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Abstract 
In the present work the performance of finite element formulations with different reduced integration 
strategies is evaluated for Contact Mechanics applications. One-point quadrature and selective reduced 
integration are utilized here using hourglass control to suppress volumetric and shear locking for materials 
with incompressible plastic behavior and bending-dominated problems. A corotational formulation is adopted 
to deal with physically and geometrically nonlinear analysis and the generalized-α method is employed for 
time integration in the nonlinear dynamic range. The contact formulation is based on the penalty method, 
where the classical Coulomb’s law is used considering a convected coordinate system for three-dimensional 
friction with large deformation and finite sliding. Contact problems involving deformable and rigid bodies, as 
well as static and dynamic analysis, are investigated and results are analyzed considering the different 
underintegration formulations proposed here. 
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1 INTRODUCTION 

Element technology is mainly concerned with the development of accurate and efficient finite element 
formulations, especially for large-scale and nonlinear problems. In the field of Contact Mechanics, applications frequently 
require high computational efforts due to the inherently nonlinear nature of the contact problem, taking into account 
the contact search algorithms and procedures for numerical evaluation of contact forces and stress tensor components. 
In this context, underintegration and stabilization techniques may be utilized to obtain computationally efficient 
algorithms and element formulations free of hourglass and locking instabilities. 

Among the existing approaches to solve numerically the contact problem, the penalty and Lagrange multiplier 
methods are the most popular. In the penalty method, the impenetrability restriction for two contacting bodies is only 
satisfied approximately using a penalty parameter and a gap function to evaluate small interpenetrations between the 
so-called master and slave bodies. Sliding may be also permitted considering an interface constitutive formulation with 
elastoplastic characteristics (Michalowski and Mroz (1978)), such as the Coulomb friction model, and a computationally 
efficient algorithm for contact search is required, especially for large deformation problems. In this case, implicit methods 
are very convenient for the solution of low-frequency dynamic applications, although a careful procedure for the 
linearization of the virtual work principle is necessary. The highly nonlinear nature of the contact problem is enhanced 
when materials with inelastic behavior are analyzed. 

A continuum framework for frictional contact with large deformation was introduced by Laursen and Simo (1993), 
where a convected coordinate system was developed in order to obtain a friction law with frame indifference. However, 
some limitations were observed when sliding movements extend over the boundaries of adjacent elements, considering 
that the corresponding convected coordinate systems are locally defined and, therefore, discontinuous. A frictional 
contact formulation for large slip was presented by Agelet de Saracibar (1997) and Chen et al. (1999) proposed a 
numerical formulation similar to Laursen and Simo (1993), where the convected coordinate system is maintained, but 
the sliding term of the contact constitutive equation is evaluated using the reference configuration to include finite 
sliding. Detailed information on Computational Contact Mechanics may be found in Wriggers (2006) and Laursen (2010). 

A low-order finite element such as the eight-node hexahedron is a natural choice for three-dimensional problems. 
Unfortunately, finite element formulations with full quadrature are very inefficient for large-scale systems and may be 
subject to numerical instabilities due to locking phenomena for incompressible materials and bending-dominated 
problems. Significant improvements are obtained in terms of efficiency and accuracy by using low-order elements with 
underintegration numerical techniques, where reduced integration is applied on the stress/strain tensor components 
uniformly or selectively (see, for instance, Belytschko et al. (2014)). However, stabilization procedures are required to 
avoid excitation of spurious modes, which can be suppressed using hourglass control techniques, although hourglass 
control cannot fully remove these kinematic modes, particularly for coarse meshes. These hourglass modes are found 
when displacement fields are associated with spurious zero strain energy modes. 

In order to deal with the incompressibility constraint, finite elements with mixed formulation may be adopted, but 
improvements in the element performance are restricted to constrained problems. Finite element models based on 
displacement formulation suffer from volumetric locking, which can be remedied using higher order elements. However, 
higher order elements are not recommended for large-scale computations and low-order elements are also subject to 
volumetric locking for incompressible or nearly incompressible materials. In this case, reduced integration is generally 
utilized considering selective-reduced integration or uniform-reduced integration (one-point quadrature). For eight-node 
hexahedral elements, selective-reduced integration refers to one-point integration over the volumetric terms and 2x2x2 
quadrature points for the deviatoric terms. While selective-reduced integration leads robust solid elements, this aspect 
is not observed for shell elements (Belytschko et al. (2014)). 

Although the incompressible behavior is unusual in linear analysis, some materials are incompressible in the plastic 
range. Nagtegaal et al. (1974) identified that displacement predictions are often underestimated when the finite element 
method is applied to elastoplastic analysis, especially for perfectly plastic materials. A mean-dilatation formulation was 
then proposed to improve the finite element solution in the fully plastic range. Hughes (1980) developed the so-called 
B-bar method using a projection method for displacement formulations, where the strain tensor is broken up into 
deviatoric and dilatational parts, with only the later being underintegrated (selective integration). The F-bar method was 
proposed by Souza Neto et al. (1996) to deal with large-strain incompressibility and Elguedj et al. (2008) presented a 
nonlinear F-bar formulation for large deformation employing a modified minimum potential energy principle and the B-
bar method. 

One of the first works on hourglass control for hexahedral elements with one-point quadrature is due to Kosloff and 
Frazier (1978), where h-stabilization was adopted. Later, Flanagan and Belytschko (1981) developed a stabilization 
scheme using a user-specified parameter to define an hourglass control based on artificial damping and artificial stiffness. 
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In their element formulation, the stabilization matrix and hourglass-resisting force vector were obtained using anti-
hourglass modes. Volumetric and shear locking were not investigated. Liu et al. (1985) proposed a stabilization matrix 
without user-specified parameters utilizing anti-hourglass vectors obtained from partial derivatives of the strain 
components with respect to the local natural coordinates. Element stabilization was accomplished by expanding the 
strain tensor components in Taylor series up to bilinear terms. Nevertheless, shear locking was not eliminated. 

Schultz (1985) utilized an hourglass control scheme where the stress tensor components are expanded in Taylor 
series about the element center. The hourglass modes were suppressed by retaining the first and second order derivative 
terms in the Taylor series expansion. A stabilization approach based on the assumed strain method and corotational 
coordinate system was presented by Belytschko and Bindeman (1993) for eight-node hexahedral elements with one-
point quadrature. Liu et al. (1994) proposed an underintegrated eight-node hexahedron formulation based on the model 
introduced by Liu et al. (1985), where shear locking instabilities were eliminated by describing the generalized strain 
components in a local corotational system and omitting certain nonconstant terms of the shear strain tensor. 

Stainier and Ponthot (1994) presented a one-point integration formulation for large strain elastoplastic analysis 
using quadrilateral elements, where the stabilization scheme proposed by Flanagan and Belytschko (1981) is generalized 
and a modification of the assumed strain stabilization method introduced by Belytschko and Bindeman (1991) is 
presented. A finite element formulation involving hexahedral elements with one-point quadrature applied to 
elastoplastic analysis may be found in Liu et al. (1998). Reese (2005) also investigated stabilization techniques for one-
point integration formulations applied to three-dimensional elastoplastic analysis with finite strains, where an optimized 
parameter was proposed for the stability matrix. A sensitivity study with respect to the optimized parameter for perfectly 
elastoplastic materials was carried out by Reese (2007) using an eight-node solid-shell finite element formulation based 
on reduced integration and hourglass stabilization. 

A simple formulation for hexahedral elements with one-point quadrature was presented by Hu and Nagy (1997) 
using the multi-quadrature formulation proposed by Liu et al. (1994). The corotational coordinate system is adopted to 
eliminate singular modes associated with shear locking and volumetric locking was suppressed evaluating the dilatational 
part of the gradient matrix at the center of the element. A similar formulation was adopted by Duarte Filho and Awruch 
(2004) for geometrically nonlinear static and dynamic analysis of shells, plates and beams. Braun and Awruch (2008) 
extended that formulation to deal with highly nonlinear dynamic problems, where the Generalized-α method was utilized 
for time integration. A numerical model for elastoplastic analysis was implemented by Braun and Awruch (2013a, 2013b) 
to simulate the mechanical behavior of soils using explicit stress integration and the Modified Cam-Clay model. 
Extensions of the numerical model presented by Duarte Filho and Awruch (2004) were also successfully applied to 
composite materials (see Andrade et al. (2007)) and fluid-structure interaction (see Braun and Awruch (2009)). 

To the authors’ knowledge, papers dedicated to the study of solid elements with one-point quadrature applied to 
three-dimensional contact problems and elastoplastic materials are scarce. Therefore, the main objective of the present 
work is to investigate the performance of an eight-node hexahedral element formulation using one-point quadrature, 
developed by Braun and Awruch (2008, 2013a, 2013b), when it is applied to contact problems with elastoplastic materials 
and compare its efficiency and robustness with the B-bar method, which is a selective-reduced integration technique 
that is widely used in the literature and also implemented into some finite element software. 

The numerical model utilized here is an extension of the eight-node hexahedral finite element formulation 
developed by Braun and Awruch (2008, 2013a, 2013b). The contact formulation is built using the algorithms proposed 
by Bittencourt and Creus (1998) and Wriggers (2006), where a three-dimensional frictional contact model with finite 
sliding, large deformation and elastoplastic materials is considered. A corotational coordinate system is adopted to deal 
with geometrically and physically nonlinear applications and the contact problem is kinematically described utilizing a 
convected coordinate system. The penalty method is adopted to approximately enforce the impenetrability condition 
using an implicit scheme, where the Coulomb constitutive model and an iterative search algorithm are employed. A 
consistent linearization is adopted for the weak form of the equations of motion and time integration for nonlinear 
dynamic analysis is performed using the generalized-α method. The sparse system of equations obtained is solved using 
the PARDISO solver (De Coninck et al. (2016); Verbosio et al. (2017); Kourounis et al. (2018)). Contact problems involving 
deformable and rigid bodies, static and dynamic analyses are investigated taking into account the influence of the 
underintegration approaches presented here on the numerical predictions. 

The present work is organized as follows: in section 2, the contact mechanics formulation utilized here is presented; 
in section 3, the incremental analysis and the finite element implementation are discussed; in section 4, the 
underintegration and stabilization techniques proposed in this work are detailed; in section 5, numerical analyses are 
performed and results obtained with numerical formulations proposed here are compared with predictions obtained by 
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other authors, including comparisons with ANSYS commercial software. Finally, conclusions on the present investigation 
are summarized in section 6. 

2 CONTACT MECHANICS FORMULATION 

2.1 Contact kinematics 

Consider the motion of two deformable bodies with reference configurations at t = 0 denoted by Ωα (α = 1,2), as 
indicated in Figure 1, which are approaching each other and eventually come into contact under a finite deformation 
process. Each body is defined here as a bounded domain Ωα ⊂ R3, with their respective boundaries Γα (α = 1,2) 
decomposed into three parts: α

σΓ  denoting a boundary region with prescribed surface loads, αΓu  indicating a boundary 
region with prescribed displacements and αΓc  is the boundary region where contact forces are developed during a time 
interval ti ≤ t ≤ tf, when the bodies come into contact. 

 
Figure 1 Definitions on contact kinematics applied to finite deformation problems. 

Assuming that Xα (α = 1,2) represents material points localized on their respective boundary surfaces Γα in the 
reference configuration and xα (α = 1,2) are their corresponding positions in the current configuration, the 
impenetrability constraint is expressed here using the closest point projection method, which leads to the following 
inequality equation: 

 2 1 1 0Ng    x x n   (1) 

where α α α= +x X u , uα (α = 1,2) are the displacement vectors associated with the material points αX  and gN is the 
normal gap. The outward unit normal vector n1  is obtained considering convective coordinates and the minimization of 
a distance function for a master-slave pair of points, i.e.: 

1 1
1 1 2

1 1
1 2






a a
n

a a
  (2) 

where ( )ββ ,β=a x1 1 ξ  (β = 1,2) are tangent vectors defined in a local convective coordinate system related to the current 

configuration (see Figure 2), with boundary γ1  and parametric coordinates ξ β
, which correspond to the orthogonal 

projection of the slave point x2 onto the current master surface, i.e. x1 . 
In the tangential direction, the contact problem is evaluated taking into account the stick and slip conditions. In the 

first case, the slave point sticks to the master body and the convective coordinates ξ β
 are invariant during the motion. 
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Considering that gT denotes the relative tangential displacement vector evaluated on the boundary surface of the master 
body, the following stick condition can be defined: 

         ( 1,2)Tg 
  T

α αg a 0   (3) 

where the tangential gap components are given by: 

 2 1 1
Tg 

   αx x a   (4) 

which implies that − =x x 02 1  for the stick case. 

 
Figure 2 The convective coordinate system and the orthogonal projection method. 

On the other hand, when sliding occurs in frictional contact problems, the relative velocities of the slave point x2 on 
the contact surface have to be integrated over the time interval ti ≤ t ≤ tf regarding the slip motion. The path of x2 relative 

to the master surface is then obtained considering that the parametric coordinates ξ β
 of the projection point x1  are 

constantly varying. The path of x2 on the contact surface can be computed using the differential of Eq. (3) as follows: 

d d1 T
α

αg a   (5) 

where the tangent vectors α ,α=a x1 1
 are evaluated at the instantaneous projection point ξ α

 and d dξ ξα α=  t . The time 

derivative of parametric coordinates ξ α  can be obtained considering the time derivative of Eq. (4) and taking into 

account that Eq. (4) is null at the contact point due to orthogonality between −x x2 1  and 
αa1 . This procedure leads to the 

following system of equations: 

 2 1 1 1 1
,           ( , 1,2)NH g         

 β αβ
α α α βv v a n v   (6) 

where =v x2 2 , =v x1 1  and ( )−αβ
αβ=H H

1
, with αβH  defined as: 

NH a g b    αβ αβ αβ   (7) 

where αβ α β= ⋅x xa 1 1
, ,  are the components of the metric tensor and αβ αβ ⋅= x nb 1 1

,  are the components of the curvature 
tensor. 
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A Lie derivative is finally obtained, which is utilized to compute objective updates of the tangential slip vector gT, 
i.e.: 

1
T    α

αg a   (8) 

2.2 Constitutive equations 

When contact takes place between two bodies, contact tractions are developed on their respective contact areas, 
which are calculated here considering constitutive equations relating normal and tangential components with the 
corresponding gap functions. In the current configuration, the stress vector evaluated in the master surface may be 
expressed as: 

 1 1 1 1 1
1 2,      ( )N Tt t    β

β β = 1, 2t n a   (9) 

where Nt1  is the normal contact pressure and βTt1
 are the contact tangential components, both defined with respect to 

the projection point ( )ξ ξ= 1 2,ξ  in the local contact surface of the master object. In order to satisfy the action-reaction 

principle, the traction vector acting on the slave body is determined as ( )ξ ξ−t = t2 1
1 2, . Notice that = <N Nt t1 2 0  and the 

tangential components βTt1
 are null for frictionless contact. 

For frictional contact, the Coulomb’ law is utilized in an elastoplastic framework, where the tangential slip is 
decomposed into elastic (stick) and plastic (slip) parts, i.e.: e p

T T+g = g gT . The Coulomb plastic function may be presented 
as: 

1 1
T Nt = t   (10) 

where Φ > 0 indicates slip and Φ ≤ 0 denotes stick. The tangential part of the friction traction vector is evaluated here 
considering a convected basis owing to finite deformation, i.e. β

βt = aT Tt1 1 . A flow rule for the tangential slip rate is also 
defined using the maximum dissipation principle, which leads to: 

1
1

p
T T

T

 






 g = n

t
  (11) 

where γ  is the plastic parameter and Ψ = tT
1  is the plastic potential, which leads to =n t tT T T

1 1 1 . 

In the present work, the penalty method is utilized to remove limitations imposed by the contact constraints to the 
boundary value problem. The algorithmic treatment of the contact problems is then possible by specifying constitutive 
equations relating contact traction vector components to the corresponding contact kinematic quantities. In this case, 
the penalized constitutive relations may be formulated as follows: 

1
N N Nt k g   (12) 

where kN is normal penalty parameter. The contact tangential traction during the stick condition is obtained as: 

1
T Tkt ge

T   (13) 

where kT is the tangential penalty parameter. By using Eqs. (11), (13) and the decomposition of the tangential slip rate 
vector, one obtains: 
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 1
1

1

1T
T T

TT
k

  


t
g t

t
  (14) 

where ℑtT
1  is the Lie derivative of the tangential traction vector tT

1 . 

2.3 Weak form 

The Hamilton’s principle is usually adopted to describe the dynamic behavior of a continuum, which may be 
expressed as follows: 

 d d
0 0

f ft t

H d
t t

K t W t         (15) 

T Td d1 1
;

2 2
K v K v       u u u u   (16) 

  T T T Td d d d d du v v s v v s              Τ;u b u t u b u tε ε σ   (17) 

T Td d;d d d dW v W v     u f u f   (18) 

where K and π are the kinetic and total potential energy, respectively, U is the potential energy, V is the external force 
potential, Wd is the work done by the non-conserving forces fd, including damping, and ( ) d= ∫u ε σ ε  is the specific strain 
energy. The displacement variations δu must vanish at the time limits t0 and tf and also on boundary su, where 
displacements are imposed. The material is characterized by the specific mass ρ and constitutive relations must be 
established between the Cauchy stress tensor σ and the small strain tensor ε. In order to deal with finite deformation 
problems, a special care is required with respect to the kinematical description of the continuum. In this work a 
corotational formulation is adopted, where stress and strain components are measured according to local reference 
systems at the instantaneous configuration. 

The semi discrete system of momentum equations is obtained taking into account that they are discrete in space 
but continuous in time. The space discretization is performed here considering the Bubnov–Galerkin method applied into 
the context of the Finite Element analysis, where displacement variations associated with the variational form assume 
the role of weight functions. By integrating by parts the kinetic energy variation presented in Equation (16) and taking 
into account the restrictions imposed on the displacement variations δu at the time limits t0 and tf, the following 
expression is obtained: 

  TT T T Td d d d d d
0

0
ft

t

v v v v s t               c −u u u u u u b u tσ   (19) 

considering that d c=f u , where c is the damping coefficient. 
In addition, the solution of the weak form is subjected to boundary conditions t  on sσ and u  on su, as well as initial 

condition given by: 

   T Td d0 0; 0 0v v            0 0u u u u u v   (20) 

where 0u  and 0v  are the initial displacement and velocity fields, respectively. 
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Contact is introduced into the variational formulation taking into account a two body contact problem, where the 
addition of two weak forms is considered as follows: 

     

     

T T T

T T T

d d d

d d d d

( ) ( ) ( )
0

( ) ( ) ( )

2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )        0

f

i i i

i i i
c

t

i i i i i i i i i i i

i t v v v

i i i i i i i i i

v s s

v c v v

v s s t



   

  



    
  

   

  

 u u u u u

u b u t u t

σ

  (21) 

The equation above is also subjected to initial conditions u i( )
0  and v i( )

0  and boundary conditions u i( )  are imposed 
on i

us( ) . Notice that the virtual work due to traction is decomposed into prescribed tractions t i( )  on σ
is( )  and tractions t i( )  

due to contact restrictions on i
cs( ) . 

The contact virtual work δWc can be reduced to a single term over i
cs( )  by considering that t(2)  = - t(1) , i.e.: 

 T
d

(1)

(1) (2) (1) ( )

c

i
c

s

W s     u u t   (22) 

In the frictionless case, Eq. (22) leads to: 

d
(1)

( )

c

i
c N N

s

W t g s     (23) 

On the other hand, when friction contact is considered, one obtains: 

   d
(1)

( )      1,2

c

i
c N N T

s

W t g t s


        (24) 

where   are the contravariant components of the tangential virtual displacement vector Tg , which is evaluated over 
( )i
cs  in the surface coordinate system. 

For the solution of the system of nonlinear equations given by Eq. (21), the Newton-Raphson method is adopted 
here, where linearization procedures must be carried out considering an incremental-iterative approach. Taking into 
account that a current equilibrated configuration xα (α = 1,2) is known at a time instant t and a solution is required at t + 
Δt, the following linearized problem is proposed: 

   , , 0ext c ext cW W W W      int int∆ ∆   (25) 

where δWint,ext is the internal and external virtual work, excluding contact forces, and Δ(⋅) denotes directional derivative 

associated with directions of Δuα, which is utilized to update the geometric configurations as ( ) ( ) ( )α α α+

+∆ +∆
= + ∆x x u

i i i

t t t t

1
,

with i indicating iterations within a time increment Δt. 
A special attention is given here to the contact term Δ(δWc), whereas Δ(δWint,ext) is obtained considering usual 

procedures. The directional derivative of δWc is obtained as follows: 

       d d
(1) (1)

( ) ( )      1,2

c

i i
c N N T N N T

s

W t g t s t g t
 

           
Γ

∆ ∆ ∆ Γ
  (26) 
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where derivation of ∆ Nt , δ∆ Ng , 
α

∆ Tt  and αδξ∆  must be performed, which are not presented here for sake of brevity. 

A detailed description on linearization of the contact virtual work may be found in Wriggers (2006) and Laursen (2010). 

3 FINITE ELEMENT MODEL 

3.1 Discretized weak form 

The finite element model is obtained here considering the semidiscrete approach, where spatial discretization is 
performed over the continuous weak form given by Eq. (21) using one-point quadrature hexahedral finite elements. In 
addition, nodal displacements are supposed to be continuous functions of time. The set of nonlinear ordinary differential 
equations is temporally discretized employing the generalized-α method (Chung and Hulbert (1993); Kuhl and Crisfield 
(1999)) in order to maintain numerical stabilization over time integration and incremental-iterative procedures are 
adopted taking into account the Newton-Raphson method. The discretized weak form is then presented as: 

           T T T T T Td d d d d d d
0

1

0
f

e e e e ce e

t nel

et v v v v s s

v v v v s s t



      


            
       



cu u u u u b u t u tε σ   (27) 

Finite element approximations are adopted for geometry and displacement field using hexahedral finite element 
interpolation functions in the semidiscrete sense, i.e.: 

           ,           ,e et t t t x X N x u x N uξ ξ   (28) 

where xe and ue are the nodal coordinates and nodal displacement vectors, respectively, which are associated with 
element e, and N is a row matrix containing the interpolation functions of the eight-node hexahedral element. The strain 
tensor is approximated at element level using =Bueε , where B  is the gradient matrix. 

Introducing the finite element approximations for displacement and strain fields at element level into Eq. (27), a set 
of nonlinear ordinary differential equations is obtained, which may be expressed in the following form: 

   
1 1 1 1 1

nel nel nel nel nel

e e e e e e e
e e e e e    

    

    

int c ext
e eM u C u F u F u F   (29) 

where Me and Ce are the element mass and damping matrices, intFe  is the internal force vector, cFe  is the contact force 

vector and extFe  is the external force vector, including surface and body forces. 

The time discretization is then applied to Eq. (29), where time continuity is broken into time increments Δt. In order 
to take into account the nonlinear behavior, linearization is adopted according to the Newton-Raphson method, which 
leads to the following global linearized form: 

       1 1 1 1 1 1 1 1
i i i c i i i c i
n n n n n n n n       

          
  

int ext int∆Mu Cu F u F u u F Mu F u F u
u

  (30) 

where the solution within the time step Δt is updated iteratively using +
+ += + ∆u u ui i

n n
1
1 1 . The dynamic analysis is carried 

out employing an implicit algorithm, considering that displacements un  and velocities u n  are available at the beginning 
of the time step. Although the Newmark’s method is unconditionally stable for linear problems, numerical instabilities 
are usually observed for applications in the nonlinear range. Therefore, the generalized-α method is adopted here for 
time integration. Static analysis can be also performed with Eq. (30) by omitting the inertial and damping terms. In this 
case, time is considered in a fictitious sense associated with the load steps. Additional details on the time integration 
algorithm utilized in this work may be found in Braun and Awruch (2008, 2013a, 2013b). 
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3.2 Nonlinear analysis with the corotational reference system 

In the present work, nonlinear problems are analyzed considering the corotational approach, where the strain and 
stress tensors are evaluated in a reference system locally defined at the element quadrature points. In a corotational 
kinematical description, the nonlinear problem can be presented in rate form taking into account the small strain 
hypothesis and an objective rate of the Cauchy stress tensor. Assuming large rotations, the motion of a continuum can 
be decomposed into rigid body motion and pure deformation. Once the spatial discretization is fine enough, this motion 
decomposition can be performed at element level, where the pure deformation component is a small quantity with 
respect to the element dimensions. 

Strains are update in the corotational system using the following expression: 

1ˆ ˆ ˆn n   ∆ε ε ε   (31) 

where ε̂  is the corotational strain tensor and ∆ε̂  is the corotational strain increment, which is obtained at element level 
using mid-point integration (Hughes and Winget (1980)) as follows: 

T

d
1

1 2 1 2

ˆ ˆ1ˆˆ
ˆ ˆ2

n def def

n nn

t


 

               
 

 

∆ ∆
∆

u ud
x x

ε   (32) 

where d̂  is the corotational strain rate tensor, ∆udefˆ  is the corotational displacement increment associated with the deformation 
component of the total displacement increment ∆ ∆ + ∆u = u udef rotˆ ˆ ˆ , with ∆urotˆ  indicating the displacement component related 
to pure rotation. The increment of deformation displacements is calculated using + +∆ = ∆ −u R u = x xdef def

n n n1 2 1ˆ ˆ ˆ , where Δudef is 

the global deformation displacement increment, and the geometric configurations xnˆ , +xn 1 2ˆ  and +xn 1ˆ , which are related to a 

specific finite element e, are obtained from the following transformations: 

1 2 1 2 1 2 1 1 1ˆ ˆ ˆ; ;n n n n n n n n n       x R x x R x x R x   (33) 

where Rn, Rn+1/2 and Rn+1 are orthogonal transformation matrices performing rotations from the global coordinate system 
to the corotational coordinate system, while xn, xn+1/2 and xn+1 are element geometric configurations defined in the global 
coordinate system. 

Although the corotational Cauchy stress tensor σ is frame invariant, an objective rate tensor is required for stress 
updates during the incremental-iterative integration procedures. In this work, the Truesdell rate tensor is adopted, which 
may be expressed as: 

Tˆ ˆ ˆˆ ˆ ˆ ˆ ˆTR tr    L L dσ σ − σ − σ σ   (34) 

where L̂  is the spatial velocity gradient tensor evaluated in the corotational system. 
The corotational Cauchy stress tensor is updated using an incremental form of Eq. (34), where the stress increment 

is calculated considering an incremental constitutive formulation for elastoplastic materials, i.e.: 

ˆˆ ep∆ ∆Dσ = ε   (35) 

where ∆ε̂  is given by Eq. (32) and the constitutive tensor is defined as: 

T

T
ˆ

e e
g fep e

e
f gA 

= − ∆
D a a D

D D
a D a

ε   (36) 
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where De is the fourth-order linear elastic tensor, A is the hardening parameter and a f  and ag  are flow vectors associated 
with the yield function f and plastic potential g, respectively. The constitutive equation is integrated over time 
considering an explicit algorithm proposed by Owen and Hinton (1980). 

In the present formulation, the tangent stiffness matrix and the internal force vector are evaluated in the 
corotational system as follows: 

 T Td dtan int

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ;

e e

ep geo
e e

v v

   v vK B D D B F B σ   (37) 

where B̂  is the gradient matrix evaluated in the corotational system and Dgeoˆ  is the geometric constitutive tensor 
related to Truesdell rate tensor components. In order to solve the system of linearized equations of motion (Eq. 30), the 
tangent stiffness matrix and the internal force vector must be obtained in the global coordinate system as follows: 

T Ttan tan int intˆ ˆ;e e e eK = R K R F R F   (38) 

An elastoplastic framework is also adopted for integration of the interface constitutive equation in the case of 
friction contact, where stick and slip (slide) conditions are identified considering the classical Coulomb’s friction law (see 
Eq. 10). The slide condition is associated with yield, where Φ > 0 and irreversible slip occurs. On the other hand, the stick 
condition is obtained when Φ < 0, where a small and reversible (elastic) slip is permitted. The problem is solved taking 
into account a rate formulation, which is integrated over time steps considering elastic trial and return mapping. 

An elastic predictor is first considered, where a linear path and reversible behavior are assumed within the time 
increment for nodes on the contact surface, i.e.: 

          11 1 11
; ( , 1,2)trial

N N N T T n nTn n nnn
t k g t t k a


   

       
β β

αβ α β   (39) 

where αβa  denotes the metric tensor components while ξ β
n  and ξ β

+n 1  indicate the convective coordinates at tn and tn+1. 

Notice that the tangential traction in the previous equation cannot be evaluated when a contact point slides over 
the element boundaries, considering that a convective coordinate system is locally defined for every finite element. 
Consequently, the load steps must be chosen carefully to avoid this condition and the target domain must be extended 
in order to allow that the slave node projection to be slightly outside the element domain. After that, it is assumed that 
the slave node is projected on the adjacent element and the numerical process continues. Another solution is presented 
by Chen et al. (1999), where the position vector of the contact point is mapped to the reference configuration from its 
parametric coordinate system, such that the increment of relative displacement can be computed. 

The slip function is then checked and the tangential traction components are defined according to the following 
conditions: 

   
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 
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t t
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



 
 
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  




       

t

t

  (40) 

It is important to notice that the normal contact traction component is given according to the global coordinate 
system, while the tangential contact traction components are written in terms of local convective coordinate axes. 

3.3 Contact stiffness matrix and contact residual vector 

A contact element formulation is adopted here to deal with node-to-surface contacts, where four-node master 
elements are defined considering every hexahedral element face subject to contact with a slave node defined by x2. A 
five-node contact element is then formulated using the following interpolation equation for the master surface: 
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 1 1
e



x N xξ   (41) 

where N
  is a row matrix containing the interpolation functions of the four-node quadrilateral element expressed in 

terms of local surface coordinates ξ1 and ξ2. Vector xe
1  contains the nodal coordinates of a master element e. 

In order to obtain the normal gap gN (see Eq. 1), x1  and n1  must be determined locally for every slave node x2 using 
closest point projection, where the convective coordinates ξ1  and ξ2  associated with x2 are computed considering the 
following system of nonlinear equations: 

     2 1 1 2 1 1
, , 0 ( 1,2)e e

               
 

α α αx x x x N x N xξ ξ ξ   (42) 

which is solved iteratively using the Newton-Raphson method (see Wriggers (2006)). The closest point ξ ξ1 2( , )ξ =  is then 
obtained and the gap function (Eq. 1) is evaluated. When contact is identified (gN ≤ 0), the corresponding slave node 
generates contributions to the weak form. 

The contact virtual work δWc can be discretized using the general form given by Eq. (24) as follows: 

   T Td ( ) ( ) ( )

ce

ns

c N N T Nse Nse Tse se
ses

W t g s t g A             
    Tse( ) g t g tξ ξ ξ ξ   (43) 

which leads to: 

 T
( )

ns
c

c se se
se

W A  ( ) g Fξ ξ   (44) 

where ns is the number of slave nodes, Ase is the area surrounding the slave node, which is assumed to be included in 
the normal penalty parameter kN, δg is the displacement variation related to the slave nodes on the master surface and 
Fc

se  is the contact residual vector, expressed by: 

 TT ( 1,2)c
se N Nse se Tse sek g t  

  α
α αF N D   (45) 

with: 

1 1 1 1 1
1 2 3 4( ) ( ) ( ) ( ) ;
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N N N N

H g 
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   
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  (46) 

where: 

1 1 1 1
1 2 3 4

1, 2, 3, 4,

( ) ( ) ( ) ( ) ;

( ) ( ) ( ) ( )

N N N N

N N N N
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   
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β β β β β β

β β β β β

T a a a a a
N 0 n n n n

ξ ξ ξ ξ

ξ ξ ξ ξ
  (47) 

The tensor components αβH  are calculated using Eq. (7) and the friction traction components αTset  are obtained 
considering the incremental procedure defined by Eqs. (39) and (40). 

The contact contribution to the global tangent stiffness is obtained at element level using linearization of Eq. (43) 
based on the Newton-Raphson method applied in the context of the penalty formulation (see also Eq. 26), i.e.: 
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   T
nelc

c
c se se se

se

W A   se∆ ∆g K u   (48) 

which leads to the contact stiffness matrix: 

c c c
se Nse Tse K K K   (49) 

with: 

  T T T 1
, ( , , 1,2)c

Nse N se se N N se sek k g a        
     α βα γ

α α β β γ α β γK N N N D T N D n a   (50) 

where βαa  are components of the inverse of the metric tensor, with components denoted by βαa . Notice that the normal 
gap can be quite large during the first iterations, when a large incremental step is employed, which may lead to 
divergence in the Newton-Raphson process. Therefore, only the first term in the previous equation is employed in the 
first iterations and the terms multiplied by gN are added later. 

The tangential contribution to the tangent stiffness matrix ( K c
Tse ) may be decomposed into two parts, where the 

first tangent stiffness matrix is written as: 
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  (51) 

with the following vectors and matrices: 

1 1 1 1
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  (52) 

where I is a 3x3 identity matrix and 0 is a 3x3 null matrix. 
The second tangent stiffness matrix is defined for each frictional state, i.e. stick or slip condition. By using 

1n n   ββ β∆ , the second stiffness for the stick condition is given by: 
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while for the slip condition: 
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  (54) 
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where: 

1, 2, 3, 4,( ) ( ) ( ) ( )trial trial trial trial
T T T TN N N N       

   

α α α α αP 0 t t t tξ ξ ξ ξ   (55) 

Notice that the first tangent stiffness matrix due to frictional contact is symmetric, while the second part is no longer 
symmetric in both frictional states. 

The contact between a deformable body and a rigid surface is obtained as a special case of the previous 
development. The rigid surface is assumed to be the master surface, described by a parametric equation, and its motion 
is considered to be prescribed. Thus, the degrees of freedom of the master surface vanish in the previous equations and 
the stiffness matrix turn out to be the same presented by Bittencourt and Creus (1998). In other words, only the rows 
and columns related to the degrees of freedom of the slave nodes are computed. 

4 UNDERINTEGRATION AND STABILIZATION TECHNIQUES 

In the present work, two underintegration techniques are utilized to suppress shear and volumetric locking effects 
from the eight-node hexahedral element formulation, especially for materials with incompressible or nearly 
incompressible behavior. A uniform reduced integration procedure with hourglass control is adopted using one-point 
quadrature for both the deviatoric and volumetric parts of the strain tensor. In addition, the B-bar method is also 
employed here to avoid volumetric locking for elastoplastic analysis involving materials with the incompressibility 
constraint. 

One-point quadrature may be used for reduced integration considering that shape functions and derivatives are 
evaluated at the center of the element. Unfortunately, the so-called hourglass modes may be excited and some numerical 
procedures are necessary to stabilize the element formulation. In order to alleviate volumetric locking, the gradient 
matrix B is decomposed into two parts as follows: 

     ˆ, , 0 , ,      B B B   (56) 

where ( )B 0  is the gradient matrix corresponding to the volumetric terms of the strain tensor, which is evaluated at the 

element center, and ( )ξ η ζB , ,ˆ  is the gradient matrix corresponding to the deviatoric terms, which must be expanded 
using Taylor series at the center of the element up to the bilinear terms. Equation (56) is then rewritten as: 

  (0) (0) (0) (0) (0) (0) (0)ˆ ˆ ˆ ˆ ˆ ˆ, , 2 2 2                   , , , , , ,B B B B B B B B   (57) 

where (0)B  includes the sum of the volumetric and deviatoric parts of the gradient matrix, both obtained from one-
point quadrature. By performing the same procedure with the stress tensor σ, one obtains: 

  (0) (0) (0) (0) (0) (0) (0)ˆ ˆ ˆ ˆ ˆ ˆ, , 2 2 2                   , , , , , ,σ σ σ σ σ σ σ σ   (58) 

The internal virtual work at element level is evaluated as follows: 

T T ( ) ( ) dint , , , ,

e

e e v      
Ω

δ δW u B σ   (59) 

By substituting Eqs. (57) and (58) into Eq. (59), the following expression is obtained: 
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where Ωe is the current element volume. Notice that the first term on the right-hand side of Eq. (60) is identified with 
the one-point quadrature internal virtual work, while the remaining terms, which are also evaluated at the element 
center, are associated with the element stabilization. 

In order to eliminate the spurious singular modes, Hu and Nagy (1997) recommend adding an hourglass-resisting 
force fhg to the element internal force vector fint: 

 int o-p hg o-p stab + =f f f uΚ Κ   (61) 

where fo-p is the internal force vector referring to one-point quadrature, which is obtained using the constitutive relation, 
i.e: 

o-p o-p
e e

 
  

Τ Τ= (0) (0)Ω = (0) (0)Ωf D u uΒ σ Β Β = Κ   (62) 

where D is the constitutive tensor (De or Dep). On the other hand, the hourglass-resisting force vector fhg is expressed as: 

hg
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  (63) 

where Kstab is the stabilization stiffness matrix, which is obtained considering the stabilization matrix E proposed by Hu 
and Nagy (1997) in order to determine the stress tensor derivatives, i.e.: 

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ;   ;   ;   ;   ;              , , , , , , , , , , , ,= = = = = =σ Εε σ Εε σ Εε σ Εε σ Εε σ Εε   (64) 

with E given as: 

with
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e 0
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Ε =   (65) 

where μ* = μ for elastic materials, considering that μ is the Lamé constant associated with shear. For elastoplastic 
materials, this alternative leads to loss of element stiffness when a certain stress limit is reached. In order to improve the 
element performance, Reese (2005) proposed an optimized parameter (μ* = μopt) for the stabilization matrix. This 
parameter (μopt) leads to the smallest value that provides sufficient strength to inhibit hourglass modes and may be 
expressed as: 

opt H

E H
 


  (66) 

where E and H are the Young and hardening moduli, respectively, considering that H is evaluated at the onset of 
plastification. Reese (2005) mentions that for situations where μ* is much smaller than μopt, a too soft behavior may be 
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observed, while much higher values may lead to locking effects. In addition, the author also states that the influence of 
μ* on the solution decreases noticeably when the number of elements is increased. However, μopt is null for perfectly 
elastoplastic materials, considering that H = 0 in this case. Consequently, the stabilization matrix is removed. As a 
solution, a percentage of 𝜇𝜇 can be adopted for perfectly elastoplastic materials, i.e.: 

*        0 1k k      (67) 

Reese (2007) indicates that μ* should be chosen to be as small as possible when problems with perfectly 
elastoplastic materials are analyzed, e.g. 0.001% of the Young’s modulus. Nevertheless, an optimum value for μ* is not 
clearly defined in this case. 

The element developed so far is only free of volumetric locking. In order to remove shear locking, shear components 
of the strain tensor must be described using an orthogonal corotational coordinate system and linearly interpolated in a 
single direction of the reference system as follows: 

     
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 
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  (68) 

Consequently, one can observe that ζBxy ,
ˆ , ξByz ,

ˆ  and ηBxz ,
ˆ , which correspond to the deviatoric strain components 

ε xyˆ , ε yzˆ  and ε xzˆ , are the only gradient matrix derivatives that are not null. 
Finally, the gradient matrix obtained with reduced integration B(0) is replaced by the uniform gradient matrix B’(0) 

proposed by Flanagan and Belytschko (1981): 

   d1
, ,           1,2,..., 8

e

i i e
e

i    
Ω

Ω
Ω

B B   (69) 

The selective reduced integration technique can be also adopted to overcome the incompressibility constraint, 
where only the volumetric terms of the stiffness matrix are evaluated using a lower order integration rule. Although this 
simple procedure is very effective for isotropic elastic materials, it is not the same when elastoplastic materials are 
considered. An alternative procedure was proposed by Hughes (1980) using a decomposition of the gradient matrix into 
dilatational and deviatoric terms. This method is usually referred as the B-bar method. 

In the B-bar method, the gradient sub-matrices Bi are first decomposed into dilatational and deviatoric parts as 
follows: 

 dil dev          1,2,..., 8i i i i  B B B   (70) 

where: 
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B   (71) 

This dilatational part must be improved in order to obtain an effective formulation for incompressible applications. 
The sub-matrix dilBi  is then replaced by dilBi , which is defined as: 
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Equation (70) is also rewritten as follows: 

 dil dev          1,2,..., 8i i i i  B B B   (73) 

where dev dil−B = B Bi i i  are fully integrated and Bi  are given explicitly by: 
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where: 
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In the present work, the sub-matrix components iB  are locally evaluated using: 

d d
e e

i iB B  
Ω Ω

Ω Ω   (76) 

5 NUMERICAL APPLICATIONS 

5.1 Upsetting of a cylindrical billet 

This example is a classic problem presented by Taylor and Becker (1983), where a three-dimensional cylindrical billet 
is compressed by a perfectly rough rigid surface in order to reduce its length to 64% of the initial length. The billet is 
characterized with a diameter of 20 mm and length of 30 mm. Only 1/8 of the billet is modeled due to symmetry, with 
480 hexahedral elements and 671 nodes, as shown in Figure 3. 

The problem is simulated assuming von Mises yield criterion for the material and 200 load steps were performed 
using the Newton-Raphson method. Material and numerical parameters utilized in this example are presented in Table 1. 
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Figure 3 Initial mesh for the cylindrical billet. 

Table 1 Material and contact properties for billet upsetting analysis. 

Young’s modulus – E 200 kN/mm2 
Linear hardening modulus – H 0.3 kN/mm2 

Yield stress – σy 0.7 kN/mm2 
Poisson coefficient – ν 0.3 

Normal penalty parameter – kN 3.5 x 105 kN/mm 
Tangential penalty parameter – kT 3.5 x 104 kN/mm 

Load-deflection curves computed for both element formulations are presented in Figure 4, where results obtained 
by Taylor and Becker (1983), Bittencourt (1994) and Simo and Ju (1989) are also presented. One can observe that by 
using B-bar formulation, the numerical analysis was unable to finish, reaching a 61.12% upset and showing some jumps 
when the side of the billet folded onto the rigid surface. On the other hand, when the one-point quadrature formulation 
was applied, the analysis was unable to converge, even for the first load steps, where many elements reached the yield 
stress. Thus, although the present material is not perfectly elastoplastic, convergence was only obtained when k = 0.12 
was utilized in Eq. (67) to compute the stabilization matrix. Notice that, in general, the computed load-deflection curves 
showed a good agreement with results obtained by Taylor and Becker (1983) and Simo and Ju (1989), while Bittencourt 
(1994) presented a smaller load due to the finite element mesh employed. 

 

Figure 4 Load-displacement curves for billet upsetting analysis. 

Deformed mesh configurations on the symmetry plane, corresponding to the last converged load step, are shown 
in Figure 5 according to the underintegration formulations utilized in this work. 
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Figure 5 Deformed billet mesh configurations for the last converged load step. 

It is observed that both underintegration techniques utilized in this work showed numerical difficulties due to 
excessive element distortion. Other mesh configurations were tested and even with a higher number of elements it was 
not possible to improve the present solution considerably. This drawback may be circumvented using an arbitrary 
Lagrangian-Eulerian kinematic formulation, which can describe large deformation problems with reduced finite element 
distortion. 

5.2 Copper cylinder impact on rigid surface 

This benchmark example is frequently known as the ‘Taylor’s bar problem’ and consists of a small cylinder with 
initial length of 32.4 mm and initial radius of 3.2 mm, which impacts against a flat surface with an initial velocity of 227 
m/s. The material properties of the copper cylinder are presented in Table 2. 

Table 2 Material properties of the copper cylinder. 

Young’s modulus – E 117 x 109 N/m2 
Linear hardening modulus – H 100 x 106 N/m2 

Yield stress – σy 400 x 106 N/m2 
Poisson coefficient – ν 0.35 

Specific mass – ρ 8930 kg/m3 

The dynamic analysis is performed during 80 μs with Δt = 1.6 x 10-8 s and spectral radius rα = 1.0. Due to symmetry, 
a quarter of the bar is modeled with 1080 hexahedral elements and 1517 nodes. A frictionless contact is assumed with 
normal penalty parameter equal to 109 N/m. 

The last converged configuration obtained by each element formulation is shown in Figure 6. The numerical models 
with full-integration and B-bar formulation completed the 80 μs analysis, while the analysis using elements with one-point 
quadrature was unable to converge, even for the initial time stages. It is possible to see that the standard hexahedral 
element, i.e. with full integration, showed volumetric locking (Figure 6a). In addition, the hexahedral element formulation 
with one-point quadrature was unable to control the numerical instabilities that arose in this case (Figure 6c). 

 
Figure 6 Converged configurations for the Taylor impact problem. 
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The final cylinder radius and final cylinder length obtained here are compared with those obtained by other authors 
in Table 3. Notice that results obtained using standard formulation showed wrong solutions due to locking effects, while 
results computed here with the B-bar formulation indicated a good agreement with those obtained by other authors. 

Table 3 Taylor impact problem - final cylinder radius and length. 

Author Element type Formulation Final radius Final length 

Present work 8-node hex. Full integration 4.94 mm 20.29 mm 
Present work 8-node hex. B-bar 7.25 mm 21.44 mm 
Present work 8-node hex. One-point quadrature - - 

Bonet and Burton (1998) 8-node hex. - 6.95 mm - 
Bonet and Burton (1998) 4-node tet. Full integration 5.55 mm - 

Aymone et al. (2001) 8-node hex. B-bar 7.10 mm 21.44 mm 
Zienkiewicz et al. (1998) 8-node hex. Mixed 7.11 mm 21.48 mm 
Zienkiewicz et al. (1998) 4-node quad. Mixed 7.11 mm 21.48 mm 

5.3 Longitudinal impact between two bars 

This numerical example consists of a frontal impact between two elastic bars. Note that the contact is the only 
nonlinearity present in the problem. Both bars have the same dimensions, with a cross section of 1 x 1 cm and 5 cm 
length. It is initially considered that bar A is in motion with a speed of 1 cm/s and bar B is stationary. For the discretization 
of the bars, 10 hexahedral eight-node finite elements are used for each bar along the longitudinal direction, as shown in 
Figure 7. Physical properties and computational parameters adopted in this problem are shown in Table 4. 

 

Figure 7 Impact problem between two bars: geometry and mesh configurations. 

It is well known from the classical theory of elasticity (see Timoshenko and Goodier (1970)) that the velocity at the 
moment of impact between the two bars is equal to 0.5 cm/s, producing waves that propagate towards the end of the 
bars and later reflect towards the contact surface. The impact duration is equal to 1 second, when the energy of bar A is 
transferred to bar B. 

Table 4 Impact problem between two bars: physical properties and computational parameters. 

Young’s modulus – E 1 N/cm2 
Poisson coefficient – ν 0.0 

Specific mass – ρ 0.01 kg/cm3 
Normal penalty parameter – kN 4 N/cm 

Time step – Δt 5 x 10-3 s 
Total time – T 5 s 

Spectral radius – rα 1.0 

Figure 8 shows the contact surface displacements over time for each element formulation. One can see that both 
formulations are in agreement and consistent with the predictions obtained by the classical theory of elasticity. 
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Figure 8 Two bars under frontal impact: contact surface displacements over time. 

5.4 Contact between two beams 

This example is presented by Chen et al. (1999), which consists of two cantilever beams in contact undergoing large 
deformations. Both beams are 20 mm long, 2 mm wide and 1 mm thick, where the left end of the upper beam and the 
right end of the lower beam are fixed, as shown in Figure 9. A prescribed displacement of 30 mm is applied at the fixed 
end of the upper beam, while both beams are prevented from moving along the depth direction. 

 
Figure 9 Geometrical and boundary conditions for the contact problem between two beams. 

It is assumed that both beams have an elastic behavior with Young’s modulus (E) equal to 200 GPa and Poisson 
coefficient (ν) equal to 0.30. The contact is performed with friction coefficients μ = 0.0 and 0.5. Some oscillations were 
observed in the present results when small load steps were employed, especially for the frictional case. Thus, the analysis 
is performed with 500 loads steps. The normal and tangential penalty parameters employed here are equal to 104 and 
103 N/mm, respectively. 

The problem is initially discretized using a finite element mesh of 20 x 2 x 1 (length x height x width) hexahedral 
elements with full integration in order to compare the present predictions with the results obtained by Chen et al. (1999), 
who also employed a standard hexahedral finite element formulation. Comparisons were also carried out using ANSYS 
with SOLID45 elements and no extra displacement shapes. 

The relationship between the prescribed displacement and the reaction force at the fixed end is presented in Figure 
10. One can observe that the present results are very similar to the ones presented by Chen et al. (1999) and by ANSYS. 
Note that the reaction forces for the frictional case were larger than those observed for the frictionless case, considering 
that the beams lost contact before reaching the total prescribed displacement δ = 30 mm. 

Analyses using hexahedral elements with B-bar formulation and one-point quadrature were also performed but 
they presented smaller reaction forces than those shown by the case with full integration. Results computed here are 
shown in Figure 11 and compared with those obtained using the software ANSYS with SOLID185 elements, which also 
presents the B-bar formulation and uniform reduced integration. 
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Figure 10 Prescribed displacement vs. reaction force for the contact problem between two beams: results with full integration 

elements. 

The results presented in Figures 10 and 11 probably indicate the occurrence of shear locking for the element models 
with full integration and B-bar formulation. It is also observed that the ANSYS element SOLID185, using uniform reduced 
integration, presented a softer behavior when compared with the results obtained by the element formulation using 
one-point quadrature, which is employed in the present work. 

 
Figure 11 Prescribed displacement vs. reaction force for the contact problem between two beams: results with underintegrated 

elements. 

Therefore, the mesh configuration was modified to suppress shear locking effects and the problem was finally 
discretized using a mesh of 60 x 4 x 1 (length x height x width) hexahedral elements with B-bar formulation and one-
point quadrature. Figure 12 shows the reaction force at the fixed end as a function of the prescribed displacement for 
both underintegration techniques, where results obtained using the software ANSYS are also presented. One can see 
that results presented here were very similar and the shear locking was successfully suppressed. Notice that the ANSYS 
element SOLID185 with uniform reduced integration showed again a softer behavior, although it is in a good agreement 
with the predictions obtained with the one-point quadrature element proposed in the present work. 
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Figure 12 Prescribed displacement vs. reaction force for the contact problem between two beams: results with underintegrated 
elements and refined mesh. 

The deformed configuration for μ = 0.5, when the prescribed vertical displacement (δ) is equal to 15 mm, is shown 
in Figure 13. 

 

Figure 13 Deformed configurations for the contact problem between two beams: results with underintegrated elements and 
refined mesh. 

5.5 Soil-pile interaction 

A single pile surrounded by a three-dimensional soil layer and submitted to axial or lateral loads is analyzed in this 
example. It is assumed that the pile and the soil have elastic behavior with Young’s moduli equal to Ep = 2 x 107 kPa and 
Es = 2 x 104 kPa, respectively, and Poisson coefficients equal to νp = 0.30 and νs = 0.45, respectively. The square pile is 
10 m long and 0.5 m in width, which is embedded in a 17 m deep soil layer. 

The computational domain is presented in Figure 14, where only half of the spatial domain is modeled using 6760 
hexahedral elements and 8004 nodes due to symmetry. Nodes located on the base of the computational domain are 
fixed in all directions, while nodes on the lateral walls are constrained only in the normal direction. 

A rough frictional contact is assumed for the interface elements, where soil and pile can open a gap between them 
but no sliding is allowed. The normal and tangential penalty parameters employed here are both equal to 1.2 x 105 kN/m. 

Results referring to head settlement, when the pile is subjected to an axial load of 2,500 kN, and lateral deflection, 
when the pile is subjected to a lateral load of 216 kN at its head, are presented in Table 5. Note that due to symmetry, 
half of the previous load values are applied in the numerical model. Results computed here are compared with numerical 
results presented by Trochanis et al. (1991) and elastic solutions provided by Poulos and Davis (1980). 
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Figure 14 Mesh configuration and geometry for the soil-pile interaction problem. 

Table 5 Pile head settlement and lateral deflection. 

Author Head settlement [cm] Lateral deflection [cm] 

Present work with B-bar formulation 1.73 0.62 
Present work with one-point quadrature 1.73 0.71 

Trochanis et al. (1991) 1.66 0.63 
Poulos and Davis (1980) 1.70 0.80 

Notice that the computed head settlements are quite similar, while the lateral deflection results showed a good 
agreement between the present work with B-bar formulation and Trochanis et al. (1991). On the other hand, numerical 
models showed a stiffer behavior for lateral deflection when compared to the analytical solution proposed by Poulos and 
Davis (1980). 

The final deformed shape for the pile subjected to a lateral load is shown in Figure 15, where one can observe the 
soil-pile separation near the pile head for both underintegration techniques. 
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Figure 15 Final deformed shape for laterally loaded pile (amplification factor of 100). 

The soil behavior away from the pile, when subjected to axial or lateral load, is also analyzed in this problem. 
Therefore, the soil surface displacements, u for the axial load model and w for the lateral load model, are normalized 
with respect to the head pile displacements Up and Wp, respectively. The distance from the pile position, s, is normalized 
with respect to the pile width, D. Figure 16 shows a comparison considering the vertical displacements computed on the 
soil surface nodes as a function of the distance from the pile, while Figure 17 shows a comparison on the horizontal 
displacements along the loading line and normal to the loading line. 

 

Figure 16 Soil surface settlements for the soil-pile interaction. 
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Figure 17 Soil-pile interaction – horizontal displacements on the soil surface: (a) along the loading line and (b) normal to the loading 

line. 

Figures 16 and 17 show a good agreement between results obtained here and those obtained by Trochanis et al. 
(1991) and by Poulos and Davis (1980). Note that the horizontal displacements normal to the loading line are smaller and 
decrease faster than those computed along the loading line. 

5.6 Soil-structure interaction 

The present example seeks to evaluate the dynamic interaction of a shallow foundation resting on a three-
dimensional soil layer with a cyclic load applied at the column free end. Geometrical characteristics of the present 
application are presented in Figure 18a and due to symmetry, only half of the spatial domain is modeled with 1948 eight-
node hexahedral elements and 2561 nodes, as shown in Figure 18b. 

 
Figure 18 Soil-structure interaction problem: (a) geometrical characteristics and (b) initial mesh configuration. 

A rough frictional contact between the soil-structure interface is assumed and, therefore, the interface elements 
can open a gap but no sliding is allowed. The normal and tangential penalty parameters employed here are both equal 
to 4.0 x 103 kN/m. 

The soil is modeled with the Drucker-Prager yield criterion, assuming coincidence at the outer edges with the Mohr-
Coulomb surface, while the structure is considered as an elastic material (see Table 6). Notice that the Young’s modulus 
for the soil is a function of the initial confining pressure (σ3 in kN/m2), which is evaluated at the center of the finite 
element using a soil specific weight equal to 16 kN/m2. 
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Table 6 Physical parameters adopted for the soil-structure interaction problem. 

Soil Young’s modulus – E 40000 x (σ3/100)0.86 kN/m2 

Poisson’s ratio – ν 0.33 
Angle of friction – ϕ 42° 

Cohesion – c 1.2 kN/m2 
Specific mass - ρ 1.631 x 103 kg/m3 

Structure Young’s modulus – E 30 x 106 kN/m2 
Poisson’s ratio – ν 0.20 
Specific mass - ρ 2.548 x 103 kg/m3 

Nodes located on the base of the computational domain are fixed in all directions, while nodes on the lateral walls 
are constrained only in the normal direction, just as the structure nodes that are on the symmetry plane. 

A dynamic analysis is performed over 10 s with Δt = 5.0 x 10-3 s, where the axial load description is shown in Figure 19 
and the horizontal load is defined as FH = 2sin(2πt) kN. 

 
Figure 19 Load description adopted for the soil-structure interaction problem. 

Two points are used for displacement measurements: point A, corresponding to the point where the loads are 
applied and point B, which corresponds to a point on the soil-structure interface, which is located at a central point 
underneath the footing in the symmetry axis. 

Results computed here are compared with those obtained using the finite element commercial software ANSYS. 
The soil is modeled using SOLID65 elements with extra displacement shapes included, which support the classic Drucker-
Prager model, while the structure is modeled using SOLID185 elements with the B-bar formulation. Both elements are 
defined by eight nodes having three degrees of freedom at each node. 

Horizontal and vertical displacements evaluated at point B over time are plotted in Figures 20 and 21, respectively, 
while the horizontal displacement response at point A is shown in Figure 22. It is important to mention that ANSYS did 
not converge using the Newmark’s method and it was necessary to use the Generalized HHT-α method, where a 
numerical dissipation is introduced, similar to the Generalized-α method adopted in the present algorithm. 

 
Figure 20 Horizontal displacement response at point B for the soil-structure problem. 



A numerical investigation on Contact Mechanics applications using eight-node hexahedral elements with 
underintegration techniques 

Michael Renê Mix Visintainer et al. 

Latin American Journal of Solids and Structures, 2021, 18(5), e380 28/31 

 
Figure 21 Vertical displacement response at point B for the soil-structure problem. 

Figures 20, 21 and 22 show that it was necessary to employ the Generalized-α method to stabilize the time 
integration process, with rα = 0.8 for the analysis with B-bar formulation and rα = 0.7 for the analysis with one-point 
quadrature. It can be seen that results obtained with ANSYS were similar to those measured in the present work with a 
small difference after 5 s. One can see that the ANSYS formulation showed a large amount of numerical dissipation, which 
strongly dissipates vertical displacement oscillations, especially after t = 4 s. 

In order to evaluate the structure response resting on a rigid base, two other configurations were tested: structure 
resting on rigid contact surface and structure with base nodes fixed in all directions. The horizontal displacements 
measured at point A for both models are presented in Figure 23, where one can notice that predictions with B-bar 
formulation are in agreement with ANSYS results, while the predictions with one-point quadrature showed slightly larger 
displacements when compared with ANSYS and B-bar results. 

As expected, horizontal displacement values obtained with these base models were very small when compared with 
those obtained considering a soil base. The maximum values obtained for the structure resting on a rigid base were at 
least 200 times smaller than those obtained with the ANSYS soil-structure model, as shown in Figures 22 and 23. This 
difference demonstrates the importance of considering soil-structure interaction when the structure is resting on a 
flexible soil. 

 
Figure 22 Horizontal displacement response at point A for the soil-structure problem. 
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Figure 23 Horizontal displacement response at point A for the structure resting on rigid base. 

6 CONCLUSIONS 

Numerical simulations employing underintegration techniques associated with the eight-node hexahedral finite 
element were performed in this work to evaluate their performance when applied to contact problems. It was observed 
that both techniques showed, in general, very similar responses and presented a good agreement with numerical and 
analytical predictions presented by other authors. The B-bar element formulation adopted here obtained a good 
performance for all the numerical problems tested; however, numerical difficulties were observed when the finite 
element mesh was subject to high distortions, such as those presented in the billet upsetting analysis. The B-bar element 
formulation obtained good results for a cylinder impacting on rigid wall, considering that it is a volumetric locking-free 
element. However, the shear locking issue was identified when the formulation was applied to bending problems, such 
as the contact problem between two beams. On the other hand, the one-point quadrature element formulation 
presented numerical difficulties when employed to some elastoplastic problems, which was unable to control instabilities 
that appeared in the Taylor’s bar impact test. It was observed that the uniform reduced integration element formulation 
requires finer meshes when applied to elastoplastic applications in order to capture the plastic front. Nevertheless, the 
one-point quadrature element showed a numerical response very similar to that obtained with the B-bar formulation for 
elastic or elastoplastic problems with low element distortion. It was also observed that the Generalized-α method was 
important to maintain a stable time integration process in highly nonlinear dynamic analyses. Although results 
concerning numerical efficiency were not presented in this work, hexahedral element formulations with one-point 
quadrature usually lead to important reductions in the processing time, which is a very important feature for highly 
nonlinear 3D contact problems. 

Acknowledgments 

The authors would like to thank the National Council for Scientific and Technological Development (CNPq, Brazil) 
and Brazilian Federal Agency for Support and Evaluation of Graduate Education for the financial support. 

Author’s Contribuitions: Conceptualization, MRM Visintainer and AL Braun; Methodology, MRM Visintainer and AL 
Braun; Investigation, MRM Visintainer; Software, MRM Visintainer, AL Braun and E Bittencourt; Supervision, AL Braun 
and E Bittencourt; Validation, MRM Visintainer; Visualization, MRM Visintainer; Writing - original draft, MRM Visintainer 
and AL Braun; Writing - review & editing, MRM Visintainer, AL Braun and E Bittencourt. 

Editor: Marco L. Bittencourt 



A numerical investigation on Contact Mechanics applications using eight-node hexahedral elements with 
underintegration techniques 

Michael Renê Mix Visintainer et al. 

Latin American Journal of Solids and Structures, 2021, 18(5), e380 30/31 

References 

Agelet de Saracibar, C. (1997). A new frictional time integration algorithm for large slip multi-body frictional contact problems. 
Computer Methods in Applied Mechanics and Engineering 142: 303-334. 

Andrade, L. G., Awruch, A. M., Morsch, I. B. (2007). Geometrically nonlinear analysis of laminate composite plates and shells 
using the eight-node hexahedral element with one point integration. Composites Structures 79: 571-580, 2007. 

Aymone, J. L. F., Bittencourt, E., Creus, G. J. (2001). Simulation of 3D metal-forming using an arbitrary Lagrangian–Eulerian 
finite element method. Journal of Materials Processing Technology 110(2): 218-232. 

Belytschko, T., Bindeman, L. P. (1991). Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for 
nonlinear problems. Computer Methods in Applied Mechanics and Engineering 88: 311-340. 

Belytschko, T., Bindeman, L. P. (1993). Assumed strain stabilization of the eight node hexahedral element. Computer Methods 
in Applied Mechanics and Engineering 88: 311-340. 

Belytschko, T., Liu, W. K., Moran, B., Elkhodary, K. I. (2014). Nonlinear Finite Elements for Continua and Structures, 2nd ed., 
John Wiley & Sons, Chichester. 

Bittencourt, E. (1994). Treatment of contact impact problem in large deformation by the finite element method. Ph.D. Thesis 
(in Portuguese), Universidade Federal do Rio Grande do Sul, Brazil. 

Bittencourt, E., Creus, G. J. (1998). Finite element analysis of three-dimensional contact and impact in large deformation 
problems. Computers and Structures 69: 219-234. 

Bonet, J., Burton, A. J. (1998). A simple average nodal pressure tetrahedral element for incompressible and nearly 
incompressible dynamic explicit applications. Communications in Numerical Methods in Engineering 14(5): 437-449. 

Braun, A. L., Awruch, A. M. (2008). Geometrically non-linear analysis in elastodynamics using the eight-node finite element 
with one-point quadrature and the generalized-α method. Latin American Journal of Solids and Structures 5: 17-45. 

Braun, A. L., Awruch, A. M. (2009). A partitioned model for fluid-structure interaction problems using hexahedral finite 
elements with one-point quadrature. International Journal for Numerical Methods in Engineering 79: 505-549. 

Braun, A. L., Awruch, A. M. (2013a). An efficient model for numerical simulation of the mechanical behavior of soils. Part 1: 
theory and numerical algorithm. Soils and Rocks 36: 159-169. 

Braun, A. L., Awruch, A. M. (2013b). An efficient model for numerical simulation of the mechanical behavior of soils. Part 2: 
applications. Soils and Rocks 36: 171-182. 

Chen, X., Nakamura, K., Mori, M., Hisada, T. (1999). Finite element analysis for large deformation frictional contact problems 
with finite sliding. JSME International Journal Series A 42(2): 201-208. 

Chung, J., Hulbert, G. M. (1993). A time integration algorithm for structural dynamics with improved numerical dissipation: the 
generalized-α method. Journal of Applied Mechanics 60: 371-375. 

De Coninck, A., De Baets, B., Kourounis, D., Verbosio, F., Schenk, O., Maenhout, S., Fostier, J. (2016). Needles: toward large-
scale genomic prediction with marker-by-environment interaction. Genetics 203(1): 543-555. 

Duarte Filho, L. A., Awruch, A. M. (2004). Geometrically nonlinear static and dynamic analysis of shells and plates using the 
eight-node hexahedral element with one-point quadrature. Finite Elements in Analysis and Design 40: 1297-1315. 

Elguedj, T., Bazilevs, Y., Calo, V. M., Hughes, T. J. R. (2008). B and F projection methods for nearly incompressible linear and 
non-linear elasticity and plasticity using higher-order NURBS elements. Computer Methods in Applied Mechanics and 
Engineering 197: 2732-2762. 

Flanagan, D. P., Belytschko, T. (1981). A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. 
International Journal for Numerical Methods in Engineering 17: 679-706. 

Hu, Y. K., Nagy, L. I. (1997). A one-point quadrature eight-node brick element with hourglass control. Computers and 
Structures 65: 893-902. 

Hughes, T. J. R. (1980). Generalization of selective integration procedures to anisotropic and nonlinear media. International 
Journal for Numerical Methods in Engineering 15: 1413-1418. 



A numerical investigation on Contact Mechanics applications using eight-node hexahedral elements with 
underintegration techniques 

Michael Renê Mix Visintainer et al. 

Latin American Journal of Solids and Structures, 2021, 18(5), e380 31/31 

Hughes, T., Winget, J. (1980). Finite rotations effects in numerical integration of rate constructive equations arising in large 
deformation analysis. International Journal for Numerical Methods in Engineering 15: 1862-1867. 

Kosloff, D., Frazier, G. A. (1978). Treatment of hourglass patterns in low order finite elements codes. International Journal for 
Numerical and Analytical Methods in Geomechanics 2: 57-72. 

Kourounis, D., Fuchs, A., Schenk, O. (2018). Toward the next generation of multiperiod optimal power flow solvers. IEEE 
Transactions on Power Systems 33(4): 4005-4014. 

Kuhl, D., Crisfield, M. A. (1999). Energy-conserving and decaying algorithms in non-linear structural dynamics. International 
Journal for Numerical Methods in Engineering 45: 569-599. 

Laursen, T. A., Simo, J. C. (1993). A continuum-based finite element formulation for the implicit solution of multibody, large 
deformation frictional contact problems. International Journal for Numerical Methods in Engineering 36: 3451-3485. 

Laursen. T. A. (2010). Computational Contact and Impact Mechanics, 2nd ed., Springer, Berlin. 

Liu, W. K., Guo, Y., Tang, S., Belytschko, T. (1998). A multiple-quadrature eight-node hexahedral finite element for large 
deformation elastoplastic analysis. Computer Methods in Applied Mechanics and Engineering 154: 69-132. 

Liu, W. K., Hu, Y. K., Belytschko, T. (1994). Multiple quadrature underintegrated finite elements. International Journal for 
Numerical Methods in Engineering 37: 3263-3289. 

Liu, W. K., Ong, J. S. S., Uras, R. A. (1985). Finite element stabilization matrices – a unification approach. Computer Methods in 
Applied Mechanics and Engineering 53: 13-46. 

Michalowski, R., Mroz, Z. (1978). Associated and non-associated sliding rules in contact friction problems. Archives of 
Mechanics 30: 259-276. 

Nagtegaal, J. C., Parks, D. M., Rice, J. R. (1974). On numerical accurate finite element solutions in the fully plastic range. 
Computer Methods in Applied Mechanics and Engineering 4: 153-177. 

Owen, D. R. J., Hinton, E. (1980). Finite Elements in Plasticity: Theory and Practice, Pineridge Press, Swansea. 

Poulos, H. G., Davis, E. H. (1980). Pile foundation analysis and design. John Wiley and Sons, New York. 

Reese, S. (2005). On a physically stabilized one point finite element formulation for three-dimensional finite elasto-plasticity. 
Computer Methods in Applied Mechanics and Engineering 194: 4685-4715. 

Reese, S. (2007). A large deformation solid-shell concept based on reduced integration with hourglass stabilization. 
International Journal for Numerical Methods in Engineering 69: 1671-1716. 

Schultz, J. C. (1985). Finite element hourglassing control. International Journal for Numerical Methods in Engineering 21: 1039-
1048. 

Simo, J. C., Ju, J. W. (1989). On continuum damage-elastoplasticity at finite strains. Computational mechanics 5(5): 375-400. 

Souza Neto, E. A., Peric, D., Dutko, M., Owen, D. R. J. (1996). Design of simple low order finite elements for large strain analysis 
of nearly incompressible solids. International Journal of Solids and Structures 33: 3277-3296. 

Stainier, L., Ponthot, J. P. (1994). An improved one-point integration method for large strain elastoplastic analysis. Computer 
Methods in Applied Mechanics and Engineering 118: 163–177. 

Taylor, L. M., Becker, E. B, (1983). Some computational aspects of large deformation, rate-dependent plasticity problems. 
Computer methods in applied mechanics and engineering 41(3): 251-277. 

Timoshenko, S. P., Goodier, J. N. (1970). Theory of Elasticity. McGraw-Hill. 

Trochanis, A. M., Bielak, J., Christiano, P. (1991). Three-dimensional nonlinear study of piles. Journal of Geotechnical 
Engineering 117(3): 429-447. 

Verbosio, F., De Coninck, A., Kourounis, D., Schenk, O. (2017). Enhancing the scalability of selected inversion factorization 
algorithms in genomic prediction. Journal of Computational Science 22: 99-108. 

Wriggers, P. (2006). Computational Contact Mechanics, 2nd ed., Springer, Berlin. 

Zienkiewicz, O. C., Rojek, J., Taylor, R. L., Pastor, M. (1998). Triangles and tetrahedra in explicit dynamic codes for solids. 
International Journal for Numerical Methods in Engineering 43(3): 565-583. 


	A numerical investigation on Contact Mechanics applications using eight-node hexahedral elements with underintegration techniques
	1 INTRODUCTION
	1 INTRODUCTION
	2.2 Constitutive equations
	2.3 Weak form

	3 FINITE ELEMENT MODEL
	3.1 Discretized weak form
	3.2 Nonlinear analysis with the corotational reference system
	3.3 Contact stiffness matrix and contact residual vector

	4 UNDERINTEGRATION AND STABILIZATION TECHNIQUES
	5 NUMERICAL APPLICATIONS
	5.1 Upsetting of a cylindrical billet
	5.2 Copper cylinder impact on rigid surface
	5.3 Longitudinal impact between two bars
	5.4 Contact between two beams
	5.5 Soil-pile interaction
	5.6 Soil-structure interaction

	6 CONCLUSIONS
	Acknowledgments
	References


