modelling 
parameters. 
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Table 1 Design sections for considered structure 

story C1 C2 B1 B2 

1 BOX 180x180x1.6 BOX 200x200x1.6 IPE 300 IPE 330 

2 BOX 180x180x1.6 BOX 200x200x1.6 IPE 300 IPE 330 

3 BOX 180x180x1.6 BOX 200x200x1.6 IPE 300 IPE 330 

 
Figure 3: Fragility analysis with considering epistemic and aletory uncertainties by GMDH network 

In the first stage, the mean and standard deviation of the fragility curve are determined, using Incremental Dynamic 
Analysis (IDA), as functions of parameters, which contains epistemic uncertainty; then parameters of the model are 
determined. The mean and standard deviation values of the fragility curve are predicted by Group Method of Data 
Handling (GMDH) approach for certain combinations of model parameter values. The Monte Carlo based on GMDH 
method instead of Monte Carlo response surface is used to predict these values. Monte Carlo based on the GMDH is 
considered both epistemic and aleatory uncertainties in deriving the fragility curves in the same way. This capability has 
not yet been employed to incorporate uncertainties in performance-based seismic risk analysis. 

 
Figure 4: The frame model of the example structure and M2-WO panel zone 
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Three-story moment-resisting steel frame is considered as the case study to introduce the proposed method. It was 
designed according to UBC design provisions (UBC, 1997). The design acceleration response spectra of Iranian seismic 
code No-2800 (Code No. 2800, 2007) for seismic hazard zonation of Tehran, the capital city of Iran was used. The 
structural frame model is shown in Figure 4. 

Example steel building is symmetric in plane and height; therefore 2D model is used in this study. Table 1 shows the 
cross sections of beams and columns in the example structure. The first mode period of the structure is 0.98 sec. The 
OpenSees program (OpenSEES, 2006) is used for modeling the case study structure. To represent the epistemic 
uncertainties in the proposed approach, Ibarra–Medina–Krawinkler (IMK) model has been applied based on rotational 
springs in the connections of the structure [Foutch and Yun, 2002]. Aleatory uncertainties are considered by applying a 
set of records in IDA analysis. IM-Based approach is used to compute the fragility curves based on the IDA approach 
[Zareian et al., 2010]. The strength and deformation limitation is determined by using the hysteresis backbone curve of 
IMK model that is shown in figure 5. The main parameters of backbone curve in IMK model include the initial stiffness 
(Ke), yield strength (My), stiffness of hardening branch (Ks = αsKe), maximum strength (Mc) and its corresponding 
displacement (θc), post-capping stiffness point (Kc = αcKe), and residual strength (Mr) and its corresponding displacement 
(θr). The backbone curve and hysteresis model of IMK of above parameters have been illustrated in Figure 5 [Ibarra and 
Krawinkler, 2005]. The cyclic deterioration ratio obeys the rule provided by [Rahnama and Krawinkler, 1993] which is 
formulated based on dissipated energy in each cycle of reciprocal loading. 

 
Figure 5: The backbone curve of IMK in Zolfaghari (2014) 

Table 2 Mean and standard deviation and correlation calibration of modelling parameters. 

Median θp σθp (rad) Median θpc σθpc Median Λ σΛ ρθp,θpc ρθp,Λ ρθpc,Λ 

0.025 0.43 0.16 0.41 1.00 0.43 0.69 0.44 0.67 

 

 

Figure 6: 125 scenarios for modelling parameters 
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The capacity of base energy is determined by (Equetion 10): 

𝑬𝑬𝒕𝒕 = 𝜸𝜸𝑰𝑰𝒀𝒀𝜽𝜽𝒀𝒀 = 𝜦𝜦𝜽𝜽𝒀𝒀   (10) 

According to Equation 10, the capacity of hysteresis energy is defined as multiplying a coefficient to yield rotation. 
The capacity coefficient of dissipated hysteresis energy is determined by laboratory data and considered as an 
uncertainty modeling parameter. Considering the epistemic uncertain parameters as the moment-rotation curves of 
target springs in Ibarra-Krawinkler model, ( 𝜃𝜃𝑝𝑝), ( 𝜃𝜃𝑝𝑝𝑝𝑝) and (𝜆𝜆) have been found to be the most important parameters 
related to ductility capacity and stiffness and strength deterioration in former studies (Ibarra et al., 2005). Probability 
distribution of Log-normal function is used to apply uncertainties due to ( 𝜃𝜃𝑝𝑝), ( 𝜃𝜃𝑝𝑝𝑝𝑝) and (𝜆𝜆). Means, standard deviations, 
and correlation coefficients of these probability distributions, based on laboratory tests, are presented in Table 2(Lignos, 
2008). 

In this paper, a set of 40 records used by Medina have been applied for IDA analysis to simulate GMDH approach. 
To achieve input data for evaluated Monte Carlo based GMDH method, five scenario of each modeling variable are shown 
which are based on [𝜇𝜇 − 2𝛽𝛽, 𝜇𝜇 − β, 𝜇𝜇, 𝜇𝜇 + 𝛽𝛽, 𝜇𝜇 + 2𝛽𝛽](125 scenarios shown in Figure 6). For each scenario of input 
variable, the IDA is performed for each record and Sacollapse for each scenario is achieved and finally mean and standard 
deviation of collapse fragility curve is derived, considering spectral acceleration for first mode as IM and maximum drift 
as EDP. The sample of IDA and related collapse fragility curves are represented in figure 7. 

Response Surface Method (RSM) used for simulating the mean and standard deviation of fragility curves at sidesway 
collapse limit state defined in equations is based on following logarithmic (equations 11 and 12). 

 
Figure 7: The sample IDA for mean value of variables [μ-2β, μ, μ+2β] 
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𝒄𝒄𝒊𝒊(𝝁𝝁) = 𝒄𝒄𝟎𝟎 + 𝒄𝒄𝟏𝟏 𝒄𝒄𝒊𝒊(𝒙𝒙𝟏𝟏) + 𝒄𝒄𝟐𝟐 𝒄𝒄𝒊𝒊 �
𝒙𝒙𝟐𝟐
𝒙𝒙𝟏𝟏
� + 𝒄𝒄𝟑𝟑𝒄𝒄𝒊𝒊 (𝒙𝒙𝟑𝟑)  (11) 

𝒄𝒄𝒊𝒊(𝜷𝜷) = 𝒃𝒃𝟎𝟎 + 𝒃𝒃𝟏𝟏 𝒄𝒄𝒊𝒊(𝒙𝒙𝟏𝟏) + 𝒃𝒃𝟐𝟐 𝒄𝒄𝒊𝒊 �
𝒙𝒙𝟐𝟐
𝒙𝒙𝟏𝟏
� + 𝒃𝒃𝟑𝟑𝒄𝒄𝒊𝒊 (𝒙𝒙𝟑𝟑)  (12) 

In RSM, 125 inputs are considered, corresponding to 125 scenarios for epistemic parameters. Computed coefficients 
in logarithmic function are represented in Table 3. In these inputs, 65% are chosen to simulate related functions, and 
applied for training the GMDH, while the GMDH model simulates mean and standard deviation of fragility curves. The 
outcome of this method has been compared against Monte Carlo-based logarithm function and FOSM and ASOSM 
approaches based on capability of fragility curve. Figure 8 shows the statistical results for predicting mean of fragility 
curve. In these figures, horizontal axis shows values that are evaluated by direct IDA, and vertical axis estimates regressed 
analytical functions. The solid green and red line shows the positions where approximate values are equal to IDA-based 
values. 

 
Figure 8: The statistical values obtained for mean of fragility curve by GMDH network-type method 

Table 3 Constant coefficients of Monte Carlo based logarithm 
 

 𝒄𝒄𝟎𝟎  𝒄𝒄𝟏𝟏  𝒄𝒄𝟐𝟐 𝒄𝒄𝟑𝟑 MSE 

Mean 0.395 0.456 0.334 0.719 0.0104 
 

𝑏𝑏0  𝑏𝑏1 𝑏𝑏2  𝑏𝑏3 MSE 

SD -1.612 -0.063 0.143 0.083 0.0035 

In order to evaluate the accuracy of mean and standard deviation predicted by GMDH, the Mean Square Error (MSE), 
the Root Mean Square Error (RMSE) and R-square (R2) statistic measurements are determined as the accuracy criterion 
against the test data. The MSE, RMSE and R2 between the exact and predicted responses are as (equations 13 and 14): 

𝑹𝑹𝑰𝑰𝑳𝑳𝑬𝑬 = 𝒊𝒊𝒊𝒊 ∑ (𝒚𝒚𝒊𝒊−𝒚𝒚�𝒊𝒊)𝟐𝟐
𝒊𝒊𝒊𝒊
𝒊𝒊=𝟏𝟏

(𝒊𝒊𝒊𝒊−𝟏𝟏)∑ (𝒚𝒚𝒊𝒊)𝟐𝟐
𝒊𝒊𝒊𝒊
𝒊𝒊=𝟏𝟏

  (13) 

𝑹𝑹𝟐𝟐 = 𝟏𝟏 − [
∑ (𝒚𝒚𝒊𝒊−𝒚𝒚�𝒊𝒊)𝟐𝟐
𝒊𝒊𝒊𝒊
𝒊𝒊=𝟏𝟏
∑ (𝒚𝒚�𝒊𝒊)𝟐𝟐
𝒊𝒊𝒊𝒊
𝒊𝒊=𝟏𝟏

]   (14) 
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Figure 9: Compression of various methods in developing fragility curve with neglecting epistemic uncertainty 

Table 4 Results of various methods on collapse fragility curves 

Method Logarithm GMDH ANN FOSM ASOSM Neglecting 

Mean value 0.4821 0.5097 0.56 0.7297 0.6417 0.7297 

Standard deviation value 0.4436 0.4374 0.47 0.5398 0.4588 0.3 

Error based GMDH -5.41% - 9.86% 43.16% 25.89% 43.16% 

Table 5 Probability of collapse and mean annual frequency with considering various method 

Method Logarithm GMDH ANN FOSM ASOSM 

P(Collapse|MCE) 0.1335 0.1372 0.1391 0.148 0.142 
MAF ×(10-5) 5.59 6.24 6.29 6.33 6.39 

Error based GMDH -2.69% - 1.38% 7.8% 3.4% 

 
Figure 10: The result of λC deaggregation with considering the proposed method 
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In order to gain the best results, various GMDH network-type with the different number of neurons are used. Each 
of the GMDH network-type was trained and the accuracy of mean and SD was assessed by Equations 13 and 14. The best 
GMDH model corresponding to the LSE is recognized. The parameters of the GMDH model used to obtain these results 
are: Maximum Number of Neurons in a Layer= 5, Maximum Number of Layers= 7, Selection Pressure= 0.9 and Train 
Ratio= 0.9.In order to gain the best results, various GMDH network-type with different number of neurons are used. Each 
of the GMDH network-type was trained, and the accuracy of mean and SD was assessed by Equations 16 and 17. The 
best GMDH model corresponding to the LSE is recognized. The parameters of the GMDH model used to obtain these 
results are: Maximum Number of Neurons in a Layer= 5, Maximum Number of Layers= 7, Selection Pressure= 0.9 and 
Train Ratio= 0.9. The mean square error, applying trained GMDH network-type in prediction of mean and standard 
deviation values, are 0.124% and 0.0137%, respectively, which are compared with the other methods. Comparison of 
proposed fragility curves of structure, applying FOSM and ASOSM approaches is shown in Figure 9. 

Using FOSM and ASOSM outcomes resulted in change of standard deviation of collapse fragility curves are compared 
without epistemic uncertainties. The mean of fragility curve value doesn’t change using FOSM and ASOSM results. As it 
is shown in Figure 9, mean and standard deviation of example building are 0.5097 and 0.4374 in the GMDH network-
type Monte Carlo, respectively. Also in this figure, it is observed that FOSM and ASOSM methods cannot predict more 
accurate results than GMDH network-type Monte Carlo and ANN methods. In order to compare these methods, different 
ANN (Multi-Layer perceptron) configuration with variable number of neurons in each layer is used. Each of the ANN 
configurations was trained, and the performance error was evaluated. Using such a trial-and-error approach, the best 
ANN model corresponding to the least error measure is determined. As a result, a 5-35-35-1 neural network containing 
two hidden layers with 35 neurons for each is finally selected. Besides, more care was taken to assess the effect of 
different training algorithms (such as Levenberg–Marquardt, Broyden– Fletcher–Goldfarb– Shanno (BFGS), Quasi-
Newton and Scaled Conjugate Gradient). Again, by a trial-and error approach, Levenberg–Marquardt training algorithm 
is chosen. 

The collapse fragility curve and mean annual frequencies of collapse (λc) are determined here to show the effect of 
the epistemic and aleatory uncertainties with the proposed method in comparison with other available methods. 
Computing (λC) comprises integrating the collapse fragility curve of the case study structure over the hazard curve at the 
site applying the following integration: 

𝝀𝝀𝒄𝒄 = ∫ 𝑬𝑬(𝑪𝑪|𝒊𝒊𝒊𝒊). | 𝒅𝒅𝝀𝝀𝑰𝑰𝑰𝑰(𝒊𝒊𝒊𝒊)
𝒅𝒅(𝒊𝒊𝒊𝒊)

|𝒅𝒅(𝒊𝒊𝒊𝒊)∞
𝟎𝟎   (15) 

 
Figure 11: Hazard curve for sample structure in Tehran 

Where the first and the second part are the collapse fragility function and the slop of the hazard curve, respectively. 
If the product of two mentioned functions is drawn versus intensity measure (here acceleration response spectra), the 
collapse risk deaggregation curve is achieved. This curve illustrates the contribution of various ground motion intensities 
in the collapse risk at the specified site. As shown in the deaggregation curve, spectral acceleration between 0.5 to 2 g 
shows the frame collapse risk. Figure 10 represents the deaggregation curves when applying the the slope of Tehran 



Epistemic Uncertainty Treatment Using Group Method of Data Handling Algorithm in Seismic Collapse 
Fragility 

Fooad Karimi Ghaleh jough et al. 

Latin American Journal of Solids and Structures, 2021, 18(3), e355 13/15 

seismic hazard curves with the collapse fragility curves achieved by the proposed method against other uncertainty 
propagation methods for the case study structure. As represented in this figure, the reasonable match occurs among 
GMDH Monte Carlo method, Logarithm Monte Carlo approaches and others. The best match in estimation of values at 
the mode of the deaggregation curve can be observed between GMDH Monte Carlo method and accurate Logarithm 
Monte Carlo method. 

While this difference reaches approximately 15% in the first mode spectral acceleration, when epistemic 
uncertainties are not considered, it results in conservative response that reaches approximately 60% in the first mode 
spectral acceleration. 

The mean and standard deviation of the collapse fragility curve are depicted in Table 4. The results of proposed 
approach represent good correlation with respect to those of Monte Carlo based logarithm simulation approach as well 
as in comparison with other methods. Table 5 illustrates probability of collapse in discreet hazard levels MCE (Maximum 
Considered Earthquake acceleration) Figure 11 and Mean Annual Frequency of exceedance (MAF) in a sample structure. 
The Probabilistic hazard analysis have been done for Tehran region (Zolfaghari, 2014). It can be observed that including 
modelling uncertainties increases about 8% at MCE hazard level. 

4 CONCLUSION 

In this study, Monte Carlo based GMDH is used to derive the sidesway collapse fragility curve considering modeling 
and aleatory uncertainties effects. The accuracy of the proposed approach was compared with other existing methods 
in respect of probabilistic outcomes. The effects of aleatory and modelling uncertainties are compared by 
aforementioned approaches on deriving the fragility curves. This paper represents the efficiency of the GMDH Monte 
Carlo method against the probabilistic approach through applying methods to a case study Steel Moment Resisting Frame 
(SMRF) structure. 

It can be seen that while the results perfectly conform to those obtained using the Monte Carlo based logarithm 
method (which is used as the basis for comparison and validation of the proposed method), consideredepistemic 
uncertainties made changes in mean and standard deviation value (especially decrease of mean value of the fragility 
curve). 

Finally, sidesway collapse fragility curves of the case study SMRF were computed through ASOSM, FOSM, ANN and 
Monte Carlo based-logarithm function and GMDH. Modelling parameter has been considered as ( 𝜃𝜃𝑝𝑝), ( 𝜃𝜃𝑝𝑝𝑝𝑝) and (𝜆𝜆) 
which was abbreviated as IMK model. As shown in Figure 10, neglecting epistemic uncertainty causes underestimation 
of collapse fragility curves. Since the prediction error by GMDH approach is less than Monte Carlo based-logarithm 
function, it can be resulted that prediction of mean and SD of fragility curve by Monte Carlo method based on GMDH 
approach would obtain more accurate results. Achieved outcomes represent that GMDH -based approach shows less 
reduction of mean values compared with logarithmic response surface ASOSM and FOSM methods, while more 
increments of standard deviation are obtained. 

In comparison the proposed method with counterpart method, i.e. ANN, although dispersions in mean and standard 
deviation are large, finding the proper layer in ANN to predict accurate values is more cumbersome. Advantage of this 
method is to overcome the problem of choosing proper network size in applying multi-layer perception ANN. Such system 
of network’s topology prepares the best networks in hidden layers and their connectivity so that there is a perfect match 
between this network and logarithm function, which is represented in Figure 10. It should be noted that GMDH approach 
is a universal simulator that is able to accurately predict the target output and is not limited to this example. 
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