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Abstract 
An alternative elastoplastic model based on the Flory’s right Cauchy-Green stretch tensor decomposition is 
proposed and applied to model soft cores of sandwich panels. It does not follow usual methodologies as the 
additive decomposition or the Kröner-Lee multiplicative decomposition of strains. It is based on an important 
hyperelastic relation, Flory’s decomposition, from which the total strain is separated in two isochoric and one 
volumetric parts. Using this decomposition, the volumetric strain energy continues to be elastic during all 
elastoplastic analysis and the isochoric parts are managed to produce the plastic evolution. As a consequence 
of Flory’s decomposition, the plastic flow direction is known and independent of the yielding surfaces. 
Moreover, it provides the well known deviatoric nature of plastic strains. For validation purposes, the resulting 
formulation is implemented using a special 3D prismatic element in a geometrical nonlinear positional FEM 
computational code. The achieved numerical results are compared with literature experimental data of soft 
core laminated structural elements. 
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1 INTRODUCTION 

The study of laminated beams, plates and shells is very extensive as it is motivated by the high importance of this 
type of structural arrangement in the mechanical, aeronautical, marine and civilindustries. The extent of this area is so 
large that the up-to-date literature reviews are divided into sub-areas. In order to find recent reviews readers are invited 
to consult, for example, the work of Abrate and Di Sciuva (2017) for general Equivalent-Single-Layer theories (ESL), 
Caliri et al. (2016) for FEM shell theories, Garg et al.(2021) to access theories including functionally graded materials, 
Nsengiyumva et al. (2021) for a review associated with non-destructive experimental analysis and the work of Sayyad 
and Ghugal (2017) for vibrations and stability of laminated beams and plates. Some current works of great interest and 
related to the present study can be also cited, for example, the work of Icardi and Urraci (2019) regarding sandwich 
panels vibration, Chen et al. (2016) related to impact analysis, Marques et al. (2018) for structural health monitoring and 
Naik and Sayyad (2018) and Shekari et al. (2017) for general plate theories. 

The present study is dedicated to propose an elastoplastic model for the analysis of soft cores usually present in 
sandwich panels. When loads are applied over small areas of sandwich panels the small stiffness of face-sheets allows 
the core suffer high stress levels developing plastic strains that compromise the behavior of the whole panel 
(Koissin et al., 2004). This phenomenon is usually called core crushing and may occur in various situations as, for example, 
collisions, dropping objects, local buckling, overloaded connections etc. Some interesting works that studied the core 
crushing can be cited, for example Thomsen (1993), Soden (1996) and Olsson(2002) did important analytical 
developments and Lolive and Berthelot (2002) realized interesting numerical simulations. 

The soft cores of sandwich panels are usually made of polymers and, thus, have a nonlinear behavior. This physical 
nonlinearity is present in both elastic and plastic phases and greatly limits the use of most laminate theories cited by the 
above mentioned literature reviews. This occurs because simplified kinematic are not able to describe the mobility of 
the continuum during the deformations developed by the soft core, mainly in a crushing situation. Thus, the use of solid 
finite elements and the improvement of existing material modeling is an important research field. 

In order to coherently study the core crushing phenomenon, it is necessary to have in hand a constitutive 
elastoplastic model capable of considering finite strains. The finite strain theory of plasticity is a very complex subject 
and has been studied over several decades also resulting in a huge volume of information. A summary of the evolution 
of this subject in the scientific literature (linked to numerical methods) can be extracted from the work of Zhang and 
Montán (2019) that specifies two main approaches for modeling plasticity. The first is called multiscale and is important 
to improve the understanding of the microscopic behavior of materials, but its computational cost makes prohibitive its 
implementation in current commercial softwares (Coda et al., 2020; Abraham et al., 2002; Buehler et al., 2004). The 
second plasticity approach (based on continuum mechanics) has a relative low computational cost and, as a 
consequence, is the most used in the development of engineering softwares. 

According to Brepols et al. (2014), when large strains are present, the continuous approach can be divided into two 
main groups. The first, called hypoelastic, uses the additive decomposition of strain rates and searches for coherent 
constitutive stress/strain relationships. In this area one may cite works of Atluri (1984), Hughes and Winget (1980), Kojic 
and Bathe (1987) and Bruhns et al. (1999) that present alternatives to solve objectivity problems that arise from the 
additive decomposition since the pioneering work of Argyris and Kleiber (1977). Even with these improvements, the 
application of hypoelastic formulations is limited to materials that present small elastic strains, which is not the case of 
soft cores. 

The second group, called hyperelastic-based plasticity, uses the Kröner-Lee's multiplicative decomposition (Kröner, 
1959; Lee, 1969) for theoretical developments. In this strategy an intermediate space appears, where only elastic strains 
has been developed, which is in general incompatible, usually accompanied by residual stress (Mandel, 1971). When 
using this kind of formulation it is necessary to operate tensors that are of difficult use and interpretation. There are 
tensors defined in the intermediate space and tensors dedicated to carry out pushing-over and pulling-back operations 
among intermediate, current and initial configurations of the studied problem. The elastic portion of this kind of 
formulation is modeled by hyperelastic potentials and, therefore, admits large elastic strains. Several numerical studies 
that use this strategy can be cited as, for example, Simo and Ortiz (1985), Weber and Anand (1990), Eterovic and Bathe 
(1990) and Simo (1992). The works of Zhang and Montán (2019), Brepols et al. (2014), Wallin et al. (2003) and Casey and 
Naghdi (1981) should be consulted for a good review on different formulations and interesting achievements in finite 
strain plasticity. 

In the present work, with the interest of modeling sandwich panels with soft cores, an alternative and original 
elastoplastic framework to model continuum mechanics is presented. The proposed formulation cannot be directly 
classified in hypoelastic or hyperlastic-based frameworks mentioned above, as it is not based on additive or Kröner-Lee 
strain decompositions. The proposed constitutive model is based on the decomposition of the right Cauchy-Green stretch 
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tensor (Ogden 1984) in its isochoric and volumetric parts, which separates the mechanical behavior of the material in 
such a way that volumetric strains are only elastic and isochoric strains may develop plastic flow. The differences of the 
proposed technique and the existent frameworks are: (i) the plastic flow direction is not governed by a plastic surface, 
(ii) there are two yielding surfaces and (iii) the volumetric change is controlled by a unique potential. It is important to 
mention that, compared to the Kröner-Lee’s decomposition strategy; the proposed formulation reduces the necessary 
mathematical operations to configure an elastoplastic procedure in finite strains. Moreover, due to the direct choice of 
isochoric strain directions, the proposed model avoids material self intersection, called by Zhang and Montán (2019) as 
“Jacobean issues” when solving a pure shear problem. 

The proposed constitutive model is implemented in an in-house geometrically nonlinear computational code that 
uses the position based Finite Element Method with high order prismatic triangular base elements (Carrazedo et al., 
2018;Carrazedo et al., 2020 and Coda and Carrazedo, 2017). High order elements improve the stress representation and 
allow the use of complete numerical integration (without locking) and prismatic elements adapt very well to plates, shells 
and sandwich panels geometries. The applications in sandwich panels, in which the finite plasticity occurs in the core, 
are compared with experimental results present in specialized literature, demonstrating the precision and applicability 
of the proposed model. 

2 NUMERICAL PRELIMINARIES 

This section briefly presents the kinematics adopted to write the used positional FEM. Those interested in more 
details on the development of the adopted finite element may consult Carrazedo et al. (2018), Carrazedo et al. (2020) 
and Coda and Carrazedo (2017), for instance. Here solids are modeled by prismatic elements with triangular base of any 
approximation order. Figure 1 shows an element with a cubic approximation at the base and linear in its height. The 
approximations of initial and current configurations are similar as they are written by shape functions φ



 which has the 

dimensionless space 1 2 3( , , )ξ ξ ξ ξ=


 as domain, see equation (1): 

( )0
i i if x Xα αφ ξ= =



 and ( )1
i i if y Yα αφ ξ= =



 (1) 

in which 0
if  is the initial configuration mapping, ix  represents the initial domain points coordinates, jξ  are the 

dimensionless coordinates, iXα  are initial coordinates of nodes α . In the same way, 1
if  is the current configuration 

mapping, iy  represents the current domain points coordinates and iYα  are current nodal positions. 

 

1ξ

2ξ3ξ
1 1,f A
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− −
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Figure 1: Deformation function described by prismatic elements and auxiliary dimensionless space 

The deformation function f


 is represented by the following composition: 
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( ) 11 0f f f
−

=
  

  (2) 

and its gradient is given by: 

( )-11 0= ⋅A A A  (3) 

with 

0 i
ij

j

xA
ξ
∂

=
∂

 and 1 i
ij

j

yA
ξ
∂

=
∂

 (4) 

It is important to mention that 0A  is known at all integration points (calculated only once) and 1A  is known as a 
trial and enables numerical calculations of all necessary values to assemble the iterative solution of geometrically 
nonlinear problems, see Coda and Carrazedo (2017), Siqueira and Coda (2016) and Pascon and Coda (2013) for instance. 

The weak form of the static equilibrium to be solved is: 

0 0 0
0 0 0 0 0: 0c

V V
dV b y dV p y d

Γ
δ δ δ Γ− ⋅ − ⋅ =∫ ∫ ∫



  S E  (5) 

in which 0b


 is the body force, 0p  is the surface force, yδ   is an arbitrary position variation, cS  is the complete second 

Piola-Kirchhof stress, E  is the Green-Lagrange strain, 0V  is the initial volume of the analyzed body and 0Γ  is its initial 
surface. 

Remembering that current positions of nodes are the unknowns and using the approximation defined by equation 
(1), one writes: 

Y
Y

δ δ∂
= ⋅
∂





EE . (6) 

As Yδ


 is an arbitrary position variation, the nonlinear system of equations to be solved is: 

0 0 0

0
0 0 0: 0c

V V
dV dV B d P

Y Γ
φ φ ϕ ϕ Γ∂ − ⊗ ⋅ − ⊗ ⋅ = ∂ ∫ ∫ ∫
   

 



ES  (7) 

in which different shape functions are used for domain φ


 and surface ϕ


 approximations as the number of nodes is not 
the same. 

This equation was solved several times by the positional FEM using elastic or elastoplastic constitutive models for 
small strains, see Carrazedo et al. (2018), Carrazedo et al. (2020) and Coda and Carrazedo (2017) {40-41], for example. In 
the present work the complete second Piola-Kirchhoff stress tensor cS  will be achieved by an alternative finite strain 
elastoplastic constitutive model in order to solve sandwich panes with elastoplastic soft cores. It is interesting to advance, 
see section 4.4.2, that the complete stress will be written in the following form 1 2( ) ( ) ( )c vol e ep ep= + +S S S S , i.e., the 
volumetric part of the complete stress will be elastic and the two deviatoric parts of the stress will be elastoplastic. 

3 ISOCHORIC AND VOLUMETRIC DECOMPOSITION – FLORY’S DECOMPOSITION 

In this section, the decomposition of the right Cauchy-Green stretch tensor in its isochoric and volumetric parts is 
presented, not only to proceed with the usual definitions of hyperelastic constitutive models, but to support the 
elastoplastic model originally presented here. It is also shown, through simple operations, a well-known property of 
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nonlinear continuum mechanics for which the isochoric portions of the Green-Lagrange strain are directly associated 
with the Cauchy deviatoric stresses, and the volumetric portion of the Green-Lagrange strain is associated with the 
Cauchy hydrostatic stress. 

It is important to remember that the applied decomposition is not the Kröner-Lee that splits strains into plastic and 
elastic parts. The multiplicative decomposition applied on the deformation gradient A  (equation (3)) is defined as (Flory, 
1961): 

ˆ= ⋅A A A  (8) 

where ( )1/3ˆ ˆJ Det J= ⇒ =A I A  (9) 

( )1/3 1J Det−= ⇒ =A A A  (10) 

here Â  is the volumetric part of the deformation gradient A  and A  is its isochoric part. 
As the adopted strain is the Green-Lagrange ( )- / 2E = C I , written as a function of the right Cauchy stretch tensor 

t ⋅C = A A , it is necessary to write, from equation (10), the isochoric part of the right Cauchy-Green stretch as: 

2/3 tJ −= ⋅C A A  (11) 

In which ( ) 1Det C ≡ . The volumetric part of C  is defined from equation (9) as: 

2/3ˆ ˆ ˆt J= ⋅ =C A A I  (12) 

where 2ˆ( ) ( )Det J Det= =C C . 
Multiplying equations (11) and (12) results the necessary multiplicative decomposition of the right Cauchy-Green 

stretch tensor as: 

ˆ ˆ= ⋅ = ⋅C C C C C . (13) 

For hyperelastic materials the specific strain energy is written using an elastic potential of the form 

1 2
1 2( ) ( ) ( )vol iso isoJ I Iψ ψ ψ ψ= + + , or in compact form 1 2Jψ ψ ψ ψ= + +  (14) 

in which 1I  and 2I  are, respectively, the first and second invariants of the isochoric part of the Cauchy-Green stretch C  

and J  is the third invariant of its volumetric part Ĉ . 
Using the concept of energy conjugate, the second Piola-Kirchhoff stress tensor is written as: 

1 2Jψ ψ ψ ψ∂ ∂ ∂ ∂
= = + +
∂ ∂ ∂ ∂

S
E E E E

 or in compact form 1 2J= + +S S S S  (15) 

In this work, during the elastic phase a constitutive law based on the Rivlin and Saunders (1951) model with a 
volumetric control similar to the one proposed by Hartmann and Neff (2003) is adopted, as follows: 

( )2 2
2 2

8
J n nK J J

n
ψ −= + − , ( )1

1 3
4
G Iψ = − , ( )2

2 3
4
G Iψ = −  (16) 
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in which K is the bulk modulus, G  is the shear elastic modulus and 0n >  is a constant that can help the control of the 
volumetric stiffness. Other hyperelastic models may be used if desired, respecting equation (14), however all of them 
should be coincident for small elastic strains. 

Using the potentials defined in equation (16) and performing the operations defined in equation (15), for elastic 
phase one writes: 

( )2 1 (2 1)

4
J n n JK J J

n
− − + = − 

 
S E , 1 1

4
G

=S E  and 2 2

4
G

=S E  (17) 

where the different strain components, that results in stress "directions", are given by: 

1J J J −∂
= =
∂

E C
E

 (18) 

1 2/3 1 2/31 2 ( ) 2
3

I J Tr J− − −∂
= = − +
∂

E C C I
E

 (19) 

{ }2 4/3 12
2

22 ( )
3

tI J I Tr− −∂  = = − + − ∂  
E C C I C

E
 (20) 

in which 2I  is the second invariant of C . 

In what follows it is shown that the second Piola-Kirchhoff stress components ( )1 2, ,JS S S  defined by equation 

(17) are related, respectively, to the hydrostatic and deviatoric Cauchy stress components ( )1 2, ,vol iso isoσ σ σ . This is 

done here applying the well known relation among the second Piola-Kirchhof stress and the Cauchy stress, as follows: 

( )1 2 1 21 1 1 1 1t J t J t t t

J J J J J
= ⋅ ⋅ = ⋅ + + ⋅ = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅σ A S A A S S S A A S A A S A A S A  (21) 

To make this operation simple one starts rewriting equation (16) in a general form: 

( )J J Jψ ψ= , 1 1
1( )Iψ ψ= , 2 2

2( )Iψ ψ=  (22) 

Thus, for each component one writes: 
a) Volumetric 
The candidate to the volumetric component of the second Piola-Kirchhoff stress is written as: 

J
J JJ

J
ψ α∂ ∂

= =
∂ ∂

S
E

E  (23) 

In which α  is a scalar, see equation (17) and JE  is given by equation (18). 
Applying Eq. (21) over the second Piola-Kirchhoff stress of Eq. (23) results: 

11 1vol J t t hidJ
J J

σ α α−= ⋅ = ⋅ = =⋅ ⋅A S A A C A I σ , (24) 
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which means that JE  is the Lagrangian strain direction corresponding to the hydrostatic stress direction in the Cauchy 
space. Thus, JS  is hydrostatic in Lagrangian sense. 

b) First isochoric 
The candidate to the first isochoric component of the second Piola-Kirchhoff stress is written as: 

1
1 11

1

I
I
ψ β∂ ∂

= =
∂ ∂

ES
E

 (25) 

where β  is a scalar and 1E  is a symmetric tensor of the same order of the Green strain, see equation (19). Considering 
Eq. (19) and applying the transformation (21) over Eq. (25), results: 

( )1 5/32
3

t
t tr

Jβ −
  ⋅  = ⋅ −     

σ
A A

A A I  (26) 

And, as 

( ) : : ( )t t t ttr tr⋅ = = = ⋅A A A A A A A A  (27) 

one achieves: 

( )1 5/32
3

t
iso t devtr

Jβ −
  ⋅  = ⋅ − =     

σ σ
A A

A A I  (28) 

which means that 1E  is the first isochoric Lagrangian strain direction and 1S  is the first isochoric second Piola-Kirchhoff 
stress. 

c) Second isochoric 
The candidate to second isochoric component of the second Piola-Kirchhoff stress is written as: 

2
2 22

2

I
I
ψ γ∂ ∂

= =
∂ ∂

S
E

E , (29) 

with γ  and 2E being respectively a scalar and a symmetric tensor of the same order as the Green-Lagrange strain tensor, 
see equation (20). Using Eq. (21) over Eq. (29) and considering Eq. (20), one writes: 

( ) ( ) ( )( )2 7/3
2

22 ( )
3

iso t t tJ tr Iγ −   = ⋅ − ⋅ ⋅ ⋅ −     
σ C A A A A A A I . (30) 

Using equation (27) results: 

2( ) ( ) (( ) ( )) 2t t t ttr tr tr I⋅ ⋅ − ⋅ ⋅ ⋅ =A A A A A A A A . (31) 

From Eq. (31) one calculates ( )2isoTr σ  as 



An alternative finite strain elastoplastic model applied to soft core sandwich panels simulation Humberto Breves Coda 

Latin American Journal of Solids and Structures, 2021, 18(6), e392 8/26 

( ) ( )2 7/3
2 22 2 2 0isoTr J I Iγ −= − =σ  (32) 

thus: 

2iso dev=σ σ , (33) 

meaning that 2E  is the second isochoric Lagrangian strain direction and 2S  is the second isochoric component of the 
second Piola-Kirchhoff stress. 

Thus, from the compact form of equation (15) one understands that an isotropic ductile material enters in plastic 
flow when the deviatoric elastic stressess 1S  or 2S  (without volumetric components) reach a critical value. 

4 PROPOSED CONSTITUTIVE MODEL 

The finite strain elastoplastic model proposed here fulfill three hypothesis stated as follows: (i) The volumetric 
changes are exclusively elastic, (ii) At any instant the total plastic strain tensor is deviatoric and (iii) The multiplicative 
decomposition of the Cauchy-Green stretch tensor (in volumetric and isochoric parts) guaranties independent evolutions 
of hydrostatic and deviatoric stresses even when plastic flow occurs. 

4.1 Elastic limit – before occurrence of plastic flow 

The usual von- Mises condition that guaranties the elastic behavior of an isotropic ductile material is given by the 
following expression: 

2

2 3
yJ

σ
<  or 

21 :
2 3

ydev dev σ
<σ σ  (34) 

in which yσ  is the reference yielding stress and devσ  is the elastic deviatoric part of the Cauchy stress tensor with 2J  

being its second invariant. In order to develop calculations (choosing the shear stress as a reference) one defines 
2yσ τ= , resulting: 

3 : 2 0
2

dev dev τ− <σ σ  (35) 

As shown in section 3, before yielding takes place, the deviatoric elastic stress can be represented by the Lagrangian 
components ( 1S  and 2S ) established in equations (25) and (29) or (17). As there are two deviatoric (isochoric) strain 
directions (that will be used to define plastic flow direction, see item 4.2.1.a) in the proposed model it is necessary to 
split the von-Mises criterion to consider each Lagrangiandeviatoric stress components. It is summarized by imposing the 
following Lagrangian conditions: 

1 1
1

3 : 0
2

τ− <S S  and 2 2
2

3 : 0
2

τ− <S S  (36) 

in which 1 2τ τ τ= =  is assumed, following the elastic relation (17). Other way to write (36) is: 

1 1 23 : 0
2

τ− <S S  and 2 2 23 : 0
2

τ− <S S  (37) 

Using equation (17) one writes equation (37) as a function of the deviatoric part of the hyperelastic constitutive 
model, i.e.: 
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2
1 1 23 : 0

2 16
G τ− <E E  and 

2
2 2 23 : 0

2 16
G τ− <E E  (38) 

in which the isochoric “directions” 1E  and 2E  are present. In order to simplify operational inferences, one rewrites 
equation (38) in an unified form, with E  representing both 1E  or 2E : 

2
23 : 0

2 16
G τ− <E E  (39) 

The initial elastic limiting surfaces are defined imposing equality in equation (38), or schematically in equation (39). 
Here appears a difference of the proposed formulation and others, i.e., there are two yielding surfaces, not one. 

In order to verify the validity of substitutingequation (35) by equation (36), one proceeds with a small strain uniaxial 
test (for example, following direction 1x ). For small strains and the proposed test one has, 

1 2 3 1J λ λ λ= ≅  (40) 

in which iλ represents stretch in direction i . Remembering that the material is assumed isotropic, for this uniaxial test 

one writes 2 3λ λ λ= = or even 2
11/λ λ=  

Making some algebraic simple steps one achieves from equations (19) and (20): 

3
1

1 3
1

3
1

2(1 ) 0 0
2 0 1 0
3

0 0 1

λ
λ

λ

− −
 = − 
 − 

E  (41) 

and 

3
1

2 3
1

1 3
1

2(1 ) 0 0
2 0 1 0

3
0 0 1

λ
λ

λ
λ

− −
 = − 
 − 

E  (42) 

Using equation (17), the following particular relation is achieved: 

1 2
1S Sλ=  (43) 

Using equation (21) and remembering that for small strains one has 1 1λ ≅ results: 

1 2 1 2 / 2dev dev devS S σ σ σ= = = =  (44) 

Thus one achieves 

2 2 1 1
1: : :
2

dev devS S S S σ σ= =  (45) 

verifying the proposition for small strains. For large strains a simple calibration of τ  can be made. 
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4.2 Proposed elastoplasticity 

Equation (39) needs to be improved to consider previous plastic flow and the possibility of plastic evolution. Thus, 
some classic definitions are adapted here to the elastoplastic model to be proposed in this study. 

4.2.1 Definitions 

4.2.1.a - Plastic evolution 

The local plastic evolution is established from the observation that the general strain “direction” E  is isochoric, 
i.e.: 

:
p∆ ∆λ=

E
E

E E
 or 

4 :
p G∆ ∆λ=

E

E E
S  (46) 

where / :E E E  represents the unitary deviatoric directions of plastic strain evolution p∆E , and ∆λ  is the 
variation (or evolution) of the plastic multiplier. As the deviatoric elastic directions, see equation (17), are the same 
defined for plastic flow, one defines the evolution of an internal variable p∆S called here, by similarity with equation 
(17), the plastic stress change. The statement of equation (46) is useful in the definition of the tangent algorithm 
constitutive tensor, but has local validity, that is, cannot be applied for the plastic stress (above defined) cumulative 
process. 

In order to be clear, an accumulation of the type p p p∆= +S S S  cannot be used because, for large strains, a past 
value of p∆S  stop being isochoric (at present time) and, therefore, the use equation (21) with the up-to-date 
deformation gradient ( A ) implies loss objectivity for past values. 

As it is not possible to make a simple sum to state the accumulated plastic stress, here one writes: 

4 :
p G ζλ=

E

E E
S  (47) 

and the evolution is imposed on the scalar plastic strain ζλ  as: 

( )acζ ζλ λ ζ∆λ= +  (48) 

in which ac  represents cumulated and ζ  is the sign of plastic evolution, to be defined after the introduction of 

kinematic hardening, see equation (50). As pS  is proportional to E , hypothesis (ii) and hypothesis (iii) are 
fulfilled. After the determination of the plastic multiplier ∆λ , a simple evolution of the plastic stress tensor is 
given by equation (47) in association with equation (48). The reader understands that in this item an important 
difference of the proposed formulation and the classical frameworks appear, i.e., the plastic flow direction did 
not depend on a plastic surface, but follows phenomenological isochoric kinematic directions. This choice 
prevents material self intersection, i.e., guaranties that 0J >  as the volumetric changes are controlled by a 
consistent hyperelastic potential, see equation (16). 

4.2.1.b - Kinematic hardening 

For convenience, the kinematic hardening ( cH ) is considered constant at iterations of the numerical solution 
process, but depends upon the scalar plastic strain ζλ  for each load level. Defining the ratio between the kinematic 
hardening and the shear elastic modulus as: 

( ) ( ) /cH Gζ ζβ λ λ=  (49) 

the internal variable of the kinematic hardening becomes: 
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( )acq q ζβ λ ζ∆λ= +  (50) 

and the signal of the scalar plastic strain evolution becomes ( ):Sign qζζ λ= − −E E . 

The internal variable q  is multiplied by the isochoric direction and the elastic modulus to generate the back stress 
tensor as 

4 :
Gq=

E

E E
χ  (51) 

The back stress tensor is present in equation (54) and simplified by the double contraction performed in equation 
(55). 

4.2.1.c - Isotropic hardening 

The internal variable κ associated with isotropic hardening is calculated by a cumulative process of the plastic 
multiplier ∆λ , see equation (47). The isotropic hardening ( iH ) is considered constant during iterations, but depends 
upon the cumulated plastic multiplier. Similarly to the kinematic hardening, one defines: 

( ) ( ) /iH Gη λ λ=  (52) 

The plastic multiplier λ is cumulated by acλ λ ∆λ= +  and the evolution of the internal variable κ  is given by: 

( )acκ κ η λ ∆λ= +  (53) 

4.2.2 Preparation of the objective function 

Adopting the symbol tS  for both isochoric Piola-Kirchhoff stresses 1S  or 2S  of equation (17) and considering 
previous definitions, the stress to be introduced in the yielding function (objective function) is defined by: 

or

1
4 4 4 4: : : :

t p

G G G G qq
ζ

ζ λλ

= − −

 
= − − − 

 

S S S

S

χ

E E
E E

E E E E E E E E
- =

 (54) 

Thus, one calculates: 

22

: 1 :
16 : :
G qζλ 

= − − 
 

S S E E
E E E E

 (55) 

It is important to remember that 

( / 4)(1 )
:

ep t p G ζλ= − = −
E

E E
S S S  (56) 
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represents the elastoplastic deviatoric parts ( 1( )epS  and 2( )epS ) of the complete stress 
1 2( ) ( ) ( )c vol e ep ep= + +S S S S  defined after equations (5) and (7); and that ( )vol eS  is the elastic volumetric part given 

in the first of equations (17). 
Taking into account translation (kinematic hardening q ) and the change of size of the plastic surface (isotropic 

hardening κ ), equation (39) is upgraded to the current yielding function or objective function, as: 

2223 31 : 0
2 16 2 4: :

G q Gf
ζλ κ τ

  
= − − − + <       

E E
E E E E

 (57) 

The objective function f  given in equation (57) has the usual meaning, i.e, for 0f <  the regime is elastic and 
there is no plastic evolution. As mentioned before, see equations (47) and (48), the plastic evolution follows isochoric 
direction and any volume change is controlled by the volumetric term of equation (17), thus elastic (hypothesis (i)). 

4.2.3 Calculating the plastic multiplier ∆λ  

Plastic evolution occurs when a trial objective function violates the plastic criterion (51), that is: 

2223 31 : 0
2 16 2 4: :

ac ac
tr tr tr ac

tr tr tr tr

G q Gf
ζλ κ τ

  
= − − − + ≥       

E E
E E E E

 (58) 

in which the superscript tr  represents elastic trial without plastic evolution. The usual procedures for plastic analysis 
(permanence of stress levels on the plastic surface) are summarized here as simple operational, i.e., imposing the nullity 
of equation (58) allowing the evolution of the plastic multiplier at the same time, as follows: 

2223 ( ) 31 (1 ) : ( )
2 16 2 4: :

ac ac
tr tr ac

tr tr tr tr

G q Gζλ ∆λβ ζ κ η∆λ τ
  +

− − + + +       
=E E

E E E E
 (59) 

As hardenings are considered constant at iterations, equation (59) is easily solved and the plastic multiplier is the 
smaller positive value of: 

( ) ( )3: ( ) / / (1 )
2 4

tr tr ac ac ac Gqζ∆λ λ κ τ ζ β η
  

= − + − − + +      
E E  (60) 

( ) ( )3: ( ) / / (1 )
2 4

tr tr ac ac ac Gqζ∆λ λ κ τ ζ β η
  

= − + + + + −      
E E  (61) 

For cyclic applications, when plastic stress ( pS ) exists and :C C  is small, equation (47) may become ill 
conditioned. Thus, in this situation it is necessary to use an alternative objective function to calculate the plastic 
evolution, see item 4.3. 

4.2.4 Isochoric elastoplastic tangent constitutive tensor 

Equation (46) is valid at an instant (not used to assemble evolution), thus it is possible to write equation (56) as: 

( )acep t p p∆= − −S S S S  (62) 
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Observing that ( )acpS  does not vary and p∆S  is a finite value, one writes: 

: : : :
4 4

t p
ep G G∆δ δ δ δ ∆λ δ∂ ∂ ∂ ∂
= − = −
∂ ∂ ∂ ∂
S SS E E E E
E E E E

E E
 (63) 

or 

2

(1 ) :
4

ep G Iδ ∆λ δ∂
= −

∂ ⊗∂
S E

E E
 (64) 

Resulting the proposed model algorithm tangent constitutive tensor as: 

2

(1 )
4
G I∆λ ∂

= −
∂ ⊗∂E E

C  (65) 

It is important to mention that the volumetric part of the complete constitutive tensor is elastic. 

4.3 Small strain range - plastic evolution 

When small strains occur with 0p ≠S  (cyclic loads) a small strain procedure is necessary due to an ill conditioning 

of equation (47), i.e., when the quantity / :E E E  passes through its nullity, it loses the ability of representing the 
total plastic stress value pS , given in equation (47), but when pS  is actually null the problem does not exist. 

Here it is also done using Flory’s decomposition, thus the isochoric and volumetric strains follow the same 
separation used for large strains. Using the unified notation for 1S  and 2S  the total quantity to be verified in the yielding 
criterion is: 

t p= − −S S S χ  (66) 

in which χ  is the back-stress tensor. The pure elastic stress ( / 4)t G=S E  and the accumulated plastic stress pS  
come from a previous existence of the large strain procedure, so are isochoric. From these tensors one writes the plastic 
direction as: 

( ) : ( )

t p t p

t pt p t p

− −
= =

−− −
ϑ S S S S

S SS S S S
 (67) 

resulting: 

4
p G∆ ∆λ=S ϑ  and 

4
c GH∆ ∆λ=χ ϑ  (68) 

Thus, the objective function becomes: 

( )
2 2

3 3: 0
2 2

tr tr tr acf κ τ
   

= − + ≤      
   

S S  (69) 

Evolutions are defined by: 
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ac i

ac

p p p

Hκ κ ∆λ

λ λ ∆λ
χ χ ∆χ

∆

 = +


= +


= +
 = +S S S

 (70) 

in which λ∆  is the evolution of plastic multiplier. When 0trf ≥  one imposes equality in equation (69) together with 
plastic multiplier evolution, resulting: 

( )
22

* * * * *3 3 3( ) : ( )
2 4 2 2

e p c e p c ac iGH H H∆λ ∆λ ∆λ ∆λ κ τ ∆λ
    

− − − − − − − − = + +            
S S S Sχ ϑ ϑ χ ϑ ϑ  (71) 

in which one uses * ( / 4)Gλ λ∆ = ∆ , ( ) ( ) /c cH H Gζ ζβ λ λ= =  and ( ) ( ) /i iH H Gη λ λ= =  to write it short. After 
some algebraic manipulations equation (71) turns into: 

( ) ( ) ( )2 22 * *3 3 3 3 32 : ( ) 0
2 2 2 4 2 2

tr i t i
ac

Gf H Hϖ ∆λ ϖ κ τ ∆λ
  + − − + + =       

S ϑ  (72) 

in which 1 cHϖ = + . As hardening is considered constant during iterations, one solves equation (72) as: 

2
* 4

2

tb b af
a

∆λ
− ± −

=  or 
2 4 4

2

trb b af
a G

∆λ
− ± −

=  (73) 

with 

( )( )223
2

ia Hϖ= −  (74) 

and 

( )3 3 32 : ( )
2 2 2

t i
acb Hϖ κ τ

 
= − + +  

 
S ϑ  (75) 

being the smaller positive value of ∆λ  the searched solution. The same algorithm constitutive elastoplastic tensor of 
finite strains, given by equation (65), is used for small strains. 

4.4 Transition between models 

Small and large strain variables are the same, but for small strains the tensor values pS  and χ  should be stored, 

while for large strains the correspondent scalar values ζλ  and q  are stored. When running the large strain part of the 
model the tensor variables are directly known by equations (47) and (51). However, when running the small strain part 
of the model, one should calculate the scalar values by multiplying equations (47) and (51) by the isochoric strain tensor 
E , as follows 
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:
4

p G ζλ=
:

:

E E
E

E E
S  and :

4
G q=

:

:

E E
E

E E
χ  (76) 

resulting 

4 :p

G
ζλ =

:

E

E E

S
 and 4 :q

G
=

:

E

E E

χ  (77) 

Finally the transition is made from large strains to small strains when : Tol<E E  and from small strains to large 

strains when : Tol>E E . It is worth mentioning that the process always start using the large strain procedure, 
because in this situation 0p =S . 

5 NUMERICAL EXAMPLES 

Three examples are presented in this section. The first one intends to show that the proposed model is able 
to represent finite strain plasticity including cyclic loads, isotropic and kinematic hardenings. The next two 
examples are used to model sandwich panels with core crushing and use experimental results to validate the 
proposed model in real situations. 

5.1 Cyclic axial test 

This example consists in a unitary cub allowed to slide at faces 0x = , 0y =  and 0z = , see Figure 2a. The cub is 
stretched (tension and compression) in z  direction. As the specimen develops large strains - keeping rectangular shape 
- it is interesting to compare the achieved second Piola-Kirchhoff stress (related to the initial area) with the Cauchy stress 
values (related to the current area). The difference between them indicates the influence of large strains in the measured 
physical quantities. 

The adopted dimensionless physical properties are: Bulk modulus 80K = , shear elastic modulus 1 2 24G G= = , 

yielding stress 1 2 0.4τ τ= =  and different isochoric and kinematic hardenings for each case. A simple discretization with 
only two linear elements is employed, see Figure 2b. 

 
Figure 2 - Sliding conditions and simple discretization 

Figure 3 presents the behavior of the second Piola-Kirchhoff stress ( 33S ) and the Cauchy stress ( 33σ ) for a 

moderate stretch interval 0.9 1.1λ≤ ≤  considering 1 2 0.5i iH H= = . As one can see in Figures 3, for example, 

the model reproduces the one dimensional problem, as the beginning of the plastic flow is at 0.8yσ = . For this 

small range of strain the difference between Piola-Kirchhoff and Cauchy stresses is small and the plastic surface 
grows as expected, i.e. linearly. 
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Figure 3 – Isotropic hardening for moderate stretching (tension) interval. 

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

St
re

ss

λ−1

 Cauchy Stress σ33

 Piola Stress S33

 
Figure 4 – Kinematic hardening for moderate stretching 

Figure 4 presents the Piola-Kirchhoff ( 33S ) and Cauchy ( 33σ ) stresses for the same moderate stretching 

0.9 1.1λ≤ ≤ , but considering kinematic hardening 1 2 0.5c cH H= = . The closure of the stress, see Figure 4, confirms 
the reproduction of the Mansing effect when kinematic hardening is adopted, i.e, the energy dissipation is due to plastic 
flow only. 

Figure 5 presents the specimen behavior for the case 1 2 0.5c cH H= = , with a larger stretch interval 0.4 1.6λ≤ ≤
. As it is expected, the hardening behavior is not linear when large strains appear it occurs because the volumetric part 
of the model is highly activated. Particularly, in compression, even with a small hardening, the stress values should 
present a fast grow to avoid material self intersection. This excellent answer is only possible due to complete separation 
of strains into isochoric and volumetric parts. One can observe that, even for this level of strain, the stress cycle closes 
perfectly. Moreover, due to the large change of area, the Piola-Kirchhoff and Cauchy stresses are very different. Table 1 
presents important values to draw Figure 5 in order to make possible the reproduction of the proposed model for this 
cyclic load and large strain range. 
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Figure 5 – Kinematic hardening for large strain – stress cycle 

Table 1 - Cauchy and Piola-Kirchhoff stresses for large cyclic strain reange 

1λ −  Cauchy Piola-Kirchhoff 

0 0 0 

0.006 0.39092 0.38922 

0.012 0.77829 0.77156 

0.018 0.82088 0.80914 

0.3 1.27354 0.98491 

0.6 1.5682 0.98665 

0.3 -0.48094 -0.36921 

-0.3 -1.01703 -1.44679 

-0.6 -2.14791 -5.24741 

-0.3 -0.10103 -0.14427 

0 0.78114 0.78321 

0.3 1.27344 0.98482 
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Figure 6 – Different hardening values for monotonic stretching for finite strain. 
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Figure 6 presents the monotonic stress behavior for a large stretch range 0 3.75λ≤ ≤ . Three different values of 
hardening 1 2 0.15H H= = , 1 2 0.5H H= =  and 1 2 1.0H H= =  are adopted, remembering that for the monotonic 
behavior it is irrelevant which kind of hardening is adopted. 

One can see in Figure 6 that, when tension is applied, the Cauchy stress also grows (in a smaller rate than in 
compression) to avoid self intersection. Table 2 presents important values to draw Figure 6 in order to make possible the 
reproduction of the proposed model. 

Table 2 – Cauchy and Piola-Kirchhoff stresses for large strain tension 

1λ −  
Cauchy stress Piola-kirchhoff stress 

0.5iH =  0.15iH =  1.0iH =  0.5iH =  0.15iH =  1.0iH =  

0 0 0 0 0 0 0 

0.006 0.39092 0.39092 0.39092 0.38922 0.38922 0.38922 

0.012 0.77829 0.77829 0.77829 0.77156 0.77156 0.77156 

0.018 0.82833 0.8178 0.84232 0.81652 0.80609 0.83035 

0.024 0.84941 0.82744 0.87855 0.83246 0.81085 0.86113 

0.03 0.8702 0.83685 0.91444 0.84794 0.81533 0.89121 

0.3 1.63109 1.12579 2.29755 1.26331 0.8701 1.78451 

0.6 2.27389 1.27579 3.58186 1.43487 0.80167 2.27286 

0.9 2.90743 1.39874 4.86043 1.54919 0.74051 2.61167 

1.2 3.58968 1.5569 6.22157 1.65667 0.71234 2.90452 

1.5 4.35145 1.75256 7.68687 1.7731 0.70624 3.17861 

1.8 5.18723 1.98433 9.24748 1.89411 0.71469 3.43792 

2.1 6.10922 2.24969 10.9318 2.02339 0.7327 3.69959 

2.4 7.08672 2.54649 12.6999 2.14939 0.75718 3.95097 

2.7 8.13219 2.9 14.5544 2.27724 0.78659 4.19723 

In order to show the extension of the applied strain, Figure 7 presents snapshots with Cauchy stress values for cases 

1 2 0.5H H= =  within 0.4 1.6λ≤ ≤  and 1 2 0.15H H= =  within 0 3.75λ≤ ≤ . In order to identify the initial 

configuration, Figure 7a shows a position corresponding to 1.006λ = . 

 
Figure 7 - Snapshots including Cauchy stress 33σ  for 2 cases 

5.2 Three-point bending test: 

In this example, the three-point bending test performed by Salami et al. (2015) is numerically simulated. It is a 
sandwich beam with a length of 300mm  and a width of 50mm , the distance between supports is 250mm . As shown 
in Figure 8a, the polyurethane core has a height of 30mm  and the spring steel faces CK75 have a height of 1mm . 
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The simulation is carried out using a mesh with 3200  nodes and 336  prismatic finite elements with cubic 
approximation (length and height of the beam) and linear approximation along its width. Taking advantage of symmetry, 
this discretization is used for half the problem, as shown in Figure 8b. Considering that the contact regions (actuator / 
upper face and supports / lower face) do not suffer degeneration and that in the experimental response there is no 
softening, a simple control of force is performed. A load increment of 25.0F N∆ =  is equally applied in 21 steps for 
half structure. The load is distributed over an area of 7 50mm x mm  as depicted in Figure 8a. Face-sheets are made of 
spring steel CK75 and its mechanical properties were experimentally evaluated by Salami et al. (2015), resulting in 

74.074K GPa=  and 95.238G GPa= . Although no plastic strain takes place in face-sheets for the experiment force 
range and no information are given by Salami et al. (2015), it is assumed an isotropic hardening of 

1
1 2 0.95i iH H GPa= =  and an elastic limit of 1 2 386,5MPaτ τ= = . 

 

 

 
Lateral 

 
Front 

(a) Static scheme (b) Discretization 
 

 

 
Figure 8 – Three point bending experiment and used discretization 

The mechanical behavior of the adopted polyurethane is extracted directly from the experimental graph 
(compression stress versus strain) achieved by Salami et al. (2015). The numerical results are compared to the 
experimental one in Figure 9 using 0.096K GPa= , 33.10 10G x GPa−=  and 4

1 1 1.0 10c cH H x GPa−= = . As one can 
see the proposed model naturally reproduces the stiffness of the core material at the end of the curve. 
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Figure 9 – Polyurethane behavior in compression, experimental values due to Salami et al. (2015). 

To build the numerical curve, a one-dimensional test is performed using a cube of unitary dimensions, the same 
used in example 5.1, see Figure 2. It is important to note that the small delay in material response (presented by 
Salami et al., 2015) is not included in Figure 9. 

Figure 10 shows the applied force (half beam) as a function of the vertical displacement (at the load application line 
0x = ) for different situations: (a) Experimental, (b) numerical model with z constrained displacement (plane strain 

situation), (c) numerical model with free z displacements and (d) same as case (c) with 7mm  caps at the free ends of the 
beam. As can be seen, the results are very close for all cases, revealing: (i) that the developed constitutive model 
adequately represents the plastic evolution of polyurethane and its combination with face-sheets, (ii) the stiffness loss 
of the sandwich beam is associated to the core elastoplastic evolution and (iii) the introduction of the caps at the free 
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end of the beam, despite eliminating the localized yielding, does not significantly interfere in the overall behavior of the 
beam. Regarding cases (c) and (d), comparing Figures 11 and 12, one may see de difference in plastic strain near the end 
of the beam at the final load. 

0 5 10 15 20 25 30 35
0,0

0,1

0,2

0,3

0,4

0,5

0,6

Lo
ad

 (k
N

)

Displacement (mm)

 Case (a)
 Case (b)
 Case (c)
 Case (d)

 
Figure 10 – Force versus displacement at the central sandwich beam 

Figure 11 shows some snapshots (associated with load levels) of the tested beam (case (c)), presenting the 
polyurethane plastic strain values ζλ . The same is done in Figure 12 for case (d). As one can see, differences in plastic 
strains appears at the final experimental load level 500F N=  and are localized at the low corner of the right side of 
Figures 11 and 12. 

 

 

 
 
 

350F N=  

 

 

 
 
 

425F N=  

 
 

 
 
 

500F N=  

 
 

Figure 11 – Plastic strain level ζλ for polyurethane core, case (c) 
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Figure 12 – Plastic strain level ζλ for polyurethane core, case (d) 

Figure 13 presents the normal stress yσ  inside the core for case (d) and applied force 425F N= . As one can see 

a stress bulb is present under the region of applied load, as well as near the support. 

 

 

 

 
 
 
 

425F N=  

 
 

Figure 13 – Normal stress ( y  direction) inside the core, case (d) - GPa  

There is no yielding of face-sheets for the experimental load interval. In order to further analyze the proposed 
experimental test, Figure 14a shows the plastic strain ζλ  of face-sheets (zoom close to the middle of the beam) for a 
applied load of 600F N= . Figure 14b shows the total displacement of the core following z  direction for 600F N=
. Case (c) is considered for both Figures 14a and 14b. 
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Figure 14 – Plastic strain ζλ for face-sheets and displacement in z direction for 600F N=  

The adopted tolerance in positions for this example is 51.0 10x − . 

5.3 Core crushing experiment: 

In this example, the experimental study carried out by Koissin et al. (2004) is simulated by the computational code 
developed here using the proposed elastoplastic model. It is the coupling of a single face-sheet 2.4mm  thick by 50mm  
wide with a core 50mm  thick by 50mm  wide. The length of the specimen is 280mm  and it is resting on a smooth 
sliding surface. A cylindrical mechanical actuator with 12.5R mm=  is used to impose the vertical displacement of the 
face-sheet as shown in Figure 15. 
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Figure 15 – Schematic representation of half specimen proposed by Koissin et al. (2004) 

The same material used by Koissin et al. (2004)(GRFP) is adopted to build up the face-sheet with the experimental 
elastic modulus 16.5E GPa=  and Poisson ratio 0.25ν = . From these values results 2.75K GPa=  and 

6.6G GPa= . Rohacell WF51 rigid foam, also defined by Koissin et al. (2004), is used in the core with 85E MPa= , 
0.42ν =  and 0.9MPaσ = , resulting in the following properties used in the proposed model 177K MPa=  and 
29.93G MPa= . 
Koissin et al. (2004) did not inform the core post-critical behavior, only makes mention that it has been modeled as 

crushable foam, thus 0.4MPaτ =  and 1 2 0.485H H MPa= = −  (softening at small strains) has been adopted. 
Following the numerical tensile and compression tests proposed in example 5.1, the core mechanical behavior adopted 
for the numerical analysis is shown in Figure 16. No additional adaptation is performed in the model parameters to show 
that, even with softening, after a certain strain level the constitutive model provides the necessary stiffening to prevent 
the volumetric degeneration of the material. The higher the Poisson's ratio the earlier this phenomenon occurs. 

 
Figure 16 – Longitudinal behavior of the adopted core material 
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Considering symmetry, the numerical simulation is performed using the in house computer code and the employed 
discretization is shown in Figure 17. It has 2398  nodes and 248  finite elements of cubic approximation at the base and 
linear in depth (width of the specimen). All actuator nodes are prevented to move along horizontal directions. The 
actuator vertical movement is imposed by means of node A , see Figure 17, for which the actuator force is measured. 
The actuator is stiffer than the specimen with the following mechanical properties: 4K GPa=  and 8.99G GPa= . 
The adopted penalization constant (contact) is 0.5kN . 

 

A

 
Figure 17 – Employed discretization ( xy  plane) 

In Figure 18, the forces of experimental and numerical cases are compared as a function of the actuator 
displacement. Considering the complexity of the problem, the numerical result conforms very well with the experimental 
one, revealing the capacity of the proposed constitutive model to accurately represent parts of sandwich panels 
subjected to near concentrate forces. It is also observed that at the end of the analysis the numerical stiffness of the set 
increases, it occurs because the core constitutive model entered its ascending part, always present to avoid material self-
intersection. This stiffening at the end of the curve could be avoided if more information regarding the mechanical 
behavior of the core, for example, reduction of bulk modulus for higher deformations, was available. 
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Figure 18 – Load versus actuator displacement 

An important detail of the achieved results is the detection of the depression present in the graph of Figure 18. It 
occurs in the region of 0.85mm  imposed displacement. The reproduction of this depression surprised even the author. 
Next to the 2mm  displacement level, there is another depression detected by the numerical model, however this 
phenomenon is not evident in the experimental results presented by Koissin et al. (2004). The causes of these 
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depressions are identified as abrupt realignments of the core material at certain deformation stages. It should be noted 
that the maximum number of iterations allowed for the whole analysis is 31 and the adopted tolerance (in position) is 

55.0 10x − . 
Figure 19 presents the final configuration snapshot indicating vertical and horizontal displacements, as well as, the 

developed plastic strain 1
ζλ , related to 1I  

 
Figure 19 – Snapshot for final displacement (8mm) 

6 CONCLUSIONS 

In this study a new elastoplastic model is proposed and successfully implemented in the positional FEM. The model 
is developed to perform applications in sandwich panels with soft core, mainly representing the core crushing. The model 
is explored theoretically, revealing its ability to simulate plasticity in large strains, including cyclic loads and preventing 
the volumetric degeneration of the material. Experimental tests are reproduced with good precision by the proposed 
numerical technique. It is concluded that the constitutive model is suitable for the intended applications with a simple 
implementation. Future developments include its generalization to orthotropic materials and its application to dynamic 
problems, where impacts on small regions of sandwich panels can cause major core damage. 
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