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Abstract 
The influence of single and multiple imperfection cases on the load carrying capacity of mild steel cone 
subjected to axial compression was considered through numerical simulation in the current paper. Three 
different imperfection techniques were considered, which are: i) uneven axial length (sinusoidal/square 
waves), ii) crack, and iii) single load indentation (SLI) imperfection. Abaqus 6.19 FE was used to carry out the 
numerical simulation. The axial compressive load was applied at the small radius of the cone. Results showed 
that the buckling load of axially compressed mild steel cone depends on the imperfection approach 
implemented. The buckling load of cones were seen to be heavily affected by uneven axial length imperfection 
for both single and multiple imperfection. Also, the effect of multiple imperfection is more noticeable at 
higher r1/t. 
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1 INTRODUCTION 

The presence of imperfection has long been acknowledged to have a significant influence on the reduction of the 
buckling load of thin-walled conical shell structures. It is usually inevitable owing to the manufacturing process or 
unforeseeable damage (Dinkler and Knoke 2003). Several types of well-known imperfection includes the non-
uniformity in the material’s physical properties, geometric imperfections (Mahidan and Ifayefunmi 2020a; Ifayefunmi 
and Mahidan 2021; Khakimova et al. 2014; Özyurt et al. 2017), load eccentricities (Castro et al. 2014), boundary 
conditions irregularities (Ifayefunmi et al. 2018), crack imperfection (Ifayefunmi 2020; Ifayefunmi and Mahidan 2020; 
Cui and Shao 2015; Ali 2013), material discontinuity (Ifayefunmi and Ibrahim 2018; Ifayefunmi 2017), etc. To date, 
there is a vast amount of literatures that can be found concentrating on the effect of geometric imperfection on the 
buckling behaviour of certain structures such as conical and cylindrical shells. Ifayefunmi (2014) and Ifayefunmi and 
Błachut (2018) reviewed the conical shells’ sensitivity towards imperfection. While the influence of imperfections in 
shell finite element collapse simulations has long been the subject of research, only a few literatures exist on modelling 
their combined effect. 

Buckling behaviour of composite conical shells subjected to axial compression was studied through the combination 
of dent and initial non-uniformity (i.e., mid-surface imperfection, MSI and thickness imperfection, TI) by Khakimova et al. 
(2014). The dent was simulated through Single Perturbation Load Approach (SPLA), whereas the measured thickness 
imperfection was mapped to the 45° conical model. The lowest load carrying capacity was recorded by conical shells with 
SPLA and TI. This was followed by the combination of SPLA + MSI + TI, SPLA only, and lastly, SPLA + MSI. However, the 
results lead to the conclusion that the effect of MSI and TI is marginal because the percentage difference between the 
SPLA only and the combined imperfection is only -2% to 1%. 

Hafeez et al. (2010) studied the stability of combined imperfections on combined conical shells, with an upper 
cylindrical cap under hydrostatic loading. The study addressed the impact of residual stresses as the result of the 
welding process and/or geometric imperfection on the combined conical tanks’ buckling performance through 
numerical simulations. The load carrying capacity of the perfect combined conical tanks was reduced by about 8.6% 
to 29.5% due to the influence of residual stress. In contrast, geometric imperfection plays a more prominent role 
in the reduction of the conical tank’s loading capacity where 32.4% to 45.2% reduction were recorded. Ultimately, 
the combination of residual stresses and geometric imperfection causes the maximum buckling load reduction for 
this type of structure ranging from 40.3% to 48.6%. Some of the earliest literatures on the influence of residual 
stresses due to circumferential welding on cylindrical shells can be found in Bornscheuer and Hafner (1983) and 
Rotter (1996). Alvarenga and Silveira (2009) covers the effect of the combination of residual stress and geometric 
imperfection in terms of structure’s out-of plumbness and members’ out-of-straightness imperfections on steel 
columns. 

From the literature survey, there is a significant gap to be filled in on the subject of the influence of multiple 
imperfections on the buckling behaviour of conical shells. This paper addressed the problem through the 
combination of i) single load indentation (SLI) + crack, ii) SLI + uneven axial length, and iii) crack + uneven axial 
length on mild steel conical shells when subjected to axial compression. This research is entirely based on numerical 
computation. 

2 BUCKLING OF PERFECT CONICAL SHELL SUBJECTED TO AXIAL COMPRESSION 

2.1 Modelling of the perfect conical shell 

Assume a conical shell with the following geometry: r2/r1 = 2.0; r1/t = 25; L/r2 = 2.24; β = 12.6°; wall thickness = 1 mm, 
as sketched in Figure 1. Cone was characterized as a deformable part with four-node shell elements and six-degree of 
freedom (S4R) and has had the boundary condition set up as detailed in Table 1. These physical properties of the cone 
will be implemented throughout this paper. In addition to that, a rigid plate was created at the top of the cone. The 
modelled mild steel cones have the material properties as stated in Table 2. Contact interaction for the cone was 
modelled as surface-to-surface interaction between the internal surface of the rigid plate and the top nodes of the cone 
through the master-slave algorithm and is assumed to have a frictionless tangential behavior. The rigid plate was assigned 
as the master while the node located at the cone’s top was assigned as the slave. Then, the conical model was axially 
compressed through non-linear static Riks load step. 
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Figure 1. Geometry of the cone. 

Table 1. The boundary condition of the numerical model (Note: 0 ≡ fixed; 1 ≡ free). 

Position 
Displacements Rotations 

ux uy uz ϕx ϕy ϕz 

Top edge of cone 0 1 0 0 0 0 
Bottom edge of cone 0 0 0 0 0 0 

Compression plate 0 1 0 0 0 0 

Table 2. Mechanical properties of mild steel as referred to Mahidan and Ifayefunmi (2020a). 

Young’s modulus, E (GPa) Yield stress, σyp (MPa) Poisson’s ratio, υ Wall thickness, t (mm) 

168.791 229.774 0.3 1 

2.2 Mesh convergence study 

Figure 2 illustrates the result of different mesh element size on the buckling load of a perfect conical shell subjected 
to axial compression. It can be seen that at 1872 element size, the perfect cone’s buckling load started to converge. 
Hence, the numerical modelling in this study was conducted using this element size. The finite element analysis for the 
problem as mentioned above was executed using the Abaqus finite element (FE) code (Smith 2009). 

 
Figure 2. Plot of the buckling load of a perfect cone with r1/t = 25 against different size of element in the Abaqus. 
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2.2 Modelling of imperfect conical shells 

2.3.1 Single load indentation (SLI) imperfection 

Load indentation (PL) was created at the mid-axial length of the cone through the static general load algorithm as 
shown in Figure 3(a). This loading step will initiate a dent having a certain imperfection amplitude, A, (ranging from 
0.28 mm to 2.8 mm). Two distinct steps were involved in running the analysis, they are: i) static general procedure in 
which the dent was simulated, and ii) non-linear static Riks in which the axial loading was applied on a reference point 
located at the center of the top plate (Figure 3). 

2.3.2 Crack imperfection 

Circumferential crack (θ = 0° corresponds to circumferential direction as measured from the cone circumferential 
line) was simulated on the conical model having various imperfection amplitude (i.e., crack length), A, ranging from 0.28 
to 2.80. The crack was located at the mid-section of the cone as depicted in Figure 3(b). During the cone modelling in 
Abaqus, the mesh-zooming scheme proposed in Estekanchi and Vafai (1999) was implemented – mesh size is finer at the 
crack region in comparison to the uncracked region of the cone. The numerical FEA has been benchmarked against the 
numerical data presented in Jahromi and Vaziri (2012) and the result can be found in Ifayefunmi and Mahidan (2020). 
The percentage difference between Jahromi and Vaziri (2012) and Ifayefunmi and Mahidan (2020) is from 0.99 to 1.01. 
Thus, the appropriateness of the above numerical scheme is proven. Then, the cone is subjected to axial compression 
through non-linear static Riks analysis. 

2.3.3 Uneven axial length imperfection 

Deformable conical shell with axial length imperfection in the form of sinusoidal or square waves were modelled in 
Abaqus. The number of waves, N is equal to 2. The waves were introduced at the top edge of the cone (see Figure 3(c)) 
where the axial compression will occur owing to the fact that the plastic strain was claimed to be concentrated within 
the chosen area (Błachut 2010; Błachut and Ifayefunmi 2010; Błachut et al. 2011; Mahidan and Ifayefunmi 2021). Again, 
the compression load was applied on the top of the cone through a non-linear static Riks load step. 

2.3.4 Multiple imperfections 

In this paper, the results of multiple imperfection were achieved by combining two different types of imperfection 
on a cone. The multiple imperfection cases comprise of the following combinations: i) SLI + crack, ii) SLI + uneven axial 
length and, iii) uneven axial length + crack. The imperfections were located opposite to each other at the mid-length of 
the deformable cone (for the case of crack + SLI imperfection) before the model was axially compressed through the non-
linear static Riks analysis. 

 
Figure 3. Geometry of imperfect cones with the presence of (a) SLI, (b) crack, and (c) uneven axial length imperfections – sinusoidal 

waves. 

3 RESULTS AND DISCUSSION 

3.1 Imperfection sensitivity of axially compressed conical shell having single or multiple imperfections 

The study addressed the effect of single (SLI, crack, and uneven axial length) and combined imperfection (SLI + crack, 
SLI + uneven axial length, and uneven axial length + crack) on the load bearing capacity of the cones. The buckling load 
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of each single and/or combined imperfection can be found in Table 3, for conical shells with top radius-to-thickness ratio, 
r1/t = 25. It can be seen that the cone with uneven axial length imperfection generally have has the worst buckling load 
in comparison to other single imperfection cases. For instance, at A = 0.28, the buckling load of the imperfect cone drop 
to about 91.8% from the perfect one (refer column 3 of Table 3). When imperfection amplitude was further increased to 
2.80, the cone reduces to 56.1% from its perfect counterpart. This was then followed by crack, and SLI imperfection being 
the least imperfection sensitive. Whereas, for the case of combined imperfection, it was observed that when 
imperfection amplitude, A ≤ 1.12, the combination of sinusoidal wave + SLI imperfection produced the lowest load 
carrying capacity compared to other combined imperfection. While, the combination of crack + SLI imperfection seems 
to have the least effect on the collapse force of cones under axial compression for the range of imperfection amplitude 
considered in this study (i.e., 0 – 2.80) – as summarized in column 10 of Table 3. However, as the imperfection amplitude 
continuously raised to 2.80, cones with sinusoidal wave + crack imperfection recorded the worst buckling load (column 
7, row 8 of Table 3). 

Again, from Table 3, it is obvious that the uneven axial length imperfection possesses a significant impact in 
determining the collapse force of conical structures subjected to axial compression. This particular imperfection type 
predicted the highest reduction of buckling load on its own, and when in combination with other types of imperfection, 
it resulted in a notable decrease in the conical shells’ collapse load. Figures 4, 5 and 6 show the comparison in terms of 
buckling load for single and combined imperfections. The buckling load is normalized by the perfect cone’s buckling load, 
F/Fperfect. 

Table 3. Collapse load (kN) of conical shells having single/combined imperfection with r1/t = 25. 

A 
Single Imperfection Multiple Imperfection 

Uneven length 
Crack SLI 

Uneven length 
Crack + SLI 

Square wave Sine wave Square + Crack Sine + Crack Square + SLI Sine + SLI 

0 37.85 37.85 37.85 37.85 37.85 37.85 37.85 37.85 37.85 
0.28 35.62 34.73 37.60 37.94 36.76 36.92 36.86 36.57 37.94 
0.56 31.02 33.44 37.59 37.93 35.89 36.15 35.56 35.57 37.88 
1.12 26.49 29.14 36.73 37.73 33.72 33.10 33.06 32.85 37.76 
1.68 26.02 25.22 35.13 37.55 31.96 30.95 31.16 31.16 37.64 
2.24 25.81 23.29 32.20 37.40 29.48 27.83 29.94 28.32 37.45 
2.80 25.51 21.25 27.84 37.24 28.27 26.15 29.48 26.79 37.01 

 
Figure 4. The normalized buckling load of perfect and imperfect cones with crack, SLI and crack + SLI imperfection at different 

imperfection amplitude, A (r1/t = 25). 
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Figure 5. The normalized buckling load of perfect and imperfect cones with uneven axial length, SLI and uneven axial length + SLI 

imperfection at different imperfection amplitude, A (r1/t = 25). 

 
Figure 6. The normalized buckling load of perfect and imperfect cones with uneven axial length, crack and uneven axial length + 

crack imperfection at different imperfection amplitude, A (r1/t = 25). 

3.2 Influence of different top radius-to-thickness ratio, r1/t 

Next, the study explores the effect of different r1/t in the range of 25 – 2000 to the axial collapse force of the conical 
shells. It must be noted that the top radius of the cone remains constant for all range of r1/t tested in this paper. 
Furthermore, because of different r1/t, the imperfection amplitude, A, considered in this section is 0 < A ≤ 0.56. For 
smaller radius-to-thickness ratio (r1/t ≤ 250) – typically found in offshore structures, the buckling was seen to be governed 
by elastic-plastic buckling. In contrast, for relatively thin wall thickness represented by r1/t = 2000 has its buckling 
governed by elastic buckling. Non-linear static Riks step was used in the Abaqus for plastic analysis, while buckle step 
was implemented for elastic analysis. 

The buckling load of the axially compressed conical shells having different r1/t was summarized in Table 4. From 
Table 4, it can be seen that the buckling load of perfect and imperfect conical shell reduces as the r1/t increases. As an 
example, imperfect cone with uneven axial length in the form of sinusoidal wave with an imperfection amplitude, 
A = 0.28 experienced the reduction in the ratio of imperfect-to-perfect buckling load from 92% to 42% when the r1/t was 
increased from 25 to 250. The same can be said for the case of the combined imperfection of sinusoidal waves + SLI with 
A = 0.56, where the cone experienced the reduction in the ratio of imperfect-to-perfect buckling load from 94% to 34% 
when the r1/t was increased from 25 to 250. 
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Again, conical shell with uneven axial length (sinusoidal waves) shows the highest reduction of load carrying capacity 
for the case of single imperfection at r1/t ≤ 250 (column 4 of Table 4) for both imperfection amplitudes considered in 
Table 4. However, at r1/t = 2000, conical shell with crack imperfection records the lowest buckling load, where 25% and 
17% reduction of buckling load from the perfect one was noticed for A = 0.28 and 0.56, respectively. Further, for the case 
of multiple imperfections, the combination of uneven axial length (sinusoidal waves) & crack imperfection showed the 
highest sensitivity to imperfection for r1/t =250, as seen in column 8 of Table 4. This could be the result of the worst 
buckling load produced by the sinusoidal wave in the single imperfection earlier. At r1/t = 2000 and A = 0.56, as expected, 
the combination of crack & SLI imperfection yielded the worst buckling load, similar to their equivalent in the single 
imperfection columns. Although, the same cannot be said for A = 0.28. Figures 7, 8 and 9 illustrate the buckling load of 
conical shells for different r1/t with single and combined imperfection cases having imperfection amplitude, A = 0.28. 
Whilst, the load carrying capacity of conical shells for different r1/t with single and combined imperfection cases having 
imperfection amplitude, A = 0.56 can be seen in Figures 10, 11 and 12. 

In general, it can be seen that the SLI imperfection has little influence on the buckling load of both single and 
combined imperfection cases. This observation is somewhat similar to the one presented in Khakimova et al., (2014). 
Then, the effect of combined imperfection cases was more noticeable as the r1/t of the cone was increased. For example, 
at r1/t = 25, the single imperfection of uneven axial length in the form of sinusoidal wave yielded the worst collapse force. 
However, it can be seen from Table 4 that the combination of sinusoidal wave and crack imperfections was the worst for 
r1/t = 250, while the combination of square wave and SLI imperfections was the worst for r1/t = 2000. Ultimately, it can 
be concluded that the uneven axial length imperfection has a substantial impact on the reduction of buckling load of 
axially compressed conical shells. 

Table 4. Collapse load (kN) of conical shells having single/combined imperfection with different r1/t. 

r1/t A 
Single imperfection Multiple imperfection 

Uneven length 
Crack SLI 

Uneven length 
Crack + SLI 

Square wave Sine wave Square + Crack Sine + Crack Square + SLI Sine + SLI 

25 0 37.85 37.85 37.85 37.85 37.85 37.85 37.85 37.85 37.85 
0.28 35.62 34.73 37.60 37.94 36.76 36.92 36.86 36.57 37.94 
0.56 31.02 33.44 37.59 37.93 35.89 36.15 35.56 35.57 37.88 

250 0 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 
0.28 2.01 1.47 3.59 3.41 1.57 1.42 1.77 1.48 3.43 
0.56 1.57 1.24 3.59 3.22 1.55 1.13 1.55 1.20 2.83 

2000 0 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 
0.28 0.05 0.06 0.03 0.05 0.06 0.06 0.02 0.03 0.03 
0.56 0.05 0.05 0.02 0.04 0.06 0.06 0.01 0.02 0.01 

 
Figure 7. Influence of different r1/t to the buckling load of axially compressed cones with crack, SLI, and crack + SLI imperfection for 

A = 0.28. 
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Figure 8. Influence of different r1/t to the buckling load of axially compressed cones with uneven axial length, SLI and uneven axial 

length + SLI imperfection for A = 0.28. 

 
Figure 9. Influence of different r1/t to the buckling load of axially compressed cones with uneven axial length, crack and uneven 

axial length + crack imperfection for A = 0.28. 

 
Figure 10. Influence of different r1/t to the buckling load of axially compressed cones with crack, SLI, and crack + SLI imperfection for 

A = 0.56. 



Buckling of Axially Compressed Conical Shells with Multiple Imperfections F.M. Mahidan et al. 

Latin American Journal of Solids and Structures, 2021, 18(4), e370 9/11 

 
Figure 11. Influence of different r1/t to the buckling load of axially compressed cones with crack, SLI, and crack + SLI imperfection for 

A = 0.56. 

 
Figure 12. Influence of different r1/t to the buckling load of axially compressed cones with uneven axial length, crack and uneven 

axial length + crack imperfection for A = 0.56. 

4 CONCLUSION 

Finite element predictions on the buckling behaviour of axially compressed conical shells with single and multiple 
imperfection were presented in this paper. First, the paper compares the effect of single and multiple imperfection on 
the conical shells having top radius-to-thickness ratio, r1/t of 25. Whilst, the influence of different r1/t was addressed in 
the subsequent section where the r1/t was increased up to 2000. Several conclusions can be produced from the preceding 
results: i) the uneven axial length imperfection can cause more damage to the structure’s load carrying capacity than the 
combined imperfection cases when the r1/t = 25, ii) SLI imperfection has a minimal impact on the buckling behaviour of 
axially compressed cones, iii) the presence of uneven axial length imperfection in the combined imperfection cases 
caused a substantial decrease in the conical shells’ load bearing capacity, iv) the conical shells’ sensitivity to imperfection 
depends on the imperfection approach implemented during study, and lastly, v) cones with multiple imperfection starts 
to produce lower buckling load than cones with single imperfection as the r1/t was increased. 
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