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Abstract 
The present paper investigates the transverse vibration of a non-uniform axially functionally graded 
Timoshenko beam with cross-sectional and material properties varying in the beam length direction. The 
Chebyshev collocation method is used to spatially discretize the governing partial differential equations of 
motion of the beam into time-dependent ordinary differential equations in terms of Chebyshev 
differentiation matrices. An algebraic eigenvalue equation in matrix form is then formed to study the free 
vibration behavior of non-uniform axially functionally graded Timoshenko beams. Several results of natural 
frequencies of the beams are evaluated and compared with those in the published literature to assure the 
accuracy of the proposed model. The effects of taper ratio, material graded index, slenderness ratio, material 
compositions and restraint types on the natural frequencies of tapered axially functionally graded 
Timoshenko beams are examined. 

Keywords 
axially functionally graded, Chebyshev collocation method, natural frequency, taper ratio 

Graphical abstract 

 
  

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4655-8769


Vibration Analysis of Axially Functionally Graded Timoshenko Beams with Non-uniform Cross-section Wei-Ren Chen 

Latin American Journal of Solids and Structures, 2021, 18(07), e397 2/18 

1 INTRODUCTION 

Functionally graded materials (FGMs) have been used increasingly in various engineering and scientific fields 
recently because of their promising material properties over the traditional composites. Thus, the dynamic problems of 
engineering structures constructed from FGMs have received considerable attention, especially for the beam members 
commonly used in bridges, buildings and machine components. In the past decades, most studies numerically dealt with 
the dynamics of FGM beams with material properties graded in the thickness direction based on various beam theories 
(Simsek (2010); Thai and Vo (2012); Nguyen et al. (2013); Pradhan and Chakraverty (2014); Su and Banerjee (2015); 
Wattanasakulpong and Mao (2015); Chen and Chang (2017, 2018); Ding et al. (2018); Esen (2019)). It is noted that the 
strength and weight of beam structures, which affect its vibration behavior, can be optimized by changing the cross-
sectional and material properties along the beam length direction. Therefore, the dynamic problems of FGM beams with 
axially varying properties have received considerable attention in recent years. 

The free vibration of non-uniform axially FGM Euler-Bernoulli beams with various end supports was presented by 
Huang and Li (2010) based on the integral equation method. The bending vibration of FGM beams with axial variation of 
material properties was investigated by Murin et al. (2010). The free vibration and stability of tapered axially FGM 
Timoshenko beams with various restraint conditions was dealt with by Shahba et al. (2011) by using finite element analysis. 
The vibration analysis of non-uniform axially FGM beams was presented by Hein and Feklistova (2011) based on the Euler-
Bernoulli beam theory and Haar wavelet approach. Based on the lowest-order differential quadrature element and 
differential transform element methods, the vibration and stability problems of axially FGM Euler–Bernoulli beams with 
tapered cross-section were investigated by Shahba and Rajasekaran (2012). Exact frequency equations of the free vibration 
for axially exponentially FGM beams with different end conditions were presented by Li et al. (2013) by employing an 
analytical approach. The lowest-order differential quadrature element and differential transform element methods were 
used by Rajasekaran (2013a, 2013b) to analyze the vibration behavior of rotating non-uniform axially FGM Euler–Bernoulli 
and Timoshenko beams. The free vibration of axially FGM Timoshenko beams with non-uniform cross-section was studied 
by Huang et al. (2013) based on a unified approach. The free vibration of clamped axially FGM uniform Timoshenko beams 
was studied by Sarkar and Ganguli (2014). Exact equations of vibration frequencies of tapered axially FGM Timoshenko 
beams were derived by Tang et al. (2014). The spline finite point method was applied by Liu et al. (2016) to study the free 
bending vibration of axially FGM beams with tapered cross-section by using the Euler-Bernoulli beam theory. The 
complementary functions method was used by Calim (2016) to investigate the transient vibration of tapered axially FGM 
Timoshenko beams. Based on the Euler-Bernoulli and Timoshenko beam theories, the vibration behaviors of non-uniform 
axially FGM beams were investigated by Zhao et al. (2017) by using the Chebyshev polynomials theory. The asymptotic 
development method was presented by Cao et al. (2018) to analyze the free vibration of axially FGM Euler-Bernoulli beams. 
The vibration of tapered axially FGM cantilevered Timoshenko beam under various axial loadings was investigated by Sun 
and Li (2019) based on the initial value method. The bending vibration of non-uniform axially FGM Euler-Bernoulli beams 
was investigated by Chen (2020) based on the Chebyshev collocation method. 

As reviewed above, the vibration problems of axially FGM beams (AFGM) had been effectively studied by many 
researchers based on numerous numerical methods. The Chebyshev collocation method has the advantages of fast 
convergence rate and high accuracy of predictability over other numerical methods so it has been widely used to solve 
various engineering and mathematical problems. However, there exists a paucity of the contribution of the published 
literature to the vibration of non-uniform AFGM Timoshenko beams by using the Chebyshev collocation method. Thus, 
an attempt has been made to apply the Chebyshev collocation method to analyze the transverse vibration of FGM 
Timoshenko beams with axially varying material and cross-sectional properties. Material properties are assumed to vary 
along the length direction described by the exponential function. The Chebyshev collocation method is applied to reduce 
the partial differential equations of motion into the ordinary differential equations with time as the indendent variable. 
Then, an eigenvalue problem is formulated to evaluate the free vibration behavior of the tapered AFGM Timoshenko 
beam. The natural frequencies for various AFGM beams with different taper ratios, slenderness ratios, graded indices, 
material constituents and boundary conditions are determined. In comparing the calculated natural frequencies with 
those by other investigators, the present results agree well with those obtained by other methods. Then, relevant 
parameter analyses are performed to demonstrate the effects of various material and geometric parameters on the free 
vibration characteristics of the AFGM Timoshenko beams. 

2 BENDING VIBRATION ANALYSIS 

The AFGM beam with tapered rectangular cross-section as shown in Figure 1 is considered. The beam has a length 
L with taper ratios in the width and thickness directions. The axes x, y and z represent the respective beam length, width 
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and thickness direction. The cross-sectional properties, area A(x) and area moment of inertia I(x), of the tapered beam 
are assumed to vary along the axial direction as follows. 

𝐴𝐴(𝑥𝑥) = 𝐴𝐴𝑜𝑜 �1 − 𝐶𝐶𝑏𝑏
𝑥𝑥
𝐿𝐿
� �1 − 𝐶𝐶ℎ

𝑥𝑥
𝐿𝐿
� (1) 

𝐼𝐼(𝑥𝑥) = 𝐼𝐼𝑜𝑜 �1 − 𝐶𝐶𝑏𝑏
𝑥𝑥
𝐿𝐿
� �1 − 𝐶𝐶ℎ

𝑥𝑥
𝐿𝐿
�
3

 (2) 

  
Figure 1: Axially FGM beam configuration and coordinate systems. 

Here Ao and Io are the area and area moment of inertia at the left end x = 0; Cb and Ch are the width and height taper 
ratio, respectively. The material properties, Young’s modulus E(x) and shear modulus G(x) and mass density ρ(x), of the 
AFGM beam are represented by the effective material property P(x), which varies continuously across the beam length 
according to the following exponential function. 

𝑃𝑃(𝑥𝑥) = 𝑃𝑃𝑜𝑜 + (𝑃𝑃𝑙𝑙 − 𝑃𝑃𝑜𝑜) 𝑒𝑒
𝛼𝛼𝛼𝛼/𝐿𝐿−1
𝑒𝑒𝛼𝛼−1

 𝛼𝛼 ≠ 0. (3a) 

𝑃𝑃(𝑥𝑥) = 𝑃𝑃𝑜𝑜 + (𝑃𝑃𝑙𝑙 − 𝑃𝑃𝑜𝑜) 𝑥𝑥
𝐿𝐿

 𝛼𝛼 = 0. (3b) 

where Po and Pl are the material properties at the left and right surface of the beam, respectively; The exponent α is the 
material graded index which describe the material variation profile of the volume fraction through the beam length; the 
length variable x ranges from 0 to L. Figure 2 depicts the variation of property P/Po in the length direction for Po = 3Pl. As 
can be seen, a smaller value of volume fraction index represents a more sudden increase in the property P/Po near the 
left surface and the material at the right surface is the dominant constituent. In contrast, the property P/Po changes 
abruptly near the right surface for a larger value of volume fraction index and the dominant constituent is the material 
at the left surface. 

By applying Timoshenko beam theory and Hamilton’s principle to the non-uniform axially FGM beam, the following 
partial differential equations (Shahba et al. (2011)) with variable coefficients and boundary conditions governing the 
lateral free vibration behaviors of AFGM Timoshenko beams can be obtained. 

∂
∂x
�𝑘𝑘𝑘𝑘(𝑥𝑥)𝐴𝐴(𝑥𝑥) �𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
− 𝜑𝜑�� − 𝜌𝜌(𝑥𝑥)𝐴𝐴(𝑥𝑥) 𝜕𝜕

2𝜕𝜕
𝜕𝜕𝑡𝑡2

= 0 (4a) 

∂
∂x
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𝜕𝜕𝑥𝑥
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2𝜕𝜕
𝜕𝜕𝑡𝑡2

= 0 (4b) 
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Figure 2: Variation of effective property P(x)/Po versus beam length for exponentially AFGM beam with various values of material 

graded index α. 

Clamped end: w = 0,φ = 0 (5a) 

Pinned end: w = 0, ∂φ
∂x

= 0 (5b) 

Free end: ∂φ
∂x

= 0, ∂w
∂x
− 𝜑𝜑 = 0 (5c) 

where w is the transverse displacement along the z direction and 𝜑𝜑 is the rotation about the y axis; κ is the shear 
correction factor and taken to be 5/6 throughout this paper. The present study intends to use the Chebyshev collocation 
method to solve the free vibration equations (4) and (5). Because the space variable range of this collocation method is 
[-1, 1], the space variable must be transformed before analysis. Let ξ = 2 𝑥𝑥 𝐿𝐿 − 1⁄ , Eqs. (4) and (5) can be rewritten as 
the partial differential equations with ξ as the spatial independent variable as follows. 

𝑚𝑚(ξ) 𝜕𝜕
2𝜕𝜕
𝜕𝜕𝑡𝑡2

− �2
𝐿𝐿
�
2
𝑄𝑄(ξ) 𝜕𝜕

2𝜕𝜕
𝜕𝜕ξ2

− �2
𝐿𝐿
�
2
𝑄𝑄′(ξ) 𝜕𝜕𝜕𝜕

𝜕𝜕ξ
+ �2

𝐿𝐿
�𝑄𝑄(ξ) 𝜕𝜕φ

𝜕𝜕ξ
+ �2

𝐿𝐿
�𝑄𝑄′(ξ)φ = 0  (6a) 

𝐽𝐽(ξ) 𝜕𝜕
2φ

𝜕𝜕𝑡𝑡2
− �2

𝐿𝐿
�
2
𝑆𝑆(ξ) 𝜕𝜕

2φ

𝜕𝜕ξ2
− �2

𝐿𝐿
�
2
𝑆𝑆′(ξ) 𝜕𝜕φ

𝜕𝜕ξ
+ 𝑄𝑄(ξ)φ − �2

𝐿𝐿
�𝑄𝑄(ξ) 𝜕𝜕𝜕𝜕

𝜕𝜕ξ
= 0  (6b) 

Clamped end: 𝑤𝑤 = 0,φ = 0  (7a) 

Pinned end: 𝑤𝑤 = 0, ∂φ
∂ξ

= 0  (7b) 

Free end: ∂φ
∂ξ

= 0, �2
𝐿𝐿
� ∂𝜕𝜕
∂ξ
− φ = 0  (7c) 

where Q(ξ) = kG(ξ)A(ξ) is the shear rigidity; S(ξ) = E(ξ)I(ξ) is the bending rigidity; m(ξ) =ρ(ξ)A(ξ) and J(ξ) =ρ(ξ)A(ξ)are the 
mass and rotary inertia per unit length, respectively. 

Using the Chebyshev collocation method to spatially discretize the partial differential equation (6), and considering 
the Chebyshev-Gauss-Lobatto (CGL) collocation point, the displacement function w(ξ, 𝑡𝑡)  and the rotation function 
φ(ξ, 𝑡𝑡) can be expressed as the following Nth-order Chebyshev polynomial. 

𝑤𝑤(ξ, 𝑡𝑡) ≈ ∑ 𝛾𝛾𝑗𝑗(ξ)𝑤𝑤 �ξ𝑗𝑗 , 𝑡𝑡�𝑁𝑁
𝑗𝑗=0   (8a) 

φ(ξ, 𝑡𝑡) ≈ ∑ 𝛾𝛾𝑗𝑗(ξ)φ�ξ𝑗𝑗, 𝑡𝑡�
𝑁𝑁
𝑗𝑗=0   (8b) 
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with 

ξ𝑗𝑗 = 𝑐𝑐𝑐𝑐𝑐𝑐 �𝜋𝜋𝑗𝑗
𝑁𝑁
� , 𝑗𝑗 = 0, 1, 2⋯𝑁𝑁  (9a) 

γ𝑗𝑗(ξ) = (−1)𝑗𝑗+1�1−ξ2�𝑇𝑇𝑁𝑁
′ (ξ)

𝑐𝑐𝑗𝑗𝑁𝑁2�ξ−ξ𝑗𝑗�
  (9b) 

𝑇𝑇𝑁𝑁 �ξ𝑗𝑗� = 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐−1 �ξ𝑗𝑗��  (9c) 

γ𝑗𝑗�ξ𝑘𝑘� = δ𝑗𝑗𝑘𝑘  (9d) 

𝑐𝑐𝑗𝑗 = �2 𝑗𝑗 = 0,𝑁𝑁
1 𝑗𝑗 = 1, 2⋯𝑁𝑁 − 1  (9e) 

Here ξ𝑗𝑗 are the Gauss-Chebyshev-Lobatto collocation points (Trefethen, 2000) within [-1, 1]. Then, the matrix vector 
multiplication is used to obtain the first derivatives of the displacement functions in Eq. (8) at the collocation points as 

w′�ξ𝑖𝑖 , 𝑡𝑡� = ∑ (𝐷𝐷𝑁𝑁)𝑖𝑖𝑗𝑗𝑤𝑤 �ξ𝑗𝑗 , 𝑡𝑡�𝑁𝑁
𝑗𝑗=0 , 𝑖𝑖 = 0, 1, 2⋯𝑁𝑁 (10a) 

φ′�ξ𝑖𝑖 , 𝑡𝑡� = ∑ (𝐷𝐷𝑁𝑁)𝑖𝑖𝑗𝑗φ �ξ𝑗𝑗 , 𝑡𝑡�𝑁𝑁
𝑗𝑗=0 , 𝑖𝑖 = 0, 1, 2⋯𝑁𝑁 (10b) 

where DN denotes the (N+1)×(N+1) Chebyshev differentiation matrix; (DN)ij is its entry at row i and column j, which is 
given as (Trefethen, 2000) 

(𝐷𝐷𝑁𝑁)00 = 2𝑁𝑁2+1
6

, (𝐷𝐷𝑁𝑁)𝑁𝑁𝑁𝑁 = −2𝑁𝑁2+1
6

  (11a) 

(𝐷𝐷𝑁𝑁)𝑗𝑗𝑗𝑗 = −
ξ𝑗𝑗

2�1−ξ𝑗𝑗
2�

, 𝑗𝑗 = 1,2⋯𝑁𝑁 − 1 (11b) 

(𝐷𝐷𝑁𝑁)𝑖𝑖𝑗𝑗 = 𝑐𝑐𝑖𝑖
𝑐𝑐𝑗𝑗

(−1)𝑖𝑖+𝑗𝑗

�ξ𝑖𝑖−ξ𝑗𝑗�
, 𝑖𝑖 ≠ 𝑗𝑗 𝑗𝑗 = 1,2⋯𝑁𝑁 − 1  (11c) 

Eq. (11) represents each element of the first derivative D1 of the Chebyshev differential matrix, and the kth 
derivative can be obtained by Dk=(D1)k. It is worth pointing out that although the Chebyshev collocation method has the 
advantage of providing accurate and fast convergent solutions, it tends to cause physical false eigenvalues, and usually 
produces more roundoff errors when calculating derivatives. A detailed discussion of spurious unstable modes and 
roundoff errors in derivative calculations can be found in the books of Gottlieb and Orszag [1977] and Boyd [2000]. Using 
the above-mentioned Chebyshev collocation method, the partial differential equation (6) can be rewritten into a time-
dependent ordinary differential equation represented by the Chebyshev differential matrix. 

�𝒎𝒎� 𝑶𝑶
𝑂𝑂 �̅�𝐉 � �̈�𝑼(𝑡𝑡) + �𝑲𝑲11 𝑲𝑲12

𝑲𝑲21 𝑲𝑲22
�𝑼𝑼(𝑡𝑡) = O  (12) 

where 

𝑼𝑼(𝑡𝑡) = �𝑤𝑤1(𝑡𝑡) 𝑤𝑤2(𝑡𝑡) ⋯ 𝑤𝑤𝑁𝑁+1(𝑡𝑡) φ1(𝑡𝑡) φ2(𝑡𝑡) ⋯ φ𝑁𝑁+1(𝑡𝑡)�𝑇𝑇 

�̈�𝑼(𝑡𝑡) = ��̈�𝑤1(𝑡𝑡) �̈�𝑤2(𝑡𝑡) ⋯ �̈�𝑤𝑁𝑁+1(𝑡𝑡) φ̈1(𝑡𝑡) φ̈2(𝑡𝑡) ⋯ φ̈𝑁𝑁+1(𝑡𝑡)�𝑇𝑇 
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Here 𝑼𝑼(𝑡𝑡) and �̈�𝑼(𝑡𝑡) are the transpose displacement and acceleration vectors, respectively. Matrices 𝒎𝒎� , �̅�𝑱, Ks1, Ks2, 
Kb1 and Kb2 are all diagonal matrices with diagonal elements formed by evaluating m(ξ), J(ξ), Q(ξ), 𝑄𝑄′(ξ), S(ξ) and 𝑆𝑆′(ξ) at 
the collocation points, respectively. Similarly, the boundary conditions of the beam as described in Eq. (7) can be 
expressed in terms of Chebyshev differentiation matrices as shown in Table 1. By imposing the homogeneous boundary 
conditions at the supporting ends on the governing equation (12) and rearranging the displacement and acceleration 
vector 𝑼𝑼(𝑡𝑡) and �̈�𝑼(𝑡𝑡), Eq. (12) is reformulated as 

� 𝑶𝑶 𝑶𝑶
𝑴𝑴𝐼𝐼𝐼𝐼 𝑴𝑴𝐼𝐼𝐼𝐼

� �
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� + �𝑲𝑲𝐼𝐼𝐼𝐼 𝑲𝑲𝐼𝐼𝐼𝐼
𝑲𝑲𝐼𝐼𝐼𝐼 𝑲𝑲𝐼𝐼𝐼𝐼

� �
𝑼𝑼𝐼𝐼(𝑡𝑡)
𝑼𝑼𝐼𝐼(𝑡𝑡)

� =O  (13) 

𝑼𝑼𝐼𝐼(𝑡𝑡) = {𝑤𝑤1(𝑡𝑡) 𝑤𝑤𝑁𝑁+1(𝑡𝑡) φ1(𝑡𝑡) φ𝑁𝑁+1(𝑡𝑡)}𝑇𝑇 

𝑼𝑼𝐼𝐼(𝑡𝑡) = �𝑤𝑤2(𝑡𝑡) 𝑤𝑤3(𝑡𝑡) ⋯ 𝑤𝑤𝑁𝑁(𝑡𝑡) φ2(𝑡𝑡) φ3(𝑡𝑡) ⋯ φ𝑁𝑁(𝑡𝑡)�𝑇𝑇 

Table 1 Boundary condition equations in terms of Chebyshev differentiation matrices. 

beam 
Boundary condition 

Left end ( 1−=ξ ) Right end ( 1+=ξ ) 

CF 
[1 0] ⊗ [0 0 ⋯ 1]𝑼𝑼 = 𝟎𝟎 
[0 1] ⊗ [0 0 ⋯ 1]𝑼𝑼 = 𝟎𝟎 

[0 1] ⊗𝑫𝑫1[1, :]𝑼𝑼 = 𝟎𝟎 
�2
𝐿𝐿

[1 0] ⊗𝑫𝑫1[1, :] − [0 1] ⊗ [1 0 ⋯ 0]�𝑼𝑼 = 0  

CP 
[1 0] ⊗ [0 0 ⋯ 1]𝑼𝑼 = 𝟎𝟎 
[0 1] ⊗ [0 0 ⋯ 1]𝑼𝑼 = 𝟎𝟎 

[1 0] ⊗ [1 0 ⋯ 0]𝑼𝑼 = 𝟎𝟎 
[0 1] ⊗𝑫𝑫1[1, :]𝑼𝑼 = 𝟎𝟎 

CC 
[1 0] ⊗ [0 0 ⋯ 1]𝑼𝑼 = 𝟎𝟎 
[0 1] ⊗ [0 0 ⋯ 1]𝑼𝑼 = 𝟎𝟎 

[1 0] ⊗ [1 0 ⋯ 0]𝑼𝑼 = 𝟎𝟎 
[0 1] ⊗ [1 0 ⋯ 0]𝑼𝑼 = 𝟎𝟎 

PP 
[1 0] ⊗ [0 0 ⋯ 1]𝑼𝑼 = 𝟎𝟎 
[0 1] ⊗𝑫𝑫1[𝑁𝑁 + 1, :]𝑼𝑼 = 𝟎𝟎 

[1 0] ⊗ [1 0 ⋯ 0]𝑼𝑼 = 𝟎𝟎 
[0 1] ⊗𝑫𝑫1[1, :]𝑼𝑼 = 𝟎𝟎 

The subscripts ‘I’ and ‘B’ are the collocation points related to the respective governing equation and boundary 
condition. Considering the harmonic vibration, the displacement functions in Eq. (13) are assumed to be 
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𝑼𝑼𝐼𝐼(𝑡𝑡) = 𝑼𝑼�𝐼𝐼𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡; 𝑼𝑼𝐼𝐼(𝑡𝑡) = 𝑼𝑼�𝐼𝐼𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡 (14) 

where ω is the natural frequency. Substituting Eq. (14) into Eq. (13), the following algebraic eigenvalue equation is obtained 

�𝑲𝑲𝐼𝐼𝐼𝐼 𝑲𝑲𝐼𝐼𝐼𝐼
𝑲𝑲𝐼𝐼𝐼𝐼 𝑲𝑲𝐼𝐼𝐼𝐼

� �𝑼𝑼
�𝐼𝐼
𝑼𝑼�𝐼𝐼
� = 𝜔𝜔2 � 𝑂𝑂 𝑂𝑂

𝑴𝑴𝐼𝐼𝐼𝐼 𝑴𝑴𝐼𝐼𝐼𝐼
� �𝑼𝑼
�𝐼𝐼
𝑼𝑼�𝐼𝐼
� (15) 

Thus, Eq. (15) will be used to calculate the natural frequencies of the free bending vibration of various AFGM 
Timoshenko beams with non-uniform cross-sections in the next section. 

3 RESULTS AND DISCUSSIONS 

In this section, the effects of material graded indices, height and width taper ratios, slenderness ratios, material 
compositions and restraint types on the free vibration characteristics of the AFGM Timoshenko beams are examined. 
Four types of AFGM beam constructed from Alumina and Stainless steel (A/S), Zirconia and Stainless steel (Z/S), Alumina 
and Aluminum (A/A), and Zirconia and Aluminum (Z/A), respectively, are considered. The material properties of the 
typical metals and ceramics are given in Table 2 (Shahba et al. (2011); Natarajon et al. (2011)). For simplicity, the 
Poisson’s ratio is taken to be 0.3. It is assumed that the left side of the beam is ceramic-rich and the right side is metal-

rich. The following frequency parameter 𝛌𝛌 = ω𝐿𝐿2�𝜌𝜌𝑎𝑎𝑎𝑎𝐴𝐴𝑐𝑐 𝐸𝐸𝑎𝑎𝑎𝑎𝐼𝐼𝑐𝑐⁄  is used to evaluate the dimensionless natural frequencies, 

in which Eal and ρal denote the Young’s modulus and density of aluminum, respectively. The rotary inertial parameter r 
and slenderness ratio s are defined as Io/AoL2 and (1/r)0.5, respectively. 

Table 2 Properties of materials. 

material E, GPa ρ, Kg/m3 

Aluminum (Al) 70.0 2702 
Stainless steel (SUS304) 201.04 8166 

Alumina (Al2O3) 380.0 3800 
Zirconia (ZrO2) 200.0 5700 

3.1 Model verification 

To validate the accuracy of the proposed model, the free vibration of various exponential AFGM beams composed 
of zirconia and aluminum with L = 1m, bo = 0.01m and ho = 0.03m (Liu et al. (2016)) is studied. The A/Z AFGM beam is 
aluminum rich near x = 0 and zirconia rich near x = L, whereas the Z/A AFGM beam is vice versa. Because there is a lack 
of data of exponential AFGM Timoshenko beams in the published literature, the presented results are compared with 
those obtained by the Euler-Bernoulli beam theory. Table 3 present the first four dimensionless natural frequencies of 
uniform A/Z AFGM beams of α = 3 under various boundary conditions. The present results match well with those 
obtained by Huang and Li (2010), Liu et al. (2016) and Cao et al. (2018), especially the lower frequencies.  

Table 4 gives the first four dimensionless natural frequencies of uniform pinned-pinned and clamped-clamped Z/A 
AFGM beams with various values of α. Likewise, the presented lower mode frequencies are in good agreement with those 
given by Huang and Li (2010) and Liu et al. (2016). The first four dimensionless natural frequencies of non-uniform clamped-
free and clamped-pinned Z/A AFGM beams of α = -10 with various values of taper ratios are presented in Table 5. Good 
agreement is also observed between the present results and those by Liu et al. (2016). It is noted in Tables 3-5 that the 
discrepancy between the higher mode frequencies is greater than that of lower ones because the Euler-Bernoulli beam 
theory always overestimates the frequencies, especially for the higher modes. Hence, to provide more accurate results for 
exponential AFGM beams, the Timoshenko beam theory is also needed. In this study, only the bending vibration about the 
y-axis is considered. If the 3D finite element FGM beam is modeled according to the introduction of Murin et al. [2014, 
2016], in addition to obtaining the same natural frequency of the bending mode about the y-axis as the proposed method, 
the natural frequencies of other bending modes around the z-axis, torsional modes and axial modes will also be determined. 

3.2 Effect of taper ratio 

Figures 3-6 present the effects of various values of Ch and Cb on the varying trend of the first four dimensionless 
frequencies for the CF and PP Z/A AFGM beams with r = 0.01 and α = -10. The variations of the first four natural 
frequencies with respect to the taper ratios Ch and Cb for the CP and CC Z/A AFGM beams are presented in Tables 6 and 7. 
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As can be seen, the increase in height and width taper ratios may decrease or increase the natural frequencies depending 
on the taper ratios and boundary conditions. 

Table 3 Comparison of frequencies of uniform A/Z AFGM beams with different boundary conditions. 

BC source λ1 λ2 λ3 λ4 

CF 

Present 2.8527 21.3863 62.9192 123.8613 
Huang and Li (2010)  2.8544 - - - 

Liu et al. (2016)  2.8545 21.4951 63.6755 126.6073 
Cao et al. (2018) 2.852 21.494 63.673 126.575 

PP 

Present 10.3513 41.7155 93.2389 164.0748 
Huang and Li (2010) 10.3669 - - - 

Liu et al. (2016) 10.3669 41.9691 94.5153 168.0682 
Cao et al. (2018)  10.368 41.973 94.510 167.997 

CP 

Present 15.6585 52.2805 108.5191 183.6220 
Huang and Li (2010) 15.7171 - - - 

Liu et al. (2016) 15.7169 52.8041 110.6243 189.4610 
Cao et al. (2018) 15.718 52.807 110.611 189.356 

CC 

Present 24.7797 66.1549 127.0355 206.2868 
Huang and Li (2010) 24.9375 - - - 

Liu et al. (2016) 24.9366 67.1081 130.2588 214.4078 
Cao et al. (2018) 24.942 67.113 130.236 214.258 

Table 4 Comparison of frequencies of uniform PP and CC Z/A AFGM beams with different α. 

BC α source λ1 λ2 λ3 λ4 

PP 

-10 Present 9.9225 39.8335 89.3251 157.4965 
Huang and Li (2010) 9.9358 - - - 

Liu et al. (2016) 9.9366 40.07 90.5367 161.3146 
-3 Present 10.3513 41.7155 93.2389 164.0748 

Huang and Li (2010) 10.3669 - - - 
Liu et al. (2016) 10.3669 41.9691 94.5153 168.0682 

0 Present 10.8486 43.3957 96.7930 170.2173 
Huang and Li (2010) 10.8663 - - - 

Liu et al. (2016) 10.8664 43.6649 98.1296 174.3787 
3 Present 11.2250 44.5707 99.4306 174.8680 

Huang and Li (2010) 11.2443 - - - 
Liu et al. (2016) 11.2443 44.855 100.8244 179.1822 

10 Present 11.4367 45.3939 101.2149 177.9781 
Huang and Li (2010) 11.4532 - - - 

Liu et al. (2016) 11.4560 45.6887 102.6601 182.4345 

CC 

-10 Present 24.6463 65.2907 124.5252 201.2268 
Huang and Li (2010) 24.7949 - - - 

Liu et al. (2016) 24.8068 66.2401 127.6871 209.1345 
-3 Present 24.7797 66.1549 127.0355 206.2868 

Huang and Li (2010) 24.9375 - - - 
Liu et al. (2016) 24.9366 67.1081 130.2588 214.4078 

0 Present 24.2226 66.6214 129.5533 211.6095 
Huang and Li (2010) 24.3752 - - - 

Liu et al. (2016) 24.3756 67.5918 132.8706 220.0032 
3 Present 23.7942 66.7804 131.0912 215.1447 

Huang and Li (2010) 23.9456 - - - 
Liu et al. (2016) 23.9446 67.7638 134.4815 223.7508 

10 Present 23.9070 67.1197 131.9397 216.9219 
Huang and Li (2010) 24.0576 - - - 

Liu et al. (2016) 24.0660 68.1328 135.4215 225.7493 
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For CF beams shown in Figure 3, when Ch increases, the first frequency increases, while the other three frequencies 
show a downward trend. Basically, as the value of Ch is higher, the rate of change of frequency is more significant. As 
shown in Figure 4, with the increase in Cb, the first four frequencies rise. Similarly, as the value of Cb is larger, the rate of 
change of frequency is more obvious. For the first and second frequencies, the effect of Cb on the frequency is more 
significant than that of Ch, while for the third and fourth frequencies, the influence of Ch is greater. For PP beams in Figure 
5, the first four frequencies are basically reduced with the increasing Ch, except that the fourth frequency of the beam 
with Cb ≤ 0.7 increases slightly from Ch = 0.1 to 0.2. Its frequency is significantly affected by Ch, especially the first 
frequency. It can be seen from Figure 6 that as Cb increases, except for some cases, most of the frequencies of the PP 
beams decrease. The exception examples are as follows. The fourth frequency of the beam with Ch = 0.1 increases as Cb 
increases; for the beam with Ch = 0.7, the second and third frequencies first increase with Cb until Cb = 0.8 and then start 
to decrease, while the fourth frequency first decreases, then increases and then reduces; the second to fourth 
frequencies of the beam with Ch = 0.9 increase with the increasing Cb. Unlike CF beams, Ch has a more significant effect 
on the four frequencies of PP beams than Cb, but the effect of Cb is minor except for the first frequency. 

Table 5 Comparison of frequencies of CF and CP Z/A AFGM beams with different Cb and Ch 

BC Cb/Ch source λ1 λ2 λ3 λ4 

CF 

0.2 Present 4.5077 23.2314 60.2770 113.9612 
Liu et al. (2016) 4.5112 23.3314 60.8734 116.0144 

0.4 Present 4.9642 22.0994 54.7752 102.1867 
Liu et al. (2016) 4.9675 22.1766 55.2115 103.6541 

0.6 Present 5.6549 20.9527 48.8786 89.3191 
Liu et al. (2016) 5.6563 21.0079 49.1851 90.3173 

0.8 Present 6.8815 20.0508 42.5236 74.7412 
Liu et al. (2016) 6.8715 20.0744 42.7624 75.5952 

CP 

0.2 Present 16.2118 48.8114 98.3631 164.2458 
Liu et al. (2016) 16.2634 49.2161 99.916 168.486 

0.4 Present 15.0674 43.8500 87.5967 145.8939 
Liu et al. (2016) 15.1061 44.1433 88.7009 148.8877 

0.6 Present 13.7489 38.4115 75.7276 125.5016 
Liu et al. (2016) 13.7727 38.6134 76.4763 127.5011 

0.8 Present 12.1312 32.1014 61.8686 101.4631 
Liu et al. (2016) 12.1299 32.2583 62.5395 103.3128 

As for the CP beams in Table 6, when Ch increases, except that the fourth frequency increases slightly from Ch = 0.1 
to 0.2, all other frequencies decrease accordingly. With the increasing Cb, basically the first frequency increases. Except 
for beams with Ch = 0.1 and 0.2, their first frequency decreases slightly when Cb increases from 0.8 to 0.9. For beams with 
Ch ≤ 0.6, the second to fourth frequencies first increase and then decrease with the increase of Cb, and for beams with 
Ch ≧0.7, they increase accordingly. Like the PP beams, the influence of Ch on the frequency is significant, while the effect 
of Cb is minimal. For CC beams in Table 7, when Ch enlarges, all frequencies decrease. As Cb increases, all frequencies first 
increase and then decrease for beams with Ch ≤ 0.8. In addition, when the beam has a higher Ch value, the Cb value at 
which the frequency changes from rising to falling is greater. When the beam has a taper of Ch = 0.9, all frequencies rise 
with the increasing Cb. Like PP and CP beams, Ch has a significant impact on the frequency, while Cb has a slight impact. 

As discussed above, the natural frequencies for the beams with the same width ratio Cb reduce with the increasing 
height taper ratio Ch except for the first frequencies of CF beams and fourth frequencies of PP and CP beams. As for the 
beams with the same height taper ratio Ch, the first four frequencies of CF beams increase with the increasing width 
taper ratio Cb but those of PP, CP and CC beams vary differently with Cb depending on the value of Ch. It is important to 
note that the height taper ratio has a more profound impact on the natural frequencies of all beams than width taper 
ratio while it shows an opposite trend for the first and second frequencies of CF beams. 

3.3 Effect of material distribution 

Table 8 gives the effects of material graded index α on the first four frequencies of Z/A AFGM beams of r = 0.01 and 
Cb/Ch = 0.3/0.5 under various boundary conditions. As can be seen, the first and second frequencies of the CF beam 
reduce as the value of |𝛼𝛼| approaches to zero, but its third and fourth frequencies enlarge with the increasing α. For the 
PP beam, all the first four frequencies increase with the increase in α. For the CP and CC beams, the first and second 
modes varies irregularly with α, but the third and fourth modes increase as α increases. 
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Figure 3: Effect of Ch on dimensionless natural frequencies for clamped-free Z/A AFGM beams of r = 0.01 and α = -10 with various 

values of Cb. (a) First mode (b) Second mode (c) Third mode (d) Fourth mode 

3.4 Effect of slenderness ratio 

Table 9 shows the effects of the slenderness ratio s on the first four frequencies of Z/A AFGM beams of α = 3 and 
Cb/Ch = 0.5/0.5 under different boundary conditions. As expected, all frequencies decrease with the increasing s. The 
influence is becoming more significant for higher mode frequencies and restraint. 

3.5 Effect of material composition 

Tables 10-13 give the variations of the natural frequencies against different material constituents of uniform and 
non-uniform AFGM beams of r = 0.01 with CF, PP, CP and CC boundary conditions, respectively. As far as CF beams are 
concerned, except for some exceptions, basically A/A beam has the largest frequency, followed by A/S, Z/A and Z/S 
beams. However, when α = 0 and -3, the order of the first mode frequency is A/A > Z/A > A/S > Z/S, and Z/A is larger than 
A/S. Similarly, the first four frequencies of the Z/A beam are larger than those of the A/S beam as α = -10. Furthermore, 
it can be seen from Table 10 that different material compositions have a significant effect on the frequency of the CF 
beam, and the influence is different under different values of α. 

For PP beams, in most cases, the order of frequencies of beams composed of different materials is A/A, A/S, Z/A 
and Z/S beams from high to low. The exceptions are as follows. When α = -10, the first frequency of uniform Z/A beam 
is larger than that of A/S beam; when α = -3, 0 and 3, the first frequency of non-uniform Z/S beam is greater than that of 
Z/A beam. For uniform beam with α = 10, the order of the first three frequencies from high to low is the A/A, A/S, Z/S 
and Z/A beams. For nonuniform beam with α = 10, the order of the first frequency is the A/S, A/A, Z/S and Z/A beams, 
and that of second to fourth frequencies is A/A, A/S, Z/S and Z/A beams. In addition, it can be found from Table 11 that 
the difference between the frequencies of A/A and A/S beams is small, especially when α = 10, the discrepancy is even 
smaller. The same phenomenon also occurs between Z/A and Z/S beams. When α = -10, the difference of frequencies 
among the four beams A/A, A/S, Z/A and Z/S is very small. 

Like the CF and PP beams, the order of frequencies for the four types of CP beams is A/A, A/S, Z/A and Z/S beams 
except for some typical cases. For example, the order of frequencies becomes A/A, Z/A, A/S and Z/S for all four 
frequencies of beams with α = -10, and for the first frequency of nonuniform beams with α = -3. In addition, as α = 10, 
the first three frequencies of the uniform Z/S beam and the first four frequencies of the nonuniform Z/S beam are larger 
than those of the corresponding Z/A beam. As can be seen in Table 12, when α = 10, the difference between the 
frequencies of A/A and A/S beams is small except for the third and fourth frequencies of the beams with uniform cross-
section. The same phenomenon also occurs between Z/A and Z/S beams. 



Vibration Analysis of Axially Functionally Graded Timoshenko Beams with Non-uniform Cross-section Wei-Ren Chen 

Latin American Journal of Solids and Structures, 2021, 18(07), e397 11/18 

 
Figure 4: Effect of Cb on dimensionless natural frequencies for clamped-free Z/A AFGM beams of r = 0.01 and α = -10 with various 

values of Ch. (a) First mode (b) Second mode (c) Third mode (d) Fourth mode. 

 
Figure 5: Effect of Ch on dimensionless natural frequencies for pinned-pinned Z/A AFGM beams of r = 0.01 and α = -10 with various 

values of Cb. (a) First mode (b) Second mode (c) Third mode (d) Fourth mode. 
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Figure 6: Effect of Cb on dimensionless natural frequencies for pinned-pinned Z/A AFGM beams of r = 0.01 and α = -10 with various 

values of Ch. (a) First mode (b) Second mode (c) Third mode (d) Fourth mode. 

For CC beams, basically A/A beam has the largest frequency, followed by A/S, Z/A and Z/S beams except for some 
exceptions. Like CF and CP beams, the order of frequencies is A/A, Z/A, A/S and Z/S for the beams with α = -10; however, 
the difference between the frequencies of Z/A and A/S beams is slight. When α = 3, the first and second frequencies of 
uniform Z/A beam and the first frequency of non-uniform Z/A beam are larger than those of the corresponding Z/A beam. 
When α = 10, the order of frequencies is A/S, A/A, Z/S and Z/A for the first and second frequencies, and is A/A, A/S, Z/S 
and Z/A for the third and fourth frequencies. 

Table 6 Effects of height and width taper ratios on first four dimensionless natural frequencies of clamped-pinned Z/A AFGM beams 
with r = 0.01 and α = -10. 

Cb mode Ch=0.1 Ch =0.2 Ch =0.3 Ch =0.4 Ch =0.5 Ch =0.6 Ch =0.7 Ch =0.8 Ch =0.9 

0.1 

λ1 12.2065 11.9714 11.7033 11.3953 11.0379 10.6166 10.1079 9.4669 8.5802 
λ2 28.9014 28.3459 27.7170 26.9975 26.1633 25.1783 23.9841 22.4723 20.3792 
λ3 47.0944 46.4158 45.6239 44.6907 43.5757 42.2166 40.5109 38.2658 35.0143 
λ4 64.0744 64.8251 64.0596 63.0676 61.8341 60.2800 58.2625 55.5058 51.3275 

0.2 

λ1 12.3043 12.0668 11.7966 11.4867 11.1278 10.7054 10.1961 9.5555 8.6714 
λ2 28.9592 28.4085 27.7845 27.0702 26.2414 25.2622 24.0742 22.5691 20.4841 
λ3 47.1392 46.4636 45.6757 44.7474 43.6379 42.2852 40.5868 38.3504 35.1099 
λ4 64.1128 64.8491 64.0947 63.1093 61.8819 60.3342 58.3243 55.5766 51.4102 

0.3 

λ1 12.4078 12.1681 11.8958 11.5843 11.2240 10.8008 10.2915 9.6521 8.7720 
λ2 29.0171 28.4720 27.8539 27.1457 26.3234 25.3510 24.1705 22.6738 20.5989 
λ3 47.1837 46.5119 45.7287 44.8059 43.7030 42.3577 40.6679 38.4418 35.2143 
λ4 64.1523 64.8693 64.1290 63.1515 61.9313 60.3913 58.3901 55.6530 51.5006 

0.4 

λ1 12.5170 12.2751 12.0011 11.6882 11.3271 10.9036 10.3950 9.7578 8.8836 
λ2 29.0733 28.5352 27.9243 27.2236 26.4092 25.4453 24.2740 22.7876 20.7258 
λ3 47.2267 46.5595 45.7820 44.8660 43.7708 42.4344 40.7550 38.5412 35.3298 
λ4 64.1908 64.8830 64.1610 63.1937 61.9822 60.4514 58.4607 55.7364 51.6010 

0.5 

λ1 12.6306 12.3870 12.1117 11.7981 11.4368 11.0139 10.5071 9.8738 9.0082 
λ2 29.1245 28.5955 27.9938 27.3026 26.4982 25.5450 24.3853 22.9123 20.8676 
λ3 47.2653 46.6043 45.8342 44.9267 43.8411 42.5157 40.8491 38.6507 35.4596 
λ4 64.2232 64.8851 64.1880 63.2341 62.0340 60.5148 58.5372 55.8286 51.7144 



Vibration Analysis of Axially Functionally Graded Timoshenko Beams with Non-uniform Cross-section Wei-Ren Chen 

Latin American Journal of Solids and Structures, 2021, 18(07), e397 13/18 

Cb mode Ch=0.1 Ch =0.2 Ch =0.3 Ch =0.4 Ch =0.5 Ch =0.6 Ch =0.7 Ch =0.8 Ch =0.9 

0.6 

λ1 12.7457 12.5012 12.2256 11.9122 11.5519 11.1311 10.6279 10.0010 9.1482 
λ2 29.1636 28.6469 28.0577 27.3793 26.5882 25.6490 24.5049 23.0498 21.0285 
λ3 47.2925 46.6407 45.8809 44.9848 43.9120 42.6010 40.9510 38.7727 35.6084 
λ4 64.2382 64.8651 64.2036 63.2688 62.0843 60.5806 58.6201 55.9322 51.8459 

0.7 

λ1 12.8543 12.6106 12.3364 12.0252 11.6682 11.2521 10.7557 10.1393 9.3059 
λ2 29.1735 28.6751 28.1041 27.4442 26.6722 25.7532 24.6310 23.2014 21.2140 
λ3 47.2908 46.6544 45.9106 45.0316 43.9773 42.6869 41.0603 38.9101 35.7837 
λ4 64.2101 64.7991 64.1918 63.2871 62.1262 60.6452 58.7092 56.0504 52.0033 

0.8 

λ1 12.9339 12.6947 12.4260 12.1214 11.7723 11.3660 10.8823 10.2841 9.4819 
λ2 29.1069 28.6391 28.0984 27.4688 26.7277 25.8411 24.7538 23.3643 21.4308 
λ3 47.2069 46.6006 45.8861 45.0370 44.0140 42.7574 41.1686 39.0631 35.9970 
λ4 64.0728 64.6223 64.1040 63.2531 62.1338 60.6916 58.7964 56.1844 52.2003 

0.9 

λ1 12.9026 12.6786 12.4264 12.1400 11.8112 11.4281 10.9720 10.4094 9.6633 
λ2 28.7869 28.3819 27.9032 27.3356 26.6572 25.8353 24.8168 23.5049 21.6736 
λ3 46.8249 46.2894 45.6429 44.8614 43.9078 42.7242 41.2149 39.2006 36.2550 
λ4 63.6041 64.0978 63.7358 63.0009 61.9761 60.6216 58.8161 56.3048 52.4515 

Table 7 Effects of height and width taper ratios on first four dimensionless natural frequencies of clamped-clamped Z/A AFGM 
beams with r = 0.01 and α = -10. 

Cb mode Ch=0.1 Ch =0.2 Ch =0.3 Ch =0.4 Ch =0.5 Ch =0.6 Ch =0.7 Ch =0.8 Ch =0.9 

0.1 

λ1 14.8824 14.5528 14.1730 13.7316 13.2127 12.5931 11.8356 10.8724 9.5396 
λ2 30.3509 29.9441 29.4565 28.8636 28.1301 27.2031 25.9969 24.3530 21.8923 
λ3 47.8869 47.3767 46.7752 46.0503 45.1537 44.0076 42.4793 40.3139 36.8848 
λ4 65.0555 64.8950 64.4427 63.7667 62.8556 61.6376 59.9575 57.4856 53.3667 

0.2 

λ1 14.8865 14.5635 14.1909 13.7573 13.2469 12.6365 11.8891 10.9374 9.6183 
λ2 30.3541 29.9536 29.4731 28.8882 28.1640 27.2477 26.0540 24.4249 21.9824 
λ3 47.8936 47.3872 46.7901 46.0708 45.1809 44.0434 42.5261 40.3748 36.9648 
λ4 65.0694 64.9099 64.4593 63.7862 62.8792 61.6672 59.9955 57.5357 53.4347 

0.3 

λ1 14.8818 14.5665 14.2023 13.7778 13.2774 12.6780 11.9429 11.0051 9.7031 
λ2 30.3469 29.9537 29.4814 28.9060 28.1927 27.2891 26.1102 24.4988 22.0786 
λ3 47.8927 47.3904 46.7984 46.0854 45.2034 44.0759 42.5714 40.4369 37.0499 
λ4 65.0784 64.9197 64.4711 63.8011 62.8990 61.6939 60.0321 57.5865 53.5070 

0.4 

λ1 14.8641 14.5578 14.2036 13.7900 13.3016 12.7155 11.9954 11.0749 9.7946 
λ2 30.3244 29.9398 29.4773 28.9132 28.2129 27.3245 26.1636 24.5740 22.1817 
λ3 47.8801 47.3827 46.7966 46.0909 45.2183 44.1027 42.6136 40.4995 37.1409 
λ4 65.0795 64.9217 64.4752 63.8091 62.9125 61.7156 60.0656 57.6373 53.5841 

0.5 

λ1 14.8265 14.5313 14.1890 13.7888 13.3150 12.7454 12.0439 11.1453 9.8931 
λ2 30.2784 29.9041 29.4536 28.9032 28.2189 27.3494 26.2109 24.6487 22.2920 
λ3 47.8494 47.3576 46.7785 46.0817 45.2204 44.1194 42.6494 40.5607 37.2382 
λ4 65.0679 64.9108 64.4669 63.8052 62.9155 61.7286 60.0932 57.6865 53.6667 

0.6 

λ1 14.7576 14.4758 14.1485 13.7648 13.3096 13.3096 12.0833 11.2132 9.9980 
λ2 30.1942 29.8330 29.3974 28.8644 28.2004 28.2004 26.2452 24.7187 22.4095 
λ3 47.7884 47.3034 46.7330 46.0471 45.2000 45.2000 42.6721 40.6166 37.3419 
λ4 65.0337 64.8774 64.4368 63.7807 62.8996 62.8996 60.1087 57.7302 53.7548 

0.7 

λ1 14.6352 14.3707 14.0626 13.7003 13.2693 12.7479 12.1024 11.2708 10.1067 
λ2 30.0432 29.6990 29.2831 28.7730 28.1360 27.3226 26.2520 24.7744 22.5317 
λ3 47.6721 47.1959 46.6366 45.9650 45.1366 44.0790 42.6670 40.6573 37.4499 
λ4 64.9561 64.8007 64.3646 63.7161 62.8463 61.6891 60.0982 57.7589 53.8466 

0.8 

λ1 14.4105 14.1696 13.8878 13.5552 13.1577 12.6750 12.0748 11.2986 10.2095 
λ2 29.7586 29.4383 29.0501 28.5725 27.9742 27.2073 26.1937 24.7886 22.6471 
λ3 47.4394 46.9751 46.4310 45.7796 44.9781 43.9567 42.5941 40.6538 37.5510 
λ4 64.7807 64.6270 64.1978 63.5603 62.7071 61.5750 60.0227 57.7437 53.9310 

0.9 

λ1 13.9380 13.9380 13.4932 13.2073 12.8633 12.4425 11.9156 11.2302 10.2660 
λ2 29.1297 29.1297 28.5043 28.0799 27.5454 26.8564 25.9397 24.6601 22.6983 
λ3 46.8820 46.8820 45.9157 45.2967 44.5396 43.5798 42.3039 40.4884 37.5807 
λ4 64.3146 64.3146 63.7456 63.1264 62.3008 61.2118 59.7281 57.5607 53.9405 

Table 6 Continued... 
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Table 8 Effects of material graded index on frequencies of various Z/A AFGM beams. 

BC α λ1 λ2 λ3 λ4 BC λ1 λ2 λ3 λ4 

CF 

-10 4.4449 15.6333 31.5733 49.0082 

CP 

11.2240 26.3234 43.7030 61.9313 
-6 4.7360 16.0390 31.9440 49.4211 11.5645 26.6980 44.0827 62.4317 
-3 5.1041 16.4705 32.4667 50.2388 11.7772 27.0205 44.6817 63.4477 
-1 5.3236 16.8374 33.1053 51.2962 11.7684 27.2512 45.3244 64.5875 
0 5.3711 17.0255 33.4843 51.9289 11.7147 27.3401 45.6578 65.1886 
1 5.3679 17.1903 33.8568 52.5492 11.6489 27.3992 45.9494 65.7212 
3 5.2635 17.3947 34.4629 53.5557 11.1095 26.5020 44.9540 64.8457 
6 5.0704 17.4458 34.9346 54.3723 11.4976 27.5056 46.5920 66.8996 

10 4.9061 17.3522 35.0900 54.7309 11.5288 27.5944 46.7064 67.0535 

PP 

-10 6.3385 21.9220 40.1004 58.5499 

CC 

13.2774 28.1927 45.2034 62.8990 
-6 6.3464 22.2698 40.8144 59.9231 13.5840 28.5568 45.5729 63.3914 
-3 6.4251 22.9635 42.0355 61.8303 13.6585 28.8164 46.1405 64.3744 
-1 6.5629 23.6002 43.1299 63.4739 13.4927 28.9129 46.6805 65.4279 
0 6.6543 23.8775 43.6413 64.2556 13.3628 28.9104 46.9297 65.9575 
1 6.7500 24.0898 44.0632 64.9168 13.2346 28.8790 47.1278 66.4091 
3 6.9224 24.3319 44.5923 65.7838 13.0560 28.7960 47.3573 66.9936 
6 7.0951 24.4701 44.8820 66.2848 12.9954 28.7607 47.4672 67.3065 

10 7.2110 24.5691 45.0015 66.4534 13.0706 28.8478 47.5311 67.3932 

4 CONCLUSION 

The eigenvalue problem for the free vibration of non-uniform AFGM Timoshenko beams with various boundary 
conditions is established based on the Chebyshev collocation method. The axially graded material properties of the beam 
are assumed to vary exponentially. Four types of AFGM Timoshenko beams constructed from two metals and two 
ceramics are examined to demonstrate the effect of material compositions on the vibration behavior. Based on the 
results discussed previously, some major conclusions are highlighted as follows. 

1. Depending on the values of taper ratios and boundary conditions, the natural frequencies of AFGM beams may 
decrease or increase with the increasing height and width taper ratios. The height taper ratio has a more 
considerable effect on the natural frequencies than the width taper ratio except for the fundamental frequencies 
of clamped-free beams. 

2. The variation of natural frequencies against the values of material graded index varies differently depending on the 
restraint types of the AFGM beams. 

3. The natural frequencies of AFGM beams always reduce as the slenderness ratio increases. 

4. Except for certain cases, basically the AFGM beam constructed from Alumina/Aluminum has the highest frequency, 
followed by the beams made from Alumina/Stainless steel, Zirconia/Aluminum and Zirconia/Stainless steel. 

Table 9 Effects of slenderness ratios on frequencies of various Z/A AFGM beams (Cb = Ch =0.5,α = 3). 

BC s λ1 λ2 λ3 λ4 BC λ1 λ2 λ3 λ4 

CF 

10 5.7011 17.9226 34.9082 53.9387 

CP 

11.731 27.6358 46.4857 66.5543 
15 5.9881 20.6172 42.9089 69.3777 13.1636 33.6959 59.4700 88.0143 
20 6.1005 21.9200 47.6079 79.6896 13.8128 37.0702 67.9055 103.3178 
25 6.1551 22.6208 50.4574 86.6044 14.1499 39.0461 73.4191 114.1922 
40 6.2160 23.4693 54.3028 97.0140 14.5468 41.6252 81.4737 131.7932 
50 6.2304 23.6805 55.341 100.0918 14.6436 42.3037 83.7941 137.3496 

100 6.2497 23.9721 56.8369 104.7746 14.776 43.2677 87.2673 146.1852 

PP 

10 6.7599 24.3585 44.6278 65.8059 

CC 

13.1016 28.8576 47.4069 67.0408 
15 7.2278 28.0742 54.9724 84.9724 15.2398 36.3062 61.9987 90.1096 
20 7.4158 29.9270 61.0578 97.6454 16.2932 40.7546 72.0013 107.2412 
25 7.5079 30.9446 64.7891 106.1477 16.865 43.4808 78.8019 119.8109 
40 7.6118 32.2006 69.9106 119.0740 17.5624 47.1965 89.1769 140.9745 
50 7.6364 32.5176 71.3156 122.9491 17.7367 48.2071 92.2766 147.8983 

100 7.6696 32.9587 73.3607 128.9128 17.978 49.669 97.0215 159.1885 
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Table 10 Effects of material constituents on frequencies of CF AFGM beams with various α. 

α material 
Cb/Ch = 0/0 Cb/Ch = 0.5/0.5 

λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4 

-10 

A/A 4.2407 17.3452 36.7106 54.1636 5.2641 17.4238 34.7033 53.6431 

A/S 3.4635 15.1064 32.9028 49.6085 4.4771 15.2588 30.9632 48.5644 

Z/A 3.7918 15.9645 33.8195 50.5106 4.8266 16.1044 31.9656 49.3529 

Z/S 3.1448 14.1531 30.992 47.1774 4.1551 14.3498 29.1613 45.8307 

-3 

A/A 5.6059 21.3784 43.4724 62.8835 6.9669 21.1439 41.0803 63.0698 

A/S 3.875 17.0318 37.0995 55.06 5.0078 17.0696 34.8605 54.641 

Z/A 4.3605 16.9558 34.7398 51.7567 5.5327 16.9568 32.884 50.6078 

Z/S 3.1704 14.5222 32.0209 48.585 4.1934 14.7138 30.096 47.3152 

0 

A/A 6.4529 25.1721 51.2134 75.0721 8.2321 24.871 48.0182 73.7759 

A/S 4.3246 19.8436 43.1684 63.4144 5.6524 19.8083 40.4538 63.2824 

Z/A 4.5345 17.5155 36.0084 53.974 5.8175 17.532 33.9186 52.3087 

Z/S 3.2427 15.1066 33.2936 50.4004 4.2971 15.2923 31.2935 49.1456 

3 

A/A 6.7457 27.7939 57.7151 86.4316 8.7695 27.7849 53.9775 83.2066 

A/S 4.8343 23.2556 50.4095 74.3115 6.4048 23.2375 47.2026 73.7243 

Z/A 4.3993 17.7526 37.139 56.0609 5.7011 17.9226 34.9082 53.9387 

Z/S 3.3613 15.7716 34.5996 52.3815 4.4635 15.9493 32.5453 51.0777 

10 

A/A 6.6132 28.8966 61.9925 93.9433 8.684 29.2976 58.2359 90.3294 

A/S 5.4852 26.3022 57.3188 86.2491 7.336 26.4074 53.7874 84.2747 

Z/A 4.0727 17.567 37.7038 57.0976 5.3226 17.8817 35.5365 55.1159 

Z/S 3.5407 16.3291 35.7071 54.2395 4.7053 16.5007 33.5938 52.7644 

Table 11 Effects of material constituents on frequencies of PP AFGM beams with various α.  

α material 
Cb/Ch = 0/0 Cb/Ch = 0.5/0.5 

λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4 

-10 

A/A 8.8664 27.4786 47.8341 59.8793 6.3997 23.1266 42.6276 62.7588 

A/S 8.4198 25.9397 45.3942 57.2846 6.2201 21.9996 40.5579 59.919 

Z/A 8.5267 25.9028 44.8624 57.7733 6.2179 21.9227 40.0867 58.5017 

Z/S 8.2201 24.958 43.5423 55.9143 6.1323 21.3072 39.0531 57.6134 

-3 

A/A 10.6897 33.0346 57.5276 67.5994 10.4433 37.1765 67.9696 100.2559 

A/S 9.4849 29.2753 51.1403 61.2772 7.0276 25.0824 46.3365 68.5972 

Z/A 8.8228 26.9453 46.8939 60.1156 6.2749 22.9964 42.0643 61.831 

Z/S 8.464 25.7594 44.9141 57.2414 6.3219 21.9406 40.2334 59.3569 

0 

A/A 12.8424 38.7404 67.2071 80.6633 8.9885 33.2007 60.7103 89.4888 

A/S 11.2784 34.1054 59.3382 68.2911 8.2376 28.8449 53.0091 78.319 

Z/A 9.1309 27.8616 48.5051 62.5079 6.4899 23.9202 43.6864 64.2787 

Z/S 8.8599 26.8129 46.6825 59.1575 6.6225 22.8072 41.7885 61.6342 

3 

A/A 14.6211 43.0527 74.4581 94.5451 10.4433 37.1765 67.9696 100.2559 

A/S 13.6134 39.9668 69.154 78.7618 10.0147 33.8532 61.9486 91.4141 

Z/A 9.3801 28.3156 49.3606 64.2676 6.7599 24.3585 44.6278 65.8059 

Z/S 9.3202 27.9761 48.6421 61.5743 6.9666 23.8056 43.5472 64.1858 

10 

A/A 15.881 46.5378 79.7792 104.2693 11.6719 40.062 73.0138 107.6481 

A/S 15.847 46.3248 79.618 94.9312 11.7854 39.4761 71.4935 105.0894 

Z/A 9.5922 28.6606 49.7154 64.9673 7.0678 24.5677 45.0052 66.451 

Z/S 9.6864 29.0776 50.4829 64.2444 7.2314 24.8136 45.251 66.5883 
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Table 12 Effects of material constituents on frequencies of CP AFGM beams with various α.  

α material 
Cb/Ch = 0/0 Cb/Ch = 0.5/0.5 

λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4 

-10 

A/A 13.4086 31.9141 51.7972 60.6589 12.4419 28.7821 47.7042 67.473 
A/S 11.5854 28.3555 46.8734 58.3731 10.7277 25.4807 42.969 61.5306 
Z/A 12.319 29.3431 47.6356 59.8765 11.4368 26.4982 43.8411 62.034 
Z/S 10.8284 26.6431 44.2193 57.8264 10.0172 23.9578 40.4861 58.1459 

-3 

A/A 16.1067 37.4243 60.5469 67.922 14.9729 34.0094 55.9835 79.1177 
A/S 12.943 31.9443 52.7346 61.8067 11.9371 28.6847 48.4077 69.2369 
Z/A 12.8996 29.9434 48.5997 61.7129 12.009 27.2196 44.8408 63.5648 
Z/S 11.1031 27.5406 45.6941 58.725 10.2562 24.7268 41.8294 60.0317 

0 

A/A 18.3095 42.5087 69.604 80.8435 16.8835 38.8848 64.4856 91.6243 
A/S 15.0498 37.0281 61.0717 68.6256 13.792 33.2664 56.0399 80.0905 
Z/A 12.8934 30.2294 49.7045 64.17 11.9269 27.5404 45.8167 65.3032 
Z/S 11.6054 28.7343 47.5403 60.4789 10.7154 25.7909 43.5199 62.3875 

3 

A/A 19.9082 46.3528 76.5448 94.7805 18.2321 42.5569 71.2708 101.7936 
A/S 17.8761 43.2093 71.0487 78.9536 16.3508 38.8764 65.1843 93.1016 
Z/A 12.7625 30.3402 50.4258 65.8577 11.731 27.6358 46.4857 66.5543 
Z/S 12.2289 30.0166 49.5182 62.9734 11.3017 26.96 45.3385 64.9468 

10 

A/A 21.0633 49.7242 81.7484 104.7704 19.3448 45.3349 76.1384 108.9015 
A/S 20.838 49.7007 81.3255 95.3596 19.2254 44.7513 74.5742 106.4673 
Z/A 12.7318 30.6158 50.776 66.3049 11.7118 27.7456 46.8167 67.1274 
Z/S 12.772 31.1434 51.3116 66.2673 11.8284 28.0172 47.0089 67.3071 

Table 13 Effects of material constituents on frequencies of CC AFGM beams with various α.  

α material 
Cb/Ch = 0/0 Cb/Ch = 0.5/0.5 

λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4 

-10 

A/A 16.3928 33.2057 52.3728 68.545 14.4628 30.5826 49.0851 68.2845 

A/S 14.3816 29.6958 47.5981 63.5634 12.5403 27.1999 44.3711 62.391 

Z/A 15.1658 30.689 48.3179 64.7098 13.315 28.2189 45.2204 62.9155 

Z/S 13.5305 28.0146 45.0219 60.8917 11.7341 25.6217 41.8916 59.0497 

-3 

A/A 18.8337 38.4425 60.892 80.7591 17.0061 35.8171 57.2714 79.7594 

A/S 15.9508 33.1948 53.3487 70.7978 13.9362 30.7379 50.3999 70.9856 

Z/A 15.3785 31.1742 49.2428 66.314 13.7252 28.8722 46.1803 64.4084 

Z/S 13.9302 28.9106 46.472 62.7747 12.0527 26.4381 43.2468 60.921 

0 

A/A 20.76 43.0964 69.619 94.8946 18.7636 40.4637 65.5041 92.0081 

A/S 18.4012 38.1384 61.4322 82.4457 16.0711 35.2132 57.4092 80.7298 

Z/A 15.0204 31.1424 50.0911 68.105 13.4244 28.9794 46.9808 66.0012 

Z/S 14.6114 30.1476 48.3098 65.3853 12.6283 27.5771 44.9712 63.2807 

3 

A/A 22.3598 46.735 76.5918 105.7572 20.0146 43.9052 72.0118 101.9661 

A/S 21.7512 44.291 71.1405 97.0267 18.9675 40.9782 66.5163 93.5989 

Z/A 14.7603 31.0117 50.5738 69.1699 13.1016 28.8576 47.4069 67.0408 

Z/S 15.4105 31.538 50.3355 68.3108 13.3287 28.8536 46.8658 65.8777 

10 

A/A 24.0832 50.2262 81.8225 112.7892 21.2313 46.6646 76.7595 108.9785 

A/S 25.3428 51.3118 81.5111 111.6912 22.084 47.25 76.1682 107.0005 

Z/A 14.9451 31.2678 50.8351 69.5317 13.1039 28.8801 47.5586 67.427 

Z/S 16.0227 32.8202 52.2987 70.9749 13.8957 30.026 48.6867 68.363 
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