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Abstract 
This paper attempts to present a new analysis for dynamical be-
havior of two-layer beams with frictional interface which held 
together in a pressurized environment, including stick-slip nonlin-
ear phenomenon. To achieve a proper outlook of two-layer beam 
structures behavior, it is essential to realize the mechanisms of 
motion precisely. Coupled equation of transversal and longitudinal 
vibration of two-layers in the presence of dry friction is derived 
and nondimensionalized. Furthermore, free and forced vibration of 
the mentioned system is investigated and the system dynamics is 
monitored via Poincare maps and Lyapunov exponent analysis. A 
comparative study with ANSYS is developed to show the accuracy 
of the proposed approach. 
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1 INTRODUCTION 

Mechanical systems in which components are constrained through friction contact surfaces often 
lead to complex contact kinematics involving stick-slip nonlinear motions. The explanation of stick-
slip intermittent motion is based on the instantaneous drop from a static friction force to a constant 
kinetic friction force. Accurate analysis of layered structure dynamical behavior with frictional in-
terface in a pressurized environment requires accurate modeling of dry friction to realize exactly the 
stick-slip regimes. In the case of layered beams, one of the earliest works was developed by Good-
man and Klumpp [1], where the emphasis has revolved around the maximum amount of energy 
dissipation for two-layered beam in the case of dynamic loading. Badrakhan [2] derived the energy 
dissipated by Coulomb friction and optimum pressure for maximum energy for any number of lay-
ers.   

Damisa et al. [3] investigated the effect of the non-uniformity in interfacial pressure as well as 
the frequency of the driving load, in the context of energy dissipation and logarithmic damping 
decrement. In the mentioned study, they consider the simple governing equation of motion with 
pure slip assumption. They extended their analysis to incorporate the effect of relative sizes or the 
material properties of layered beams of two dissimilar materials and laminate thicknesses [4]. 
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Li et al. [5] presented an algorithm for solving the static contact problem in a multi leaf spring, 
whereas the frictional effect has not been taken into account in their research. Awrejcewicz et al. [6] 
investigated the chaotic vibrations of multi-layered Euler- Bernoulli and Timoshenko type beams 
for a series of boundary conditions. They verified the reliability of the obtained results via Finite 
Element and Finite Difference Method. In the work by Awrejcewicz and Krysko [7] an iterative 
algorithm was proposed to solve efficiently one-sided interaction between two rectangular plates 
within the Kirchhoff hypothesis supplemented by physical nonlinearities. Furthermore, a novel iter-
ation procedure for dynamical problems was introduced by Awrejcewicz et al. [8], where in each 
time step a contacting plate zone are improved. The chaotic dynamics of multilayer mechanical 
beam structures was studied by Krys’ko et al. [9]. They took into account physical, geometrical, 
and contact nonlinearities and developed a method for studying phase synchronization using wave-
let analysis and the Morlet wavelet method. 

There are many mechanical systems with friction-engaged subsystems such as brakes, clutches, 
gas turbine blade roots and machine tools. Such self-excited oscillations have been extensively stud-
ied as reviewed in [10]. A spring-block model with a single degree-of-freedom has explained the be-
havior of stick-slip oscillations [11]. Kang et al. [12] focused on the dynamic pattern during the 
steady-state oscillation of spring-block models, with definition of continuous friction curve for dry 
friction. Awrejcewicz et al. [13] considered two coupled oscillators with negative Duffing type stiff-
ness which was friction-induced and externally excited and investigated stick-slip chaotic behavior 
of the system. 

Lyapunov exponents measure the exponential rates of divergence or convergence of nearby tra-
jectories in state space. If such equations for the system are non-smooth, the estimation of Lyapun-
ov exponents is not straightforward [14]. A novel dry friction modeling and its impact on Lyapunov 
exponent estimation was proposed by Awrejcewicz et al. [15]. A simple friction law was implement-
ed by Licsko and Csernak [16] to predict the chaotic regimes of well-known spring-block model. The 
most efficient methods for estimation the largest lyapunov exponent (LLE) using chaos synchroni-
zation have been introduced by Stefanski et al. [14, 17].   

The main objective of the present study is to identify the stick-slip dynamical behavior of lay-
ered beams with frictional interfaces. In this regard, coupled vibrational equation of motion in the 
transverse and longitude directions is derived. The nonlinear partial differential equations of motion 
have been reduced by implementation of the Bubnov-Galerkin method. Quasi-periodic and stick-slip 
chaotic motion of layered beams are investigated. Finally, to indicate the accordance of the pro-
posed approach with finite element analysis, a comparative study with ANSYS is developed. 
 
2 GOVERNING DIFFERENTIA EQUATION OF TWO-LAYER BEAM 

Fig. 1 shows two-layer cantilever beam with length L , width b , modulus of elasticity E  and mo-
ment of inertia I  for each layer. Top layer is subject to transverse load and the layers are main-
tained in contact by means of pressure 0P . The free-body diagram of a differential element of two 
layer beam has been illustrated in Fig. 2.  
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Figure 1   Configuration of two layer beam under dynamic loading 
 

 
 

Figure 2   Free-body diagram of a differential element of two layer beam 
 

Assume that each layer here is the Euler-Bernoulli beam and the vertical displacements of two 
layers is the same. The symbols w , u1  and u2  denote the displacements of a point in the middle 
plane of the flexible beam in y  and x  direction for top and bottom layers, respectively. The lateral 
dynamic equation for differential segment of the beam can be expressed in the following form: 
 

    
pdx − pdx +Q −Q −dQ −F t( )δ x −L( )dx = mdx

∂2w

∂t2  
 

(1-a) 
 

    

∂Q
∂x

+ m
∂2w

∂t2
= F t( )δ x −L( )

 
(1-b) 

 
where     m = A1ρ1 + A2ρ2  denotes the mass per unit length. Neglecting the effect of rotary inertia, the 
conservation of the angular momentum about the z-axis gives: 
 

   
−M + M + dM − Q + dQ( )dx = 0  

 
(2-a) 

 

  

∂M
∂x

= Q
 

(2-b) 
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the total bending moment  M  can be formulated as 
 

M = M1 +M2 −N1d
 

(3) 
 
where  d  is the center to center distance of two layers. The condition of absent external axial forces 
leads to 
 

   N = N1 + N2 = 0, N1 = −N2
 

(4) 
 
combining Eqs. (1-b) and (2-b) yields 
 

    

∂2M

∂x 2
+ m

∂2w

∂t2
= F t( )δ x −L( )

 
(5) 

 
The longitudinal governing equations of motion for top layer is given by the following 

 

−N1 +N1 + dN1 +Tdx = m1dx
∂2u1
∂t2  

 

(6-a) 
 

∂N1
∂x
+T x,t( ) = m1

∂2u1
∂t2  

(6-b) 

 
where 

   
T x,t( ) is the friction force transmitted between the two layers. Furthermore, the constitu-

tive relations can be expressed as: 
 

   
Mi = EiIi

∂2w

∂x 2  
 

(7-a) 
 

  
Ni = EiAi

∂ui

∂x  
(7-b) 

 
Substituting Eqs. (7-a) and (7-b) into Eq. (3) yields 

 

   
M = E1I1 + E2I2( )∂

2w

∂x 2
−E1A1

∂u1

∂x
d

 
(8) 

 
Finally, from Eqs. (5) and (8), transversal governing equation of motion can be derived as fol-

lows: 
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∂2

∂x 2
E1I1 + E2I2( )∂

2w

∂x 2
−E1A1

∂u1

∂x
d

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ + m

∂2w

∂t2
= F t( )δ x −L( )

 
(9) 

 
Using Eq. (7-b), the dynamic equation (6-b) can be simplified as below: 
 

   

∂
∂x

E1A1
∂u1

∂x

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

+T x,t( ) = m1
∂2u1

∂t2
 

(10) 

 
and the vibrational equation of longitudinal motion for the bottom layer can be obtained as 
 

∂
∂x
E2A2

∂u2
∂x

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
−T x,t( ) = m2

∂2u2
∂t2  

(11) 

 
The Coulomb type of friction, where the friction force is proportional to the normal reaction, is 

considered in this paper. The general model to describe a dry friction force 
   
T x,t( )  is given by 

 

     

T ≤ µp x( ) = Ts

T = µp x( )sgn urel( )

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪  

if     urel = 0  (stick), 

if     urel ≠ 0  (slip), (12) 

 
where   urel  is the interlayer slip velocity assumed between the layers at the interface. As indicated 
in Fig. 3, it can be found as [18] 
 

    
urel = u2 − u1 +

∂
∂t
∂w
∂x

h1 + h2

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ = u2 − u1 +

∂
∂t
∂w
∂x

d
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  

 

(13) 
 

 
 

Figure 3   Interlayer slip definition in the deformed element 
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By introducing the following non-dimensional variables 
 

    
τ = ω t, w* =

w
L

, ui
* =

ui

L
, x* =

x
L  

(14) 

 
the non-dimensional nonlinear equations of motion can be written as 
 

    

∂4w

∂x 4
−

6
α
∂3u1

∂x 3
+ rt

2 ∂
2w

∂τ2
= f0 cos τ( )−1( )δ x −1( )

 
 

(15-a) 
 

    

∂2u1

∂x 2
−T * x,τ( ) =

1
12
α2rt

2 ∂
2u1

∂τ2  
 

(15-b) 
 

    

∂2u2

∂x 2
+T * x,τ( ) =

1
12
α2rt

2 ∂
2u2

∂τ2
 

(15-c) 

 
where 
 

    

α =
h1

L
, f0 =

F0L
2

2E1I1

, rt
2 =

ω2

E1I1

m1L
4

, T * =
TL
E1A1

, p* =
P0bL
E1A1  (16) 

 
and the non-dimensional interlayer slip velocity can be written as 
 

     
u

rel

* = u
2

* − u
1

* + α
∂
∂τ
∂w*

∂x*

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 

(17) 

 
Using the Bubnov-Galerkin [18] principle and the multi-mode method defined below: 

 

    
w x,t( ) = ϕr x( )qr t( )r=1

n∑  
 

(18-a) 
 

    
ui x,t( ) = βri x( )pri t( )r=1

n∑
 

(18-b) 

 
where functions 

    
ϕr x( ), βri x( )     (r  = 1,2,...,n)  must satisfy the transversal and longitudinal bound-

ary conditions of each layer of the beam, coupled governing equations of two-layer beam in terms of 
the time-dependent variables can be obtained. Lateral and longitudinal mode shapes of the 
clamped-free beam are expressed as 
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ϕr x( ) = cosh λrx

*( )− cos λrx
*( )− cosh λr( ) + cos λr( )

sinh λr( ) + sin λr( )
sinh λrx

*( )− sin λrx
*( )( )

 
 

(19) 
 

    
βr x( ) = sin

2r −1( )πx*

2

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟ 
(20) 

 
In the aforementioned equation,

   
λr  is the root of characteristic equation for rth eigenmode. In 

order to investigate nonlinear dynamical behavior of two layer beam in presence of stick-slip phe-
nomenon, coupled governing equations of lateral and longitudinal motion (15) and (17) should be 
solved, simultaneously. 
 
3 RESULTS AND DISCUSSION 

3.1 Free vibration 

Let us consider the case of free vibration in order to find how the beam vibrates in lateral and lon-
gitudinal directions in the presence of coulomb friction. Primary analysis is limited to the case of 
constant pressure at the interface.  

As shown in Fig. 4 the amplitude of lateral vibration decreases until the slip phase of motion 
vanishes and two layers of the beam vibrate as a single beam without slipping. It also indicates the 
details of lateral vibration in the vicinity of two motion phases and the conversion of stick-slip 
phase to pure stick one. Because of interlayer friction existence and energy dissipation, the ampli-
tudes of lateral and longitudinal vibration decrease, as can be observed from Figs. 4 and 5, until a 
special time that initial slip doesn’t occur and layered beam vibrates without slipping.  

 

 
 

Figure 4   Time history of lateral vibration 
 
 

To extend study this paper brings stick-slip phenomenon into consideration. Therefore, the in-
fluence of dry friction on the nonlinear vibration of layered beam has been investigated. In the first 
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phase of motion, the frictional force alternatively converts from slip to stick state. However, in the 
second phase of motion, the interlayer friction is always less than 

   
µp x( )  and slipping doesn’t take 

place.  It should be noted that, in order to obtain actual displacement in longitudinal direction, the 
following formulation have been taken into account [19]: 
 

    
u x,t( ) = u x,t( ) + yθ x,t( ) + 1 +

∂w
∂x

⎛

⎝
⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟

2

dx
0

x

∫
 

(21) 

 
where 

   
u x,t( )  is the longitudinal displacement of midline of the beam.  

 
 

Figure 5   Time history of interlayer longitudinal vibration of upper layer 
 

3.2 Forced vibration 

Figs. 6 and 7 show the lateral and longitudinal interlayer displacements at the free end of the canti-
lever beam for the excitation frequency of rt = 0.3 , in the presence of friction and without friction.  

  
(a) (b) 

Figure 6   Phase plane of lateral displacement a: without friction and with friction for b: p* = 1×10−6  c: p* = 1×10−5   

d: p* = 1×10−4  
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(c) (d) 

Figure 6 (continued)   Phase plane of lateral displacement a: without friction and with friction for b: p* = 1×10−6   

c: p* = 1×10−5  d: p* = 1×10−4  

It appears from these Figs. that in the absence of friction, trajectories in the lateral and longitu-
dinal are regular and the quasi-periodic motion occurs. In the presence of dry friction, the behavior 
of the system becomes irregular as the interlayer pressure increases, especially in the longitudinal 
direction. In other words, the longitudinal interlayer phase plane is more sensitive to frictional in-
terface in comparison with lateral phase plane. 

   
(a) (b) 

  
(c) (d) 

Figure 7   Phase plane of interlayer axial displacement a: without friction and with friction for b: p* = 1×10−6    

c: p* = 1×10−5  d: p* = 1×10−4  
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Time histories of interlayer displacements for upper and lower layers of layered beam have been 
illustrated in Figs. 8 and 9, for different values of exciting force. As can be observed, top layer be-
havior don’t change, however, for bottom layer, as the force amplitude becomes larger, single peak 
gradually splits into two peaks in per-period.     

 
Figure 8   Interlayer displacement of upper layer for different values of exciting force 

 
From the results of numerical simulation, in the vicinity of initial slip, it is found that the re-

sponses of system seem to be extremely sensitive to the exciting force amplitude, as shown in the 
Fig. 10. When there is a little change in the force amplitude, the motion of layered beam will be 
transferred from quai-periodic to the chaotic response suddenly. Fig. 11 shows the Poincare sections 
for 800 seconds of simulation in this situation for q1 − q1  and q2 − q2  planes, respectively. The 
points of Poincaré sections are obtained with respect to the period of kinematic excitation   2π / ω . 
It is obvious from this Fig. that system demonstrates the chaotic motions for distinct aforemen-
tioned conditions.  

 
Figure 9   Interlayer displacement of lower layer for different values of exciting force 
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(a) 

  
(b) 

 
Figure 10  Comparison of results before and just after initial slip for µ = 0.1  a: lateral history  b: lateral displacement phase plane 

 
As the state of system becomes far from initial slip, indicated in Fig. 12, when the exciting am-

plitude increases, nonlinear behavior of lateral and longitudinal motions become more regular than 
around the initial slip, especially for lateral vibration. However, the phase portrait in the longitudi-
nal direction, as shown in Fig. 12b, exhibits less sensitivity to this change. 

 

  
(a) (b) 

 
Figure 11   Poincare projection after initial slip for    µ = 0.1  a: q1 − q1  plane b: q2 − q2  plane   
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(a) (b) 

  
(c) (d) 

Figure 12   Comparison of results far from initial slip for    µ = 0.2  lateral phase plane for a:    f0 = 1×10−2   b:    f0 = 5×10−2
 and 

longitudinal phase plane for c:    f0 = 1×10−2   d:    f0 = 5×10−2  

 
To study the effect of friction on the layered-beam dynamics, phase portraits in lateral direction 

for different values of friction coefficient are plotted in Fig. 13. As can be expected, the less coeffi-
cient of friction causes the less time of sticking phase and more regular dynamic behavior. When 
the coefficient of friction becomes larger, the phase plane of motion seems to be more irregular and 
proceed to chaotic behavior. 
 

  
(a) (b) 

Figure 13   Comparison of lateral phase plane for    p
* = 1×10−6  and a:    µ = 0.01  b:    µ = 0.05  c:    µ = 0.1  d:    µ = 0.2  
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(c) (d) 

Figure 13 (continued)   Comparison of lateral phase plane for    p
* = 1×10−6  and a:    µ = 0.01  b: µ = 0.05  c: µ = 0.1   

d: µ = 0.2   

The effect of exciting frequency have been conducted in this research through varying the non-
dimensional parameter  rt . Figs. 14a to 14d indicate that an increase in the parameter rt  from 0.2 
to 0.3 leads to a decrease in the uneven vibrational slip velocities at the interface, for studied values 
of dry friction coefficient. It is clear that the irregular fluctuating of interface slips in the phase 
space decreases by increasing the parameter  rt . 

  
(a) (c) 

  
(b) (d) 

Figure 14   Effect of exciting frequency on interface slip at a: and b:rt = 0.2  and c: and d: rt = 0.3  for different values of coefficient 

of friction a: and c: µ = 0.05 ;  b: and d: µ = 0.2 ;   
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Poincre sections of typical chaotic motions of layered structure for two different values of non-
dimensional frequencies rt = 0.2  and rt = 0.3  are plotted in Fig. 15. The Poincare sections are 

projected onto q1 − q1 , q2 − q2  and q3 − q3  planes. While it is difficult to recognize chaotic 
behavior from the time history, Poincaré maps and Lyapunov exponents clearly show the chaotic 
nature of the response. 
 

  
(a) (b) 

  
(c) (d) 

Figure 15   Poincare section of chaotic motions for rt = 0.2  a: q1 − q1  plane  b: q2 − q2  plane and for rt = 0.3  c: q1 − q1  plane  

d: q3 − q3  plan 

The largest Lyapunov exponent estimation is also used to identify the system dynamic behav-
iors. For the calculation processes of the largest Lyapunov exponent, the algorithm introduced by 
Fu and Wang [20] have been employed. In order to find the smallest synchronization value (the 
largest Lyapunov exponent), bifurcation diagram of the disturbance value against the synchroniza-
tion parameter, is constructed for investigated situation in Fig 11. In Fig. 16, the bifurcation dia-
gram shows 

  
z = x − y  versus coupling coefficient  ks , so the searched value ks,min  as a point on 

the horizontal axis is obtained where z  approaches to zero. Therefore, the largest Lyapunov expo-
nent is 

    
λmax = ks,min = 0.185  which implies that the system is evidently chaotic. 

Similarly, the largest Lyapunov exponent has been calculated for the situation studied in Figs. 
15a and 15b. From bifurcation diagram shown in Fig. 17, the largest Lyapunov exponent in this 
situation is λmax = ks,min = 0.023 . 
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Figure 16   a: The diagram of | z |  versus ks  b: Time history of | z |
 
at λmax = ks,min  

 

  
 

Figure 17   a: The diagram of | z |  versus ks  b: Time history of | z |
 
at λmax = ks,min  

 
To ensure the accuracy of the proposed formulations and examine the achieved results a com-

parative case study with ANSYS is developed. It can be seen from Figs. 18 and 19 that there is a 
little difference, between stick-slip regions and the frequency response obtained from numerical sim-
ulations and ANSYS software results. Furthermore, the amplitudes of lateral and interlayer dis-
placement of top layer are in good agreement with finite element results. Nevertheless, the differ-
ence between these results has no significant effect on the prediction of distinct motion regimes in 
the dynamical behavior of layered beams. 
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Figure 18   Comparison between interlayer displacements of top layer 

 

 
 

Figure 19   Comparison between lateral displacement results 
 
 
4 CONCLUDING REMARKS 

In the present study, nonlinear dynamical behavior of two-layer beam with frictional and pressur-
ized interface including stick-slip nonlinear phenomenon has been investigated. If the layered beam 
vibrates freely, the amplitude of vibration decreases until the slip phase of motion vanishes and two 
layers of the beam vibrate as a single beam without slipping. In the case of forced vibration, quasi-
periodic and stick-slip chaotic motion of layered beams have been illustrated via Poincare maps and 
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Lyapunov exponent analysis for different values of system parameters. Finally, a comparative study 
with ANSYS is prepared to demonstrate the accuracy of the presented formulations. 
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