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Abstract 
Advances in manufacturing techniques have allowed more flexibility to the design and new possibilities to 
apply composites materials in lightweight structures. Novel techniques such as the automated fiber 
placement allow the fibers to follow curvilinear paths, making possible laminate properties that vary within 
the laminate plane. These types of laminates are known as variable stiffness laminates or variable angle tow. 
In this work, the maximum critical buckling load of composite panels with variable stiffness through a spatially 
varying fiber orientation has been analyzed for two different boundary conditions. This works compares the 
outcomes of in-plane stress and critical buckling load for linear and cubic fiber angle considering four aspect 
ratios. Manufacturing constraint has been considered in the analysis of the laminates. The finite element 
method has been applied to solve the system elliptic partial differential equations that govern the in-plane 
behavior of these panels. The Ritz method has been used to find the buckling loads for the variable stiffness 
panels. Results for four different aspects ratios are presented. Improvements in the buckling load of up to 
18% for cubic fiber angle variation over linear fiber angle variation were found. 
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Composite material, variable angle tow composites, critical buckling load, in-plane analysis, automated fiber 
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1 INTRODUCTION 

Composite materials have been widely used in many industries in the last years. The aerospace industry is the one 
that most uses this material. It is said that the composites are one of the most important classes of engineering materials, 
being the second one, only behind the steel in industrial importance and range of applications (Clyne and Hull, 2019). 
Modern aircraft, such as Boeing 787 and Airbus A350 XWB, have been successfully applied advanced composite 
materials. The last one, for instance, has predominantly a composite airframe with 53% of its structure weight 
manufactured of composite materials, distributed over the wings, fuselage and other primary aerostructures (Marsh, 
2010). 

The growing in composite applications motivated by commercial interests has encouraged significant developments 
in manufacturing processes and structures design. The automated fiber placement (AFP) machines are a technology that 
has been developed over the past thirty years to attempt the industrial demands for fast manufacturing processes, as 
well as great flexibility to build composite laminates with complex geometries (Nik et al., 2014). The development of this 
new technology provided novel design approaches such as variable stiffness laminates. Unlike traditional composite 
laminates with unidirectional fibers orientation, variable angle tow (VAT) composite laminates have a continuously 
varying fiber orientation, yielding a variable stiffness laminate. The AFP machines are able to dispose the prepreg fibers 
following a specified path set by the designer (Brooks and Martins, 2018). These laminates expand the design space to 
create more adaptable and efficient structures. It has been demonstrated an improvement in the critical buckling load 
and strength using VAT composites in comparison with conventional composites (Setoodeh et al., 2009a; Wu et al., 2013; 
Gurdal et al., 2008; IJsselmuiden et al., 2010; Li et al., 2002). The initial work on variable stiffness composites was made 
by Gurdal and Olmedo (1993). Using a linear fiber angle variable, they showed that improvements on axial stiffness is 
possible for a laminate subject to uniform end shortening. 

Li et al. (2002) applied the fiber steering concept to increase the performance of the bearing strength of bolted 
holes, and the fibers in this study were steered such that the fibers followed the principle tensile and compressive stress 
trajectories around the hole. A bolted joint in composite coupons has been strengthened by up to 169% for peak load or 
36% for bearing strength using the modified steered pattern. Gurdal et al. (2008) parameterized fiber paths using linear 
fiber angle variation to find the best configuration regarding the critical buckling load. Their results showed better 
performance comparing to straight fiber composites. Tatting and Gurdal (2002) designed and manufactured straight and 
linear fiber angle variation composites plates with and without a central hole. The VAT composite plates showed an 
improvement of 64.15% and 53.9% on the critical buckling load over the straight fiber plates, respectively for plates with 
and without a hole. Marouene et al. (2016) also manufactured and tested VAT composite plates with linear fiber angle 
variation which presented critical buckling load 45% higher as compared to quasi-isotropic straight fiber composite 
plates. Wu et al. (2012) performed an optimization to enhance the critical buckling load of a composite plate using 
Lagrangian polynomials to describe the fiber angle variation. Their results showed an increase of 255% increase on the 
critical buckling over quasi-isotropic laminates. 

Huang and Haftka (2005) have shown that increasing the load carrying capability of a composite plate with a hole 
in the center and loaded in tension results in a set of nearly concentric circles near the hole where the authors chose to 
limit the tailored region of the composite with a hole to the region close to the hole. Buckling improvement of a 
component or structure using a variable stiffness composite has been the topic of several research efforts. Although 
significant increase in the buckling load can be obtained through tailoring laminate stacking sequence of composite 
panels with traditional straight fibers, the potential of fibrous composites is not fully exploited Setoodeh et al. (2009b). 
The improvement is attributed to the redistribution of in-plane loads to relatively stiff regions, and then resist buckling 
in critical regions Hao et al. (2017b). An approach for the design of panels with cutouts was first introduced in the late 
eighties by Hyer and Charette (1991) in which curvilinear fibers were suggested to improve structural response instead 
of straight fiber paths. 

Setoodeh et al. (2009b) showed that variable stiffness composite is able to withstand more than twice the 
compressive load before buckling occurs compared to a quasi-isotropic composite panel. The paper has allowed for a 
better understanding of the load redistribution mechanism responsible for an increased buckling load. A buckling load 
increase of 33.9% with respect to a constant stiffness composite panel is reported in Lopes et al. (2008) for a variable 
stiffness composite panel where overlapping tows are present. Similar results for a clamped square variable stiffness 
composite panel were reported where an improvement of 66% in the buckling load is found for a simply supported 
composite panel. 

Van den Brink et al. (2012) demonstrate that an improvement of buckling load ranging from 35% to 67% can be 
achieved by using a variable-stiffness design. Hao et al. (2017a) analyzed panel with multiple cutouts using a variable 
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stiffness based on flow field function. They showed that improvements on buckling load is obtained when compared with 
linear angle variations and straight fibers. 

The aim of this work is to compare the maximum critical buckling load VAT laminated plates using a cubic fiber angle 
variation considering the minimum radius manufacturing constraint. A numerical model based Finite Element Method 
(FEM) and the Rayleigh-Ritz method formulation is developed to calculate the critical buckling load. The results are then 
compared to linear fiber angle variation for composite plates. 

2 VAT LAMINATES 

Unlike of traditional straight fiber composite whose fibers have the same angle orientation on the entire lamina, in 
the VAT concept, the fiber orientation varies over the lamina based in the reference axis. The fiber orientation can vary 
along one or two coordinates, depending on the design criteria. Several methods have been proposed to model the fiber 
orientation. The linear variation is the simplest case as proposed by Gurdal et al. (2008) according to Eq. 1, 

𝜃𝜃(𝑥𝑥′) = 𝜙𝜙 + (𝑇𝑇1 − 𝑇𝑇0) |𝑥𝑥′|
𝑑𝑑

+ 𝑇𝑇0 (1) 

where 𝜃𝜃 is the fiber orientation, 𝜙𝜙 is the rotation angle which defines the coordinate system 𝑥𝑥′ − 𝑦𝑦′, 𝑇𝑇1 and 𝑇𝑇0 are the 
angles at panel edges and center, respectively, and 𝑑𝑑 is a characteristic distance (Fig. 1). The layer representation for 
linear fiber angle variation is specified by 𝜙𝜙⟨𝑇𝑇0|𝑇𝑇1⟩. There are three parameters to construct the laminates, 𝜙𝜙, 𝑇𝑇0 and 𝑇𝑇1. 
From these parameters is possible to generate laminates with a wide range of tailoring possibilities. 

It is also possible to model more complex fiber angle orientations such as non-linear variations with different 
polynomial degrees, providing high design flexibility, but it has been shown that trajectories represented by high-orders 
polynomials can be difficult, or even impossible, to manufacture due to limitations of the manufacturing process, 
especially regarding to the small radii curvature. To avoid possible manufacturing defects, one can make a cubic fiber 
angle orientation. A cubic fiber angle orientation can be defined as: 

𝜃𝜃(𝑥𝑥′) = 𝜙𝜙 + [(𝒄𝒄−1𝒂𝒂)]𝑇𝑇|𝑥𝑥|′ (2) 

 
Figure 1: Path definition of a linear angle variation. Adapted from Gurdal et al. (2008). 

𝑐𝑐 =

⎣
⎢
⎢
⎡

0 0 0 1
𝑑𝑑3/216 𝑑𝑑2/36 𝑑𝑑/6 1
𝑑𝑑3/27 𝑑𝑑2/9 𝑑𝑑/3 1
𝑑𝑑3/8 𝑑𝑑2/4 𝑑𝑑/2 1⎦

⎥
⎥
⎤

,𝑎𝑎 = {𝑇𝑇0,𝑇𝑇1,𝑇𝑇2,𝑇𝑇3}𝑇𝑇 and 𝑥𝑥 = {𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1, 𝑥𝑥0}𝑇𝑇 (3) 

where 𝑐𝑐 is the matrix of coefficients 𝑎𝑎 is the angle orientation vector and 𝑥𝑥 is the variable vector related to the 𝑥𝑥′ − 𝑦𝑦′ 
coordinate system rotated by an angle 𝜙𝜙. The layer representation is defined as 𝜙𝜙⟨𝑇𝑇0|𝑇𝑇1|𝑇𝑇2|𝑇𝑇3⟩, similar to the linear 
angle variation. For 𝜙𝜙 = 0, 𝑇𝑇0, 𝑇𝑇1, 𝑇𝑇2, 𝑇𝑇3 are located at 𝑥𝑥 = 0, 𝑥𝑥 = 𝑎𝑎/6, 𝑥𝑥 = 𝑎𝑎/3, and 𝑥𝑥 = 𝑎𝑎/2, respectively, as shown 
in Fig. 2. Once is defined the fiber angle orientation, the reference path of steered tow over the plate can be obtained by 
the following relation: 
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𝑑𝑑𝑦𝑦′

𝑑𝑑𝑥𝑥′
= tan 𝜃𝜃(𝑥𝑥′) (4) 

 
Figure 2: VAT composite plates with 𝜙𝜙 = 0°. (a) linear angle orientation and (b) cubic angle orientation. 

The first fiber path created is the reference fiber path. The next fiber path is made by shifting the reference fiber 
path a fixed amount in the y direction, for example, when 𝜙𝜙 = 0°. The remaining fiber paths for the lamina are made in 
the same manner, with the only difference being the amount that each path is shifted along the shifting axis. This process 
is followed until all panel to be fully filled, as shown in Fig. 3, considering a linear angle variation and 𝜙𝜙 = 0°. The same 
idea can be extended to cubic angle variations and other values of 𝜙𝜙. A 3D schematic view of a VAT composite plate is 
show in Fig. 4. 

 
Figure 3: Shifting of reference path over a single lamina surface for a linear angle variation and 𝜙𝜙 = 0°. 

 
Figure 4: 3D representation of a VAT composite plate and lamina. 

The manufacturing constraint of variable stiffness is related to the minimum steering radius that the AFP machine 
is capable of performing. Defining the path reference, the steering radius can be obtained by inverting the tow path 
curvature 𝜅𝜅, as defined in Eq. 5. 

𝑟𝑟 = 1
𝜅𝜅
  (5) 
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3 IN-PLANE AND BUCKLING ANALYSIS 

The governing equations of the in-plane response of a laminated plates are expressed as a system of differential 
equations as follows: 

𝜕𝜕𝜕𝜕𝑥𝑥
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥
𝜕𝜕𝑦𝑦

= 0 

𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝜕𝜕𝑥𝑥𝑦𝑦
𝜕𝜕𝑥𝑥

= 0  (6) 

where 𝜕𝜕𝑥𝑥, 𝜕𝜕𝑦𝑦 and 𝜕𝜕𝑥𝑥𝑦𝑦 are the in-plane stress resultants. The constitutive relations based on classical theory for thin 
laminates are (Jones, 1998): 

�𝜕𝜕𝑀𝑀� = �𝐴𝐴 𝐵𝐵
𝐵𝐵 𝐷𝐷� �

𝜖𝜖0

𝜅𝜅0� (7) 

where 𝜕𝜕 and 𝑀𝑀 are vector and represent the stress resultant forces and moments, and 𝜖𝜖0 and 𝜅𝜅0 denotes the mid-plane 
strains and curvatures, respectively. 𝐴𝐴 is the in-plane matrix, 𝐵𝐵 is the coupling matrix and 𝐷𝐷 is the bending matrix. One 
can notice that for variable angle tow composites these matrices are functions of the panel spatial coordinates. These 
matrices are defined through the thickness integration 

�𝐴𝐴𝑖𝑖𝑖𝑖,𝐵𝐵𝑖𝑖𝑖𝑖,𝐷𝐷𝑖𝑖𝑖𝑖� = ∫ 𝑄𝑄�𝑖𝑖𝑖𝑖{1, 𝑧𝑧, 𝑧𝑧2}𝑑𝑑𝑧𝑧ℎ/2
−ℎ/2  (8) 

where ℎ is the panel thickness and 𝑄𝑄�𝑖𝑖𝑖𝑖 are the reduced transformed stiffness terms. They are function of panel 
coordinates and given by 

𝑄𝑄�11 = 𝑈𝑈1 + 𝑈𝑈2 cos[2𝜃𝜃(𝑥𝑥, 𝑦𝑦)] + 𝑈𝑈3 cos[4𝜃𝜃(𝑥𝑥, 𝑦𝑦)] 

𝑄𝑄�12 = 𝑈𝑈4 − 𝑈𝑈3 cos[4𝜃𝜃(𝑥𝑥, 𝑦𝑦)] 

𝑄𝑄�22 = 𝑈𝑈1 − 𝑈𝑈2 cos[2𝜃𝜃(𝑥𝑥, 𝑦𝑦)] + 𝑈𝑈3 cos[4𝜃𝜃(𝑥𝑥, 𝑦𝑦)] 

𝑄𝑄�66 = 𝑈𝑈5 − 𝑈𝑈3 cos[4𝜃𝜃(𝑥𝑥, 𝑦𝑦)] 

𝑄𝑄�16 = −(1/2)𝑈𝑈2 sin[2𝜃𝜃(𝑥𝑥, 𝑦𝑦)] − 𝑈𝑈3 sin[4𝜃𝜃(𝑥𝑥, 𝑦𝑦)] 

𝑄𝑄�26 = −(1/2)𝑈𝑈2 sin[2𝜃𝜃(𝑥𝑥, 𝑦𝑦)] + 𝑈𝑈3 sin[4𝜃𝜃(𝑥𝑥, 𝑦𝑦)] (9) 

where 𝑈𝑈𝑖𝑖 are the invariant properties of composite materials. Considering laminates to be mid-plane symmetric, the 
matrix 𝐵𝐵𝑖𝑖𝑖𝑖 is null. Thus, 𝑵𝑵 and 𝑴𝑴 can be decoupled from Eq. 7: 

�
𝜕𝜕𝑥𝑥
𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥𝑦𝑦

� = �
𝐴𝐴11(𝑥𝑥, 𝑦𝑦) 𝐴𝐴12(𝑥𝑥, 𝑦𝑦) 𝐴𝐴16(𝑥𝑥, 𝑦𝑦)
𝐴𝐴12(𝑥𝑥, 𝑦𝑦) 𝐴𝐴22(𝑥𝑥, 𝑦𝑦) 𝐴𝐴26(𝑥𝑥, 𝑦𝑦)
𝐴𝐴16(𝑥𝑥, 𝑦𝑦) 𝐴𝐴26(𝑥𝑥, 𝑦𝑦) 𝐴𝐴66(𝑥𝑥, 𝑦𝑦)

� �
𝜖𝜖𝑥𝑥0

𝜖𝜖𝑦𝑦0

𝛾𝛾𝑥𝑥𝑦𝑦
0
� (10) 

�
𝑀𝑀𝑥𝑥
𝑀𝑀𝑦𝑦
𝑀𝑀𝑥𝑥𝑦𝑦

� = �
𝐷𝐷11(𝑥𝑥, 𝑦𝑦) 𝐷𝐷12(𝑥𝑥, 𝑦𝑦) 𝐷𝐷16(𝑥𝑥, 𝑦𝑦)
𝐷𝐷12(𝑥𝑥, 𝑦𝑦) 𝐷𝐷22(𝑥𝑥, 𝑦𝑦) 𝐷𝐷26(𝑥𝑥, 𝑦𝑦)
𝐷𝐷16(𝑥𝑥, 𝑦𝑦) 𝐷𝐷26(𝑥𝑥, 𝑦𝑦) 𝐷𝐷66(𝑥𝑥, 𝑦𝑦)

� �
𝜅𝜅𝑥𝑥0

𝜅𝜅𝑦𝑦0

𝜅𝜅𝑥𝑥𝑦𝑦0
� (11) 
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Considering the linear strain displacement relations (Eq. 12) and Eq. 10, Eq. 1 can be written as shown in Eq. 13 

𝜖𝜖𝑥𝑥0 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

, 𝜖𝜖𝑦𝑦0 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

, 𝛾𝛾𝑥𝑥𝑦𝑦
0 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝑦𝑦
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
 (12) 

𝐴𝐴11(𝑥𝑥, 𝑦𝑦)
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2 + 𝐴𝐴66(𝑥𝑥, 𝑦𝑦)

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑦𝑦2 + [𝐴𝐴12(𝑥𝑥, 𝑦𝑦) + 𝐴𝐴66(𝑥𝑥, 𝑦𝑦)]

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

 

+
𝜕𝜕𝐴𝐴11(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝑥𝑥
+
𝜕𝜕𝐴𝐴12(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= 0 

𝐴𝐴66(𝑥𝑥, 𝑦𝑦)
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2 + 𝐴𝐴22(𝑥𝑥, 𝑦𝑦)

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑦𝑦2 + [𝐴𝐴12(𝑥𝑥, 𝑦𝑦) + 𝐴𝐴66(𝑥𝑥, 𝑦𝑦)]

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

 

+ 𝜕𝜕𝐴𝐴66(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥 �𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥� = 0 (13) 

These are elliptic partial differential equations (PDEs), coupled in terms of the axial displacement 𝜕𝜕 and transverse 
displacement 𝜕𝜕. Furthermore, these equations have variable coefficients since the elements of 𝐴𝐴𝑖𝑖𝑖𝑖(𝑥𝑥,𝑦𝑦) are functions of 
both the 𝑥𝑥 and 𝑦𝑦. The solution of these equations is made simultaneously yielding the 𝜕𝜕 and 𝜕𝜕 displacement field. Further 
details of the derivation above can be seen in Whitney (1987) and Sadd (2009). Once 𝜕𝜕 and 𝜕𝜕 displacement field is 
calculated, the in-plane strains and stresses resultants can be calculated using Eqs. 12 and 10, respectively. In order to solve 
the buckling problem, it is possible to apply the Ritz method. This method is an energy-based method and it is applied to 
find the lowest load that will cause buckling (Jones, 1998; Kollar and Springer, 2003; Kumar, 2018). For rectangular plate 
simply supported along its four edges, the plate deflection expression that satisfies the geometrical boundaries is as follows: 

𝑤𝑤(𝑥𝑥, 𝑦𝑦) = ∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖 sin �𝑖𝑖𝑖𝑖𝑥𝑥
𝑎𝑎
�𝐽𝐽

𝑖𝑖=1
𝐼𝐼
𝑖𝑖=1 sin �𝑖𝑖𝑖𝑖𝑥𝑥

𝑏𝑏
� (14) 

where 𝐶𝐶𝑖𝑖𝑖𝑖 are arbitrary coefficients and 𝐼𝐼 and 𝐽𝐽 are integers indicating the highest number of terms in the 𝑥𝑥 and 𝑦𝑦 
direction. According to principle of stationary potential energy, at equilibrium the potential energy, 𝜋𝜋𝑝𝑝 , must satisfy the 
following condition 

𝜕𝜕𝑖𝑖𝑝𝑝
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

= 𝜕𝜕(𝑈𝑈+𝑉𝑉)
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

= 0 (15) 

where 𝑈𝑈 is the strain energy due to bending, and 𝑉𝑉 the potential energy of the in-plane loads. the strain energy of a thin 
composite panel is given by (Jones, 1998): 

𝑈𝑈 = 1
2∬�𝐷𝐷11𝑤𝑤,𝑥𝑥𝑥𝑥

2 + 2𝐷𝐷12𝑤𝑤,𝑥𝑥𝑥𝑥𝑤𝑤,𝑥𝑥𝑥𝑥 + 𝐷𝐷22𝑤𝑤,𝑥𝑥𝑥𝑥
2 + 4�𝐷𝐷16𝑤𝑤,𝑥𝑥𝑥𝑥

2 + 𝐷𝐷26𝑤𝑤,𝑥𝑥𝑥𝑥
2 � + 𝐷𝐷22𝑤𝑤,𝑥𝑥𝑥𝑥

2 � 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 (16) 

where 𝑤𝑤 is a function that represent the plate deflection. The potential energy is related to the applied load in the pre-
buckled state and the mid-plane strains that is the effect from the out-plane deflections of the panel. The 𝑉𝑉 expression 
is given by (Jones, 1998): 

𝑉𝑉 = 1
2
𝜆𝜆∬�𝜕𝜕𝑥𝑥𝑤𝑤,𝑥𝑥𝑥𝑥 + 𝜕𝜕𝑥𝑥𝑤𝑤,𝑥𝑥𝑥𝑥 + 2𝜕𝜕𝑥𝑥𝑥𝑥𝑤𝑤,𝑥𝑥𝑥𝑥� 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 (17) 

where 𝜆𝜆 is an arbitrary multiplier. Equation 14 is then substituted into Eqs. 16 and 17. The differentiations are performed 
and Eq. 15 reduces to 

∑ ∑ �𝜋𝜋4𝐼𝐼1 + 4𝜋𝜋4𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑎𝑎2𝑏𝑏2 𝐼𝐼2 − 2𝜋𝜋4(𝐼𝐼3 + 𝐼𝐼4) + 𝜆𝜆𝜋𝜋2𝑖𝑖𝑖𝑖
𝑎𝑎2 𝐼𝐼5 + 𝜆𝜆𝜋𝜋2𝑖𝑖𝑖𝑖

𝑏𝑏2 𝐼𝐼6 + 𝜆𝜆𝜋𝜋2

𝑎𝑎𝑏𝑏
(𝑖𝑖𝑖𝑖 𝐼𝐼7 + 𝑖𝑖𝑖𝑖 𝐼𝐼8)�𝐽𝐽

𝑖𝑖=1
𝐼𝐼
𝑖𝑖=1 𝐶𝐶𝑖𝑖𝑖𝑖 = 0 (18) 
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where 𝑥𝑥� = 𝜋𝜋𝑥𝑥/𝑎𝑎, 𝑦𝑦� = 𝜋𝜋𝑦𝑦/𝑏𝑏, the indexes 𝑖𝑖 and 𝑖𝑖 take the values 𝑖𝑖 = 1, 2,⋯ , 𝐼𝐼 and 𝑖𝑖 = 1, 2,⋯ , 𝐽𝐽. The terms 𝐼𝐼1, 𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 
𝐼𝐼5, 𝐼𝐼6, 𝐼𝐼7 and 𝐼𝐼8 are shown in Appendix. Equation 18 can be rewritten as an eigenvalue problem: 

(𝑲𝑲 − 𝜆𝜆𝑴𝑴)𝐶𝐶𝑖𝑖𝑖𝑖 = 𝟎𝟎 (19) 

where 𝑲𝑲 is the stiffness matrix and 𝑴𝑴 is the geometric matrix. The lowest value of 𝜆𝜆, 𝜆𝜆𝑐𝑐𝑟𝑟, from Eq. 19 determines the 
critical buckling load or displacement, as it was analyzed in this work. 

4 METHODOLOGY 

In this work, it was analyzed panels subject to an end shortening displacement with two different boundary 
conditions in the edges. Uniform end shortening is a common boundary condition under testing conditions. In this sort 
of testing, a uniform end displacement is applied while the equivalent load is measured. A schematic representation can 
be seen in Fig. 5. The Case I consists of an applied end shortening, 𝜕𝜕0, at 𝑥𝑥 = ±𝑎𝑎/2. The transverse edges have no applied 
forces and they are not free to deform, 𝜕𝜕(𝑥𝑥,𝑦𝑦) =  0. In the Case II, in the same manner as in Case I, an end shortening is 
applied, but other edges are free to deform. In both cases, it is not considered a shear stress applied in any edge. 

 
Figure 5: Panel boundary conditions for Case I and Case II. 

To model the fiber angle variation, it was considered a linear and a cubic angle variation. Regarding the angle 𝜙𝜙, it 
was considered in this work two different values: 0 and 90 deg. Thus, Eqs. 1 and 3 only vary along one direction, 𝑥𝑥 or 𝑦𝑦, 
depending on the angle. When 𝜙𝜙 = 0° , the angle varies on x-axis, 𝜃𝜃(𝑥𝑥). When 𝜙𝜙 = 90° , the angle varies on y-axis, 𝜃𝜃(𝑦𝑦). 
Besides that, the radii of curvature were limited to values less than 635 mm, to avoid manufacturing defects (Tatting and 
Gurdal, 2002; Marouene et al., 2016). The plate dimensions 𝑎𝑎 and 𝑏𝑏 were considered 1 m and 1 m, respectively, when 
aspect ratio 𝑎𝑎/𝑏𝑏 equals 1. For different aspect ratios analyzed, the dimension 𝑏𝑏 was fixed while dimension 𝑎𝑎 varies. 

To calculate the in-plane response of the VAT panels, Finite Element Method (FEM) was applied. The FEM is a 
technique to solve PDEs numerically. To solve PDEs with the FEM, basically it is needed a discrete representation of a 
region, known as a mesh, PDEs that model the physical behavior of the phenomena and boundary conditions that 
coupling the PDEs with the region (Hughes, 2000). 

In this work, the software Mathematica (Wolfram et al., 1999) was used to solve the PDEs (Eq. 13). It has a built-in 
function called NDSolve, which is a powerful solver of differential equations (Mikhailov, 2008). As one of its algorithms, 
NDSolve has an algorithm based on finite element method. As options, it is possible to choose the element type 
(MeshElementType) and the element size (MaxElementMeasure). 8-node second-order rectangular element was chosen 
(Oñate, 2013). The node degrees of freedom are displacement in 𝑥𝑥 and y, displacements 𝜕𝜕 and 𝜕𝜕, respectively. 

A mesh convergence was performed for both linear and cubic angle variations to define the number of elements, 
as shown in Figs. 6 and 7. It can be seen that in the case where the fiber varies linearly, it is needed less elements than a 
cubic variation. This behavior is expected knowing that a cubic variation is more complex and presents larger 
displacement gradients. Case II is not shown here since it presents convergence using few elements. Regarding the aspect 
ratio, it does not show relevant differences between the values 0.5, 1, 2, and 3. For the linear variation, 200 elements 
were used, and for cubic variation 400 elements. The laminate [0° + ⟨0°|90°⟩]3𝑆𝑆 was evaluated for a linear variation 
because it presents the biggest displacement gradient and this way the convergence study is valid for angles between 0 
and 90 deg. The same idea can be extended to the laminate [0° + ⟨0°|90°|0°|90°⟩]3𝑆𝑆 in the cubic variation case. 
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Regarding the buckling analysis, in order to get reliable results, it is essential to determine the number of terms 
necessary in the 𝑤𝑤(𝑥𝑥,𝑦𝑦) function. As it was analyzed the buckling load for different aspect ratios (0.5, 1, 2 and 3), it was 
required to perform a convergence study for all aspect ratios. The convergence of the eigenvalues for Case I for linear 
and cubic angle variation is shown in Tables 1 and 2, respectively. As the boundary conditions of the Case I involve 𝜕𝜕𝑥𝑥 
and 𝜕𝜕𝑥𝑥 in the calculations, it shows most difficulty to converge. Thus, it was only evaluated the convergence for Case I. 
Regarding the angle 𝜙𝜙, the angles 0 and 90 deg exhibited similar results, so only the results for 𝜙𝜙 = 0° are shown. The 
same happened to others layups. In light of the results, it was adopted 𝐼𝐼 = 𝐽𝐽 = 10. 

 
Figure 6: Case I (𝑎𝑎/𝑏𝑏) = 1 with linear variation of the laminate [0° + ⟨0°|90°⟩]3𝑆𝑆. 

 
Figure 7: Case I (𝑎𝑎/𝑏𝑏) = 1 with linear variation of the laminate [0° + ⟨0°|90°|0°|90°⟩]3𝑆𝑆. 

Table 1: Ritz method converge for linear angle variation. 

Case I – [𝟎𝟎° ± ⟨𝟒𝟒𝟒𝟒°|𝟕𝟕𝟒𝟒°⟩]𝟑𝟑𝑺𝑺 

𝑎𝑎/𝑏𝑏 = 0.5 𝑎𝑎/𝑏𝑏 = 1 𝑎𝑎/𝑏𝑏 = 2 𝑎𝑎/𝑏𝑏 = 3    
𝜕𝜕𝑐𝑐𝑐𝑐  𝜕𝜕𝑐𝑐𝑐𝑐  𝜕𝜕𝑐𝑐𝑐𝑐  𝜕𝜕𝑐𝑐𝑐𝑐  𝐼𝐼 𝐽𝐽 𝐼𝐼 × 𝐽𝐽 

0.00547088 0.00600322 0.00851569 0.0115659 3 3 9 
0.00544822 0.00595684 0.00847652 0.0115544 5 5 25 
0.0054434 0.00594918 0.00846769 0.0115511 7 7 49 

0.00544329 0.00594825 0.00846567 0.0115501 10 10 100 
0.00544305 0.00594791 0.00846501 0.0115496 12 12 144 
0.00544302 0.0059478 0.00846472 0.0115493 15 15 225 

Table 2: Ritz method converge for cubic angle variation. 

Case I – [𝟎𝟎° ± ⟨𝟒𝟒𝟒𝟒°|𝟔𝟔𝟎𝟎°|𝟕𝟕𝟒𝟒°|𝟕𝟕𝟒𝟒°⟩]𝟑𝟑𝑺𝑺 

𝑎𝑎/𝑏𝑏 = 0.5 𝑎𝑎/𝑏𝑏 = 1 𝑎𝑎/𝑏𝑏 = 2 𝑎𝑎/𝑏𝑏 = 3    
𝜕𝜕𝑐𝑐𝑐𝑐  𝜕𝜕𝑐𝑐𝑐𝑐  𝜕𝜕𝑐𝑐𝑐𝑐  𝜕𝜕𝑐𝑐𝑐𝑐  𝐼𝐼 𝐽𝐽 𝐼𝐼 × 𝐽𝐽 

0.00527521 0.00649227 0.0112305 0.0162436 3 3 9 
0.00526544 0.00646149 0.0112295 0.0160661 5 5 25 
0.00526105 0.00645667 0.0112132 0.0160133 7 7 49 
0.00526036 0.00645509 0.0112109 0.0160122 10 10 100 
0.00526036 0.00645501 0.0112108 0.0160120 12 12 144 
0.00526033 0.00645494 0.0112108 0.0160120 15 15 225 
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Having in mind that the panels were loaded through a constant displacement at its edges, it is important to define 
the force necessary to create the uniform displacement. Thus, the total force induced on the panel can be defined as: 

𝐹𝐹𝑥𝑥 = ∫ 𝜕𝜕𝑥𝑥(𝑎𝑎, 𝑦𝑦)𝑑𝑑𝑦𝑦𝑏𝑏
0  (20) 

To obtain an 𝜕𝜕𝑥𝑥 average value, 𝐹𝐹𝑥𝑥 is divided by the length of the panel edge, as follows: 

𝜕𝜕𝑥𝑥
𝑎𝑎𝜕𝜕 = �1

𝑏𝑏
� 𝐹𝐹

𝑥𝑥
 (21) 

In order to facilitate the comparison between the results, 𝜕𝜕𝑥𝑥𝑎𝑎𝑎𝑎 was normalized as 

𝜕𝜕�𝑥𝑥
𝑎𝑎𝜕𝜕 = 𝜕𝜕𝑥𝑥𝑎𝑎𝜕𝜕𝑎𝑎

2

𝐸𝐸1ℎ
3  (22) 

Finally, the critical normalized average load is obtained by 

𝜕𝜕𝑐𝑐𝑟𝑟 = 𝜆𝜆𝑐𝑐𝑟𝑟𝜕𝜕�𝑥𝑥
𝑎𝑎𝜕𝜕 (23) 

where 𝜆𝜆𝑐𝑐𝑟𝑟 is the lowest eigenvalue of the Eq. 19. To have a parameter related to stiffness, an equivalent panel stiffness 
was defined to consider an overall panel stiffness 

𝐸𝐸𝑥𝑥𝑒𝑒𝑒𝑒 = 𝐹𝐹𝑥𝑥𝑎𝑎
ℎ𝑏𝑏𝜕𝜕0

 (24) 

where ℎ is the panel thickness. Substituting Eq. 20 into Eq. 24 yields 

𝐸𝐸𝑥𝑥𝑒𝑒𝑒𝑒 = � 𝑎𝑎
ℎ𝑏𝑏𝜕𝜕0

� ∫ 𝜕𝜕𝑥𝑥(𝑎𝑎, 𝑦𝑦)𝑑𝑑𝑦𝑦𝑏𝑏
0  (25) 

5 RESULTS AND DISCUSSION 

The results here are based on a twelve-layer laminate, [±𝜃𝜃]3𝑆𝑆. The properties of the material are shown in Tab. 3. 
In order to compare the results from linear and cubic variation, and were normalized as 

𝜕𝜕�𝑖𝑖 = 𝜕𝜕𝑖𝑖
𝑎𝑎

𝜕𝜕0𝐴𝐴11
0° , 𝑖𝑖 = 𝑥𝑥, 𝑦𝑦  (26) 

5.1 Model validation 

The model was validated for linear angle variation through both experimental and numerical studies. The work of 
Marouene et al. (2016) was selected to validate the model. Marouene et al. (2016) manufactured two types of variable-
stiffness panels: one variable-stiffness with overlaps and another with gaps, both considering a linear angle variation, 
shown in Fig. 8. A schematic representation of gaps and overlaps are shown in Fig. 9 The panel's mechanical properties 
are shown in Tab. 4. The layup and geometric features are shown in Tab. 5. The fiber-steered panels were manufactured 
using a VIPER AFP machine. To avoid wrinkles and micro-buckling, the authors considered a minimum radius curvature 
of 635 mm, based on manufacturer requirements. Thus, the same value considered in this work. In this work, it was not 
considered the thickness variation over the plate, it was considered the panels with constant thickness. The panels shown 
in Fig. 8 were loaded at horizontal top edge by a uniaxial compression by applying a uniform displacement and the other 
edge was fixed. More details can be found in Marouene et al. (2016). The results are shown in Tab. 6. 
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Table 3: T300/N5208 Carbon/Epoxy properties. 

Material Properties T300/N5208 

Longitudinal modulus 180 GPa 
Transverse modulus 10.3 GPa 

In-plane shear modulus 7.17 
Major Poisson’s ratio 0.28 

Table 4: G40-800/5276-1 unidirectional carbon/epoxy prepreg Marouene et al. (2016). 

Moduli Properties G40-800/5276-1 

Longitudinal modulus 142.7 GPa 
Transverse modulus 9.1 GPa 

In-plane shear modulus 4.82 GPa 
Major Poisson’s ratio 0.3 

 
Figure 8: Specimens tested experimentally. Adapted from Marouene et al. (2016). 

 
Figure 9: Schematic of gaps and overlaps within a ply. 
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Table 5: Panel features. 

Layup [±⟨𝟒𝟒𝟒𝟒°|𝟒𝟒𝟒𝟒°⟩/⟨𝟒𝟒𝟒𝟒°|𝟔𝟔𝟒𝟒°⟩/⟨𝟒𝟒𝟕𝟕°|𝟕𝟕𝟑𝟑°⟩/⟨𝟕𝟕𝟕𝟕°|𝟕𝟕𝟕𝟕°⟩]𝟑𝟑𝑺𝑺 

Thickness (average) Overlap = 2.84 mm and gap = 2.09 mm 
Dimensions a = 254 mm and b = 406 mm 

Table 6: Comparison between the results from Marouene et al. (2016) and the present work. 

 Overlap Gap 

Marouene et al. (2016) 18.87 kN 15.06 kN 
Present 20.81 kN 8.69 kN 

Difference 8.84% 28.71% 

The case of panels with gaps, the present model underestimated the result, showing a difference of 28.71% from 
the experimental result. In fact, to capture all effects involved on this kind of experiment, it is necessary a non-linear 
formulation, while the present uses a linear formulation. On the other hand, for the case with overlaps, the model 
overestimated, presenting a difference of 8.84%. These results shown that the gaps present an important role in the 
results, while overlaps not so much. As the present model considers a constant thickness variation, it approximates to 
the panel with overlaps. Thus, considering the difference of 8.84%, the model has a good agreement with the 
experimental results performed by Marouene et al. (2016). 

In order to validate the model numerically, the model was compared through the results from Gurdal et al. (2008). 
Gurdal et al. (2008) evaluated laminates considering two boundary conditions, as evaluated in the work: one in that the 
transverse edges are restrained (Case I) and another with the transverse edges free to deform (Case II). It was calculated 
the values of 𝜕𝜕𝑐𝑐𝑐𝑐  for a family of curves corresponding to various values of 𝑇𝑇0 from 0° to 90° with increments of 10°. Each 
curve was generated by varying the value of 𝑇𝑇1 between 0° and 90° for a given value of 𝑇𝑇0. The results for the Case I are 
shown in Fig. 10. For this case, 𝜙𝜙 = 0°. 

According to results calculated, the maximum value of 𝜕𝜕𝑐𝑐𝑐𝑐  is 1.43, a difference of 0.38% from the results of 
Gurdal et al. (2008), for the laminate [0° ± ⟨0°|50°⟩]3𝑆𝑆. The results for the case II are shown in Fig. 11. The Case II was 
evaluated for 𝜙𝜙 = 90°. The maximum value of 𝜕𝜕𝑐𝑐𝑐𝑐, equals to 3.16, happened for the laminate [0° ± ⟨0°|75°⟩]3𝑆𝑆. This 
value is only 0.64% higher than the value of 3.14 from the results of Gurdal et al. (2008). In light of the results, one can 
consider that the model is reliable. 

 
Figure 10: Buckling and equivalent stiffness of various laminates with transverse edges restrained. 



Comparison between a linear and cubic fiber angle variation on buckling response of variable angle tow 
composite panels 

Diego Magela Lemos et al. 

Latin American Journal of Solids and Structures, 2021, 18(6), e389 12/20 

 
Figure 11: Buckling and equivalent stiffness of various laminates with transverse edges free. 

5.2 Case I results 

The results for case I boundary conditions is shown in this section. For linear and cubic angle variation, 𝑇𝑇𝑖𝑖  (𝑖𝑖 =
1, 2, 3, 4) was allows to vary from 0° to 90°, with increments of 10°. It was evaluated 𝜕𝜕𝑐𝑐𝑐𝑐  and 𝐸𝐸𝑥𝑥

𝑒𝑒𝑒𝑒 for aspect ratios equals 
to 0.5, 1, 2 and 3. Besides that, it was compared the results for 𝜙𝜙 = 0° and 𝜙𝜙 = 90°. The results of the highest values of 
𝜕𝜕𝑐𝑐𝑐𝑐  for each aspect ratio and the corresponding 𝐸𝐸𝑥𝑥

𝑒𝑒𝑒𝑒 are shown in Figs. 12 and 13. The layup of the highest value of 𝜕𝜕𝑐𝑐𝑐𝑐  
for each aspect ratio is shown in Tab. 7. The mode shapes of the best layups and higher critical buckling loads are shown 
in Fig. 14. As can be seen, they shown basically the same shape. 

Table 7: Best layups for each aspect ratio evaluated for Case I. 

 𝝓𝝓 = 𝟎𝟎° 𝝓𝝓 = 𝟒𝟒𝟎𝟎° 

𝒂𝒂/𝒃𝒃 Linear Cubic Linear Cubic 

0.5 [±⟨0°|20°⟩]3𝑆𝑆 [⟨0°|0°|0°|0°⟩]3𝑆𝑆 [⟨90°|90°⟩]3𝑆𝑆 [⟨90°|90°|90°|90°⟩]3𝑆𝑆 
1 [±⟨0°|40°⟩]3𝑆𝑆 [±⟨10°|20°|30°|40°⟩]3𝑆𝑆 [±⟨20°|70°⟩]3𝑆𝑆 [±⟨30°|40°|50°|80°⟩]3𝑆𝑆 
2 [±⟨0°|50°⟩]3𝑆𝑆 [±⟨0°|10°|40°|40°⟩]3𝑆𝑆 [±⟨30°|80°⟩]3𝑆𝑆 [±⟨30°|40°|60°|90°⟩]3𝑆𝑆 
3 [±⟨0°|40°⟩]3𝑆𝑆 [±⟨0°|10°|30°|40°⟩]3𝑆𝑆 [±⟨30°|80°⟩]3𝑆𝑆 [±⟨30°|40°|50°|80°⟩]3𝑆𝑆 

 
Figure 12: Buckling performance comparison between cubic and linear angle variation for Case I. 
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Figure 13: Equivalent stiffness performance comparison between cubic and linear angle variation for Case I. 

 
Figure 14: Buckling mode shape of the best layups for Case I, 𝑎𝑎/𝑏𝑏 = 3 , and 𝜙𝜙 = 90°. 

For 𝜙𝜙 = 0° the values of 𝜕𝜕𝑐𝑐𝑐𝑐  are practically the same for all aspect ratios for both linear and cubic angle variations. 
The largest difference occurs for 𝑎𝑎/𝑏𝑏 = 3, it being the 𝜕𝜕𝑐𝑐𝑐𝑐  for cubic variation 2.4% higher. However, the ratio 𝐸𝐸𝑥𝑥

𝑒𝑒𝑒𝑒/𝐸𝐸1 for 
cubic variation is 5.63%, indicating that the panel with cubic angle variation is more compliant than the linear variation 
one. Solely for 𝑎𝑎/𝑏𝑏 = 0.5 the ratio 𝐸𝐸𝑥𝑥

𝑒𝑒𝑒𝑒/𝐸𝐸1 for the cubic variation is greater than the linear one, 2.13%. This can be 
explained due to the fact that the cubic variation layup for 𝑎𝑎/𝑏𝑏 = 0.5 represents a straight fiber in the 𝑥𝑥 direction, while 
the layup for the linear varies linearly from 20° at its edges to 0° at its center. 

To understand the difference observed for the 𝜕𝜕𝑐𝑐𝑐𝑐  values between the linear and cubic variation for 𝑎𝑎/𝑏𝑏 = 3, it is 
compared the behavior of 𝜕𝜕𝑥𝑥, shown in Fig. 15. As can be seen, 𝜕𝜕𝑥𝑥 for cubic variation is flatter at panel center compared 
to the 𝜕𝜕𝑥𝑥 for linear variation. This impact directly on matrix 𝑴𝑴 of the Eq. 19, yielding a higher value of 𝜆𝜆𝑐𝑐𝑐𝑐. Besides that, 
for 𝑎𝑎/𝑏𝑏 = 3, 𝜕𝜕𝑥𝑥 of the cubic variation is 5.94% smaller than that of linear variation. 

For 𝜙𝜙 = 90°, the values of 𝜕𝜕𝑐𝑐𝑐𝑐  for 𝑎𝑎/𝑏𝑏 = 0.5 is identical, as they should be, considering that the linear and cubic 
variation have the same layup. For 𝑎𝑎/𝑏𝑏 = 1, the cubic layup presents a value of 𝜕𝜕𝑐𝑐𝑐𝑐  1.45% greater, followed by a 
difference of 13% and 18.33% for 𝑎𝑎/𝑏𝑏 = 2 and 3, respectively. In the same way for 𝜙𝜙 = 0°, the greater difference occurs 
when 𝑎𝑎/𝑏𝑏 = 3. However, for 𝜙𝜙 = 90°, this difference is significantly more pronounced. In Fig. 16 is compared the 𝜕𝜕𝑥𝑥 for 
linear and cubic variation. It is important to notice that when 𝜙𝜙 = 90°, 𝜃𝜃 is function of y, i.e., 𝜃𝜃(𝑦𝑦). In a similar way to 
𝜙𝜙 = 0°, for a cubic variation 𝜕𝜕𝑥𝑥 is flatter at panel's center, and 𝜕𝜕𝑥𝑥 is 12.7% smaller than the linear variation. 

Regarding the ratio 𝐸𝐸𝑥𝑥
𝑒𝑒𝑒𝑒/𝐸𝐸1, for 𝑎𝑎/𝑏𝑏 = 0.5 the value is the same for both linear and cubic variation, as expected. 

For 𝑎𝑎/𝑏𝑏 = 1, the cubic variation presented a value that is 8.57% greater than that for a linear variation. For 𝑎𝑎/𝑏𝑏 = 2 and 
3, 𝐸𝐸𝑥𝑥

𝑒𝑒𝑒𝑒/𝐸𝐸1 for cubic variation is 12.25% smaller. As the panels for linear and cubic variation present similar angles at its 
edges and center, the difference in 𝐸𝐸𝑥𝑥

𝑒𝑒𝑒𝑒/𝐸𝐸1 is not so much expressive. Figure 17 shows the values of 𝜕𝜕𝑐𝑐𝑐𝑐  and the 
corresponding ratio 𝐸𝐸𝑥𝑥

𝑒𝑒𝑒𝑒/𝐸𝐸1 for 𝑇𝑇0 ranging from 0° to 90° with increments of 10° for 𝑎𝑎/𝑏𝑏 = 2 and 𝜙𝜙 = 0°, in the same 
manner that was made in the work of Gurdal et al. (2008). For 𝑎𝑎/𝑏𝑏 = 3 the curves are similar and for 𝑎𝑎/𝑏𝑏 = 0.5 and 
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𝑎𝑎/𝑏𝑏 = 1, the curves are not continuous due to 𝜅𝜅𝑚𝑚𝑎𝑎𝑥𝑥 > 𝜅𝜅𝑐𝑐𝑐𝑐. For this reason, they were omitted. As for 𝜙𝜙 = 90° the fiber 
angle is function of 𝑦𝑦, 𝜃𝜃(𝑦𝑦) , and the dimension 𝑏𝑏 keeps constant, the curves also are not continuous and were omitted. 

 
Figure 15: 𝜕𝜕�𝑦𝑦 of the best laminates for 𝑎𝑎/𝑏𝑏 = 3 and 𝜙𝜙 = 0°. 

 
Figure 16: 𝜕𝜕�𝑥𝑥 of the best laminates for 𝑎𝑎/𝑏𝑏 = 3 and 𝜙𝜙 = 0°. 

 
Figure 17: Buckling and equivalent stiffness of various laminates with 𝑎𝑎/𝑏𝑏 = 2 and 𝜙𝜙 = 0° for Case I. 

5.3 Case II results 

In the same manner as Case I, 𝑇𝑇𝑖𝑖  (𝑖𝑖 = 1, 2, 3, 4) was allows to vary from 0° to 90° , with increments of 10°. It was 
evaluated 𝜕𝜕𝑐𝑐𝑐𝑐  and 𝐸𝐸𝑥𝑥

𝑒𝑒𝑒𝑒 for aspect ratios equals to 0.5, 1, 2 and 3. It was compared the results for 𝜙𝜙 = 0° and 𝜙𝜙 = 90°. 
Figure 18 shows the values of 𝜕𝜕𝑐𝑐𝑐𝑐  for 𝜙𝜙 = 0° and 𝜙𝜙 = 90°. It can be seen that for 𝜙𝜙 = 0° the values of 𝜕𝜕𝑐𝑐𝑐𝑐  are basically 
the same for both linear and cubic variations. These results can be addressed through the panels' layups shown in Tab. 
8. The mode shapes of the best layups and higher critical buckling loads are shown in Fig. 19. Unlike Case I, they shown 
different shapes. For the cubic case, there are 3 sine waves, while the linear case presents only one. 
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Table 8: Best layups for each aspect ratio evaluated for Case II. 

 𝝓𝝓 = 𝟎𝟎° 𝝓𝝓 = 𝟒𝟒𝟎𝟎° 

𝒂𝒂/𝒃𝒃 Linear Cubic Linear Cubic 

0.5 [±⟨0°|20°⟩]3𝑆𝑆 [⟨0°|0°|0°|0°⟩]3𝑆𝑆 [⟨90°|90°⟩]3𝑆𝑆 [±⟨50°|50°|60°|80°⟩]3𝑆𝑆 
1 [±⟨40°|50°⟩]3𝑆𝑆 [±⟨50°|50°|50°|40°⟩]3𝑆𝑆 [±⟨20°|70°⟩]3𝑆𝑆 [±⟨20°|30°|50°|70°⟩]3𝑆𝑆 
2 [±⟨50°|40°⟩]3𝑆𝑆 [±⟨50°|40°|40°|50°⟩]3𝑆𝑆 [±⟨20°|70°⟩]3𝑆𝑆 [±⟨20°|30°|50°|70°⟩]3𝑆𝑆 
3 [±⟨50°|40°⟩]3𝑆𝑆 [±⟨40°|40°|40°|50°⟩]3𝑆𝑆 [±⟨20°|70°⟩]3𝑆𝑆 [±⟨30°|40°|50°|80°⟩]3𝑆𝑆 

 
Figure 18: Buckling performance comparison between cubic and linear angle variation for Case II. 

 
Figure 19: Buckling mode shape of the best layups for Case II, 𝑎𝑎/𝑏𝑏 = 3 , and 𝜙𝜙 = 90°. 

It is noticeable that the difference between the angles is not greater than 10°, except for the layup [0° ± ⟨0°|20°⟩]3𝑆𝑆 
for 𝑎𝑎/𝑏𝑏 = 0.5. Thus, 𝜕𝜕𝑥𝑥 of this laminate presents a small variation when compared to straight fiber laminate 
[⟨0°|0°|0°|0°⟩]3𝑆𝑆. The difference between the value of 𝜕𝜕𝑐𝑐𝑐𝑐  is 2.3% greater for linear variation. For 𝑎𝑎/𝑏𝑏 equal to 1, 2 and 
3, the layups are similar, changing only the angles at the edges and center of the panel from 40° to 50°. Even for the 
cubic angle variation, the angles between the center and edge, 𝑇𝑇1 and 𝑇𝑇2, are equal. Figure 20 shows 𝜕𝜕�𝑥𝑥 for the laminates 
[0° ± ⟨50°|40°⟩]3𝑆𝑆 and [0° ± ⟨40°|40°|40°|50°⟩]3𝑆𝑆. It can be noticed that 𝜕𝜕�𝑥𝑥 presents, basically, a constant value. 
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Regarding 𝐸𝐸𝑥𝑥
𝑒𝑒𝑒𝑒/𝐸𝐸1, the results are shown in Fig. 20. When 𝑎𝑎/𝑏𝑏 = 0.5, the laminate for the cubic variation is a straight 

fiber laminate in the 𝑥𝑥 direction, thus 𝐸𝐸𝑥𝑥
𝑒𝑒𝑒𝑒/𝐸𝐸1 is equal to 1, as expected. For the linear variation case, 𝐸𝐸𝑥𝑥

𝑒𝑒𝑒𝑒/𝐸𝐸1 is 12% 
smaller than the cubic one. As for 𝑎𝑎/𝑏𝑏 equal to 1, 2 and 3 the laminates are similar, so the ratio 𝐸𝐸𝑥𝑥

𝑒𝑒𝑒𝑒/𝐸𝐸1 presents similar 
values as well. The difference between the linear and cubic variation is 18.18%, 13.33% and 18.75% for 𝑎𝑎/𝑏𝑏 equal to 1, 
2 and 3, respectively. Figure 22 shows the values of 𝜕𝜕𝑐𝑐𝑐𝑐  and the corresponding ratio 𝐸𝐸𝑥𝑥

𝑒𝑒𝑒𝑒/𝐸𝐸1 for the linear variation and 
𝑎𝑎/𝑏𝑏 = 2. The same explanation about others aspect ratios for Case I is valid here. 

 
Figure 20: 𝜕𝜕�𝑥𝑥 of the best laminates for 𝑎𝑎/𝑏𝑏 = 3 and 𝜙𝜙 = 0°. 

 
Figure 21: Equivalent stiffness performance comparison between cubic and linear angle variation for Case I. 

For 𝜙𝜙 = 90°, there are differences between linear and cubic angle variation. When 𝑎𝑎/𝑏𝑏 = 0.5, for the linear 
variation, the laminate is in the 𝑥𝑥 direction. Therefore, 𝐸𝐸𝑥𝑥

𝑒𝑒𝑒𝑒/𝐸𝐸1 is equal to 1. The laminate for the cubic variation is 
[90° ± ⟨50°|50°|60°|80°⟩]3𝑆𝑆 and 𝐸𝐸𝑥𝑥

𝑒𝑒𝑒𝑒/𝐸𝐸1 is equal to 0.34. Regarding 𝜕𝜕𝑐𝑐𝑐𝑐, for cubic variation 𝜕𝜕𝑐𝑐𝑐𝑐  is 3.45% higher than 
linear variation. When 𝑎𝑎/𝑏𝑏 = 1, the angles at edges and center are the same for linear and cubic variation. 𝜕𝜕𝑐𝑐𝑐𝑐  for cubic 
variation is 6.83% higher than for linear variation, while 𝐸𝐸𝑥𝑥

𝑒𝑒𝑒𝑒/𝐸𝐸1 is 10% smaller. 
For 𝑎𝑎/𝑏𝑏 = 2, 𝜕𝜕𝑐𝑐𝑐𝑐  is 2.97% higher for cubic variation, as for 𝐸𝐸𝑥𝑥

𝑒𝑒𝑒𝑒/𝐸𝐸1 is 11.11% smaller. The angles are the same at 
center and at edges, as for 𝑎𝑎/𝑏𝑏 = 1. For 𝑎𝑎/𝑏𝑏 = 3, 𝜕𝜕𝑐𝑐𝑐𝑐  is 5.36% higher for cubic variation, as for 𝐸𝐸𝑥𝑥

𝑒𝑒𝑒𝑒/𝐸𝐸1 is 10% smaller. 
Figure 23 shows 𝜕𝜕�𝑥𝑥 of the laminates [90° ± ⟨20°|70°⟩]3𝑆𝑆 and [90° ± ⟨30°|40°|50°|80°⟩]3𝑆𝑆 for 𝑎𝑎/𝑏𝑏 = 3. It can be noticed 
that for the cubic variation 𝜕𝜕�𝑥𝑥 is flatter at the center of the panel as well, in the same manner that for Case I.  
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Figure 22: Buckling and equivalent stiffness of various laminates with 𝑎𝑎/𝑏𝑏 = 2 and 𝜙𝜙 = 90° for Case II. 

 
Figure 23: 𝜕𝜕�𝑥𝑥 of the best laminates for 𝑎𝑎/𝑏𝑏 = 3 and 𝜙𝜙 = 90°. 

6 CONCLUSIONS 

This work presented a numerical investigation that was conducted on how a cubic angle variation affects the in-
plane and buckling response when compared to a linear angle variation of panels presenting various aspect ratios. It was 
imposed a constraint based on manufacturing considerations to avoid fiber defects such as wrinkles and micro-buckling. 
It was examined panels simply supported under applied uniform end shortening. Two boundary conditions were 
examined: the transverse edge fixed (Case I) and free to deform (Case II). Besides that, it was considered the fiber angle 
function varying along 𝑥𝑥 and 𝑦𝑦 direction, i.e., 𝜃𝜃(𝑥𝑥) and 𝜃𝜃(𝑦𝑦). 

The results that have been obtained indicate that a cubic angle variation allows more flexibility to tailor the resultant 
stress caused by the in-plane loads, although it is more prone to achieve high fiber curvature values that can be an 
important design constraint. Regarding the critical buckling load, the cubic angle variation for the panels with fixed 
transverse edges exhibit higher values (Case I) when compared with the same panel presenting a linear angle variation. 
More significant difference between the cubic and linear variation buckling load happens when 𝑎𝑎/𝑏𝑏 is equal to 3 and the 
fiber angles varies along 𝑦𝑦 direction, 𝜃𝜃(𝑦𝑦). For 𝜙𝜙 = 0°, the gains in the buckling load using a cubic variation are marginal, 
for both Case I and II, it being less expressive for Case II. 
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