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Abstract 
This article intends to achieve a new formulation of beam vibra-
tion with quintic nonlinearity, including exact expressions for the 
beam curvature. To attain a proper design of the beam structures, 
it is essential to realize how the beam vibrates in its transverse 
mode which in turn yields the natural frequency of the system. In 
this direction, new powerful analytical method called Parameter 
Expansion Method (PEM) is employed to obtain the exact solu-
tion of frequency-amplitude relationship. Afterwards, it is clearly 
shown that the first term in series expansions is sufficient to pro-
duce a highly accurate approximation of mentioned system. Final-
ly, preciseness of the present analytic procedures is evaluated in 
contrast with numerical calculations methods, giving excellent 
results. 
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1 INTRODUCTION 

Nonlinear vibration of beams is of substantial interest for engineers and has been studied, consider-
ably. From the engineering outlook, structures like helicopter rotor blades, space craft antennae, 
flexible satellites, airplane wings, robot arms, high-rise buildings, long-span bridges, drill strings and 
vibratory drilling can be modelled as a beam-like member. The problem of the transversely vibrat-
ing beam was recently formulated in terms of the partial differential equation of motion by many 
researchers [1-17] with different boundary conditions. Sedighi et al. [1] presented the advantages of 
recent modern analytical approaches applied on the governing equation of transversely vibrating 
cantilever beams. A comprehensive study on the analytical investigation of cubic nonlinear vibrat-
ing tapered beams has been conducted by Bayat et al. [2]. The analytical expression for geometri-
cally non-linear vibration of clamped-clamped Euler-Bernoulli beams including cubic non-linear 
strain-displacement relationship has been obtained by Barari et al. [3]. The application of new ana-
lytical approaches on the dynamical behavior of beams vibration with different boundary conditions 
has been investigated by Sedighi et al. [5-8]. Closed form solution to free vibration of beams with 
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mixed boundary conditions has been proposed by Motaghian et al. [9]. Nikkhah Bahrami et al. [10] 
used modified wave approach for calculation of natural frequencies and mode shapes of arbitrary 
non-uniform beams. Non-linear modal analysis of a rotating beams studied by [11, 12]. When the 
vibration amplitudes are moderate or large, the geometric nonlinearity must be included.  

It is very important to provide an accurate analysis towards the understanding of the non-linear 
vibration characteristics of these structures. Most models dealing with nonlinear dynamics of flexi-
ble beams include cubic nonlinear terms in the equations of motion. New predictions and under-
standing require higher order nonlinear terms in the equation of motion. However, research on flex-
ible beams has so far been restricted to cubic nonlinearity. Literature which considered high order 
of nonlinearities is very limited [5]. 

In recent times, substantial progresses had been made in analytical solutions for nonlinear equa-
tions without small parameters. There have been several classical approaches employed to solve the 
governing nonlinear differential equations to study the nonlinear vibrations including perturbation 
methods [18], He’s Max-Min Approach (MMA) [2], He’s Energy Balance Method [19], Combined 
Homotopy Variational Approach [20], Iteration perturbation method [21], Homotopy perturbation 
method (HPM) [22, 23], Multistage Adomian Decomposition Method [24], Variational iteration 
method [3], Multiple scales method [25], Monotone iteration schemes [26], ADM–Padé technique 
[27], Navier and Levy-type solution [28], Hamiltonian approach [29], Parameter Perturbation Meth-
od [30], Differential Transform method [31], Laplace Transform method [32] . The application of 
new equivalent function for deadzone and preload nonlinearities on the dynamical behavior of beam 
vibration using PEM has been investigated by [6-8]. Therefore, many different methods have recent-
ly introduced various ways to eliminate the small parameter. The PEM have been shown to solve a 
large class of nonlinear problems efficiently, accurately and easily, with approximations converging 
very rapidly to solution. Usually, few iterations lead to high accuracy of the solution. The parame-
ter expansion method is proved to be a very effective and convenient way for handling the non-
linear problems, one iteration is sufficient to obtain a highly accurate solution. 

To extend study and understanding on nonlinear frequency, this paper brings quintic nonlineari-
ties into consideration. The significant aim of this paper is to achieve analytical expressions for ge-
ometrically nonlinear vibration of Euler–Bernoulli beam including exact expression for the curva-
ture of beam with quintic nonlinearity using PEM. The nonlinear ordinary differential equation of 
beam vibration is extracted from partial differential equation with first mode approximation, based 
on a Galerkin theory. The results presented in this paper exhibit that the analytical methods are 
very effective and convenient for nonlinear beam vibration for which the highly nonlinear governing 
equations exist. The proposed analytical method demonstrates that one term in series expansions is 
sufficient to obtain a highly accurate solution of beam vibration. 
 
2 EQUATION OF MOTION 

Consider the simply supported beam of length l , a moment of inertia I , mass per unit length m  
and a modulus of elasticityE , which is axially compressed by a loading P  as shown in Fig. 1. De-
noting by w  the transverse deflection, the differential equation governing the equilibrium in the 
deformed situation is derived as:   
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Figure 1   A uniform simply supported beam 

 

where 
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is the “exact” expression for the curvature, using the approximation 
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which is subjected to the following boundary conditions 
 

   
w 0,t( ) =

∂2w

∂x 2
0,t( ) = 0, w l,t( ) =

∂2w

∂x 2
l,t( ) = 0                           (4) 

 
Assuming 

    
w x,t( ) = q t( )φ x( ) , where 

   
φ x( )  is the first eigenmode of the simply supported 

beam and can be expressed as: 
 

    
φ x( ) = sin πx l( )                                                 (5) 

 
Applying the Bubnov-Galerkin method yields: 
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By introducing the following non-dimensional variables 

 

    
τ =

EI

ml 4
t, q =

q
l

                                                    (6-b) 

 
the non-dimensional nonlinear equation of motion about its first buckling mode can be written as 
 

    

d2q τ( )
dτ2

+ γ1q τ( ) + γ2 q τ( )( )3 + γ3 q τ( )( )5 = 0                                  (7) 

 
where 
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3 OERVIEW OF PARAMETER EXPANSION METHOD 

Consider the equation (7) for the vibration of a cantilever Euler-Bernoulli beam with the following 
general initial conditions 

    
q 0( ) = A , q 0( ) = 0                                                  (9) 

 
Free oscillation of a system without damping is a periodic motion and can be expressed by the 

following base functions 

    
cos mωτ( ), m = 1,2,3,...                                               (10) 

  
We denote the angular frequency of oscillation by w  and note that one of our major tasks is to 

determine 
   
ω A( ) ,i.e., the functional behavior of w  as a function of the initial amplitude A . In the 

PEM, an artificial perturbation equation is constructed by embedding an artificial parameter 

   
p ∈ 0,1⎡⎣

⎤
⎦ which is used as an expanding parameter. 

According to PEM the solution of equation (7) is expanded into a series of  p  in the form 
 

    
q τ( ) = q0 τ( ) + pq1 τ( ) + p2q2 τ( ) + ...                                    (11) 
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The coefficients 1 and  γ 1  in the equation (7) are expanded in a similar way 
 

    

1 = 1 + pa1 + p2a2 + ...

γ1 = ω2 − pb1 − p2b2 + ...

1 = pc1 + p2c2 + ...

                                              (12) 

where   ai,bi,ci    
i = 1,2,3,...( )are to be determined. When   p = 0 , equation (7) becomes a linear dif-

ferential equation for which an exact solution can be calculated for   p = 1 . Substituting equations 
(12) and (11) into equation (7) 
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collecting the terms of the same power of p  in equation (13), we obtain a series of linear equations 
which the first equation is 
 

     
q0 τ( ) + ω2q0 τ( ) = 0, q0 0( ) = A, q0 0( ) = 0                            (14) 

 
with the solution 
 

    
q0 τ( ) = Acos ωτ( ),                                                (15) 

  
substitution of this result into the right-hand side of second equation gives 
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No secular terms in 

    
q1 τ( )  requires eliminating contributions proportional to 

   
cos ωτ( )on the right-

hand side of equation (16) 
 

    
c ω( ) =

3
4
c1γ2A

3 +
5
8
c1γ3A

5 −a1Aω
2 −b1A = 0                              (17) 

  
But equation (12) for one term approximation of series respect to p and for    p = 1  yields 
 

    a1 = 0, b1 = ω2 − γ1, c1 = 1                                          (18) 
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From equations (18) and (17) we can easily find that the solutionw  is 
 

    
ω A( ) = ± γ1 +

3
4
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2 +
5
8
γ3A

4                                      (19) 

  
 

Replacing w  from equation (19) into equation (11) yields: 
 

    
q τ( ) ≈ q0 τ( ) = Acos γ1 +
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4 τ
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4 RESULTS AND DISCUSSION 

In order to verify the integrity of the proposed solutions, the authors plot the analytical solutions at 
the side of corresponding numerical results in Fig. 2, where the first approximated amplitude-time 
curves of a uniform beam subjected to axial compression is presented for different initial conditions. 
It should be noted that, in order to verify the analytical solutions, Matlab built-in function ode45 
has been used to solve the governing equation numerically. Ode45 uses simultaneously fourth and 
fifth order RK formulas to make error estimates and adjust the time step accordingly. This causes 
that ode45 function uses an automatically chosen variable time step to solve systems of ODEs. The 
built-in default accuracy of ode45 ( 310-­‐ relative error, 610-­‐ absolute error) is usually quite adequate 
for most purposes. Calculations are actually performed at internal time points that are chosen au-
tomatically by the routine to give the required accuracy [33]. 
 
 

 
 

Symbols: numerical solution,   Solid line: analytical solutions 
Figure 2   Comparison between analytical and Numerical results for   γ1 = 80  
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As can be seen, the first order approximation of 

   
q τ( )  from analytical method is in excellent 

agreement with numerical results from fourth-order Runge-Kutta method. The exact analytical 
solutions reveal that the first term in series expansions is sufficient to result in a highly accurate 
solution of the problem. Furthermore, these equations provide excellent approximations to the exact 
period regardless of the oscillation amplitude. The material and geometric properties adopted here 
have been prepared in the Appendix. 

For a vibrating Euler-Bernoulli beam, the Euler-Lagrange equation is as follows: 
 

    

d2

dx 2
EI ′′w x,t( )( ) + P ′′w x,t( ) + m w x,t( ) = 0                               (21) 

 
Applying the Bubnov-Galerkin method and using the first eigenmode of the simply supported 

beam yields: 
 

    

d2q

dt2
+ γ1q τ( ) = 0                                              (22) 

 
where 
 

    
γ1 = π4 −

Pl 2π2

EI
                                              (23) 

  
 
Table 1 shows the governing equations of motion for transversely vibrating usual beam, cubic 

and quintic nonlinear beams. 
 
 

  
Table 1   Equations of motion for different types of vibrating beams 

 
Type of vibrating beam Equation of motion 

Usual beam      
q τ( ) + γ1q τ( ) = 0  

Cubic nonlinear beam 
     
q τ( ) + γ1q τ( ) + γ2 q τ( )( )3 = 0  

Quintic nonlinear beam 
     
q τ( ) + γ1q τ( ) + γ2 q τ( )( )3 + γ3 q τ( )( )5 = 0  

 
 
Figs. 3 and 4 display the effect of normalized amplitude on the nonlinear behavior of a vibrating 

beam. From Eq. (20), the nonlinear natural frequency is a function of amplitude that means when 
the oscillation amplitude becomes larger, the accuracy of approximated frequencies in usual beam 
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theory (   γ2 = γ3 = 0 ) and cubic nonlinear beam (   γ3 = 0 ) decreases. It confirms that the normal-
ized amplitude has a significant effect on nonlinear behavior of the beams. From these Figs. it is 
observed that the results from usual beam theory are incompatible with quintic nonlinear beam 
when the initial condition becomes larger. In other words, the usual beam response is in more 
agreement with quintic nonlinear beam, when the amplitude of vibration approaches to zero. 

 

 
-*-  usual beam theory -*- quintic nonlinear beam 

Figure 3   The impact of nonlinear terms on the beam dynamical behavior for   A = 0.2  and    γ1 = 80  

 
To extend study and understanding on beam nonlinear frequency, this paper brings quintic nonline-
arities into consideration. Therefore, the influence of cubic and quintic terms on the natural fre-
quency of beam as a function of amplitude has been investigated. As illustrated in Fig. 5, when the 
amplitude of vibration increases, the difference between natural frequencies of usual, cubic and 
quintic nonlinear beam gets larger. It is emphasizes that, in the case of large deformation, new pre-
dictions and understanding of nonlinear dynamical behavior of beams, requires higher order nonlin-
ear terms in the equation of motion. Thus, a simply supported flexible beam represents rich nonlin-
ear dynamics when amplitude of vibration increases. The percent of error in natural frequency ap-
proximation as a function of amplitude has been depicted in Fig. 6. 

In order to investigate the effect of parameter   γ1  on the nonlinear behavior of quintic nonlinear 
beam, the natural frequency as a function of   γ1  has been illustrated in Fig. 7 for different values of 
amplitude. It is observed that the difference between nonlinear fundamental frequency and usual 
beam frequency increases with vibration amplitude. Also, the percent of error in approximating 
natural frequency as a function of   γ1  for different values of oscillation amplitude has been depicted 
in Fig. 8. The relative error of approximated simple beam theory frequency progressively increases 
at lower values of   γ1  for all values of vibration amplitudes. 
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-*- usual beam theory  -*- quintic nonlinear beam 

Figure 4   The impact of nonlinear terms on the beam dynamical behavior for   A = 0.3  and    γ1 = 80  

 
Figure 5   Comparison between of usual beam, cubic and quintic nonlinear beam for    γ1 = 80  

 

 
Figure 6   The percent of error in approximating natural frequency with respect to quintic nonlinear beam for    γ1 = 80  
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Figure 7   Comparison of usual beam and quintic nonlinear beam as a function of   γ1  

 
 

 
Figure 8   The percent of error in approximating natural frequency of usual beam as a function of   γ1  

 
 
As mentioned before, it is very important to provide an accurate analysis towards understanding of 
non-linear vibration characteristics of beams. To demonstrate the necessity of quintic nonlinear 
terms, the percent of error in approximating cubic natural frequency as a function of   γ1  for differ-
ent values of oscillation amplitude has been illustrated in Fig. 9. When the parameter   γ1  decreases, 
the relative error of approximated cubic beam frequency increases considerably, for all values of 
vibration amplitudes. In other words, in larger amplitudes this error cannot be ignored, as indicated 
in Fig. 9. 

Note that the proposed method can be expanded to predict the beam response under different 
boundary conditions, easily. The mode shape which satisfies the boundary conditions at two ends of 
the beam should be placed in the Equation (6-a).  
 



H. M. Sedigi et al / High precise analysis of lateral vibration of quintic nonlinear beam     451	
  

 
Latin American Journal of Solids and Structures 10(2013) 441 – 452 

 
Figure 9   The percent of error in approximating natural frequency of cubic nonlinear beam as a function of   γ1  

 
 
5 CONCLUSION 

In this research, a modern powerful analytical method was employed to solve the governing equa-
tion of quintic nonlinear vibrating beams. It demonstrated that the fundamental frequency based 
upon linear theory and cubic nonlinear beam can be different from the natural frequency of quintic 
nonlinear beam at large vibration amplitudes. An excellent first-order analytical solution using 
modern asymptotic approach was obtained. The accuracy of the obtained analytical solutions is 
verified by numerical methods. These methods can be potentiality used for the analysis of strongly 
nonlinear oscillation problems.  
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