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Abstract 

This investigation analyzes the cost-benefit ratio of the Transformation Field Analysis to compute the 
elastoplastic behavior of periodically perforated metal sheets. Evaluation of accuracy and computational cost are 
analyzed by implementing a finite element approach coupled with the Transformation Field Analysis technique 
for different meshes and finite element orders. Numerical studies are employed to compare Transformation 
Field Analysis accuracy with standard Finite Element Analysis for elastoplastic analysis of periodically perforated 
metal sheets. Additionally, experimental data is employed to validate the Transformation Field Analysis results. 
The Transformation Field Analysis requires calculating the strain concentration and influencing tensors 
employing the finite element method. The numerical results show the technique's capabilities and favorable 
scenarios, besides the influence of domain discretization and finite element order. 
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1 INTRODUCTION 

Micromechanics of porous materials assesses the influence of the porous's geometrical configuration and 
mechanical properties of the matrix material by homogenization and multiscale techniques. Determination of the 
homogenized inelastic response of porous materials integrated into a multiscale analysis continues to challenge 
researchers because of the complex microstructure stress and inelastic strain fields. 

An example is the Generalized Cell Method (GMC) created by Paley and Aboudi (1992) and reformulated by Pindera 
and Bednarcyk (1999). The GMC models complex periodic unit cells and allows the coupling of different constitutive laws 
to evaluate the local response of materials. Another approach for homogenization of composite materials is the Locally 
Exact Homogenization Theory (LEHT) proposed by Drago and Pindera (2008), which evaluates effective parameters of 
periodic materials using locally applied elastic solutions. The method was first employed in periodic composite materials 
reinforced along one direction by isotropic cylindrical fibers distributed in a squared array, Figure 1(a). Later, Wang and 
Pindera (2016) expanded to the parametrical analysis of orthotropic and transversally isotropic materials with a 
hexagonal array, Figure 1(b). Recently, the Generalized Finite-Volume Direct Averaging Micromechanics (GFVDAM), as 
presented in Cavalcante and Pindera (2016), uses a higher-order displacement field to achieve kinematic conformity and 
stress/strain fields continuity among all subdomains of the discretized analyzed domain. 

 
Figure 1: Squared (a) and hexagonal (b) arrays. 

Those techniques are alternatives to the Finite Element Method (FEM) for mechanical analysis of periodic media. 
The increase in sophistication of the models and evaluation of localized phenomena requires refined discretized domains 
or higher-order finite elements. Some techniques address the classical Finite Element Analysis (FEA) to enhance 
performance. The Transformation Field Analysis (TFA) is one of them, Dvorak (1986). The TFA solves the non-linear 
analysis by adding fundamental solutions based on the concepts of concentration and influence tensors borrowed from 
the micromechanics analysis and applying the superposition principle. 

The TFA is a procedure that decomposes the elastic strain field in a superposition of uniform eigenstrain fields, 
exploiting the dependence of the subdomains displacement fields and its influence in the global field, Dvorak (1986). The 
TFA relates thermal and mechanical loadings even when the phases' properties depend on the temperature variation, 
Benveniste and Dvorak (1990). In the TFA approach, Dvorak proposes reducing the number of calculated variables, 
optimizing the cost-benefit ratio of the simulation. 

The superposition-based formulation can also be found in Dvorak (1990), where uniform fields in a biphasic medium 
can be assessed. In this work, the authors calculate the influence tensors based on unit eigenstrains and define their 
relations with inelastic strains, considering an arbitrary geometry for the phases. They also restrict the type of inclusions 
where uniform strain fields are available. Additionally, Benveniste and Dvorak (1992) makes some observations of the 
uniform field in composite materials. In the same year, Dvorak and Benveniste (1992) expanded Dvorak’s formulation 
for multi-phase composites, and a FEM-based approach for TFA is proposed in Dvorak et al. (1994), wherein the first 
comparison of classic FEA and TFA is investigated, and TFA shows good accuracy. 

Following publications complemented the developments and applications of the TFA formulation. Michel and 
Suquet (2003) proposed a methodology using non-uniform fields (Non-Uniform Transformation Field Analysis - NTFA). 
This modification reduced the number of microscale subdivisions necessary to evaluate the composite material's 
effective constitutive relationships accurately. An application was presented in Michel and Suquet (2004) for an 
aluminum sheet with Boron fibers subjected to macroscopic stresses, and the differences between the TFA and NTFA 
formulations were evaluated for the same meshes. Additionally, Roussette et al. (2009) applied NTFA and the Karhunen-
Loève decomposition for porous and composite materials considering a viscoelastoplastic regime. 
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Developments of the NTFA are presented in Fritzen and Leuschner (2013) and Sepe et al. (2013). The first adopts a 
variational approach to solve the reduction problem in the plastic regime, and the second differs from NTFA by using 
linear combinations of inelastic fields for each element and testing its procedure in shape memory alloys (SMA). A 
comparison between the two methods is presented in Fritzen et al. (2015), discerning situations where each method 
stands out. Addessi et al. (2010) adapt TFA for numerical analysis of masonry, and Cavalcante and Pindera (2013) 
proposed a TFA approach based on the Finite-Volume Direct Averaging Micromechanics (FVDAM) theory. 

Recently, Covezzi et al. (2017) proposed a modification to the method, where instead of approximating the inelastic 
strain field, the approximation of a stress field is considered. Covezzi et al. (2018) complemented the comparison previously 
made in Fritzen et al. (2015), introducing this new technique. In this regard, Yang et al. (2020) proposed a homogenization 
technique with second-order reduced factors based on TFA and applied it in axisymmetric configurations. 

An exciting optimization technique is presented in Alaimo et al. (2019), where decomposition of the strain field 
based on the Principal Component Analysis (PCA) technique is employed to identify regions of the analyzed domain 
where it is more interesting to apply TFA or employ standard FEA. This technique was applied in a unit cell model 
considering a viscoelastic constitutive regime. 

It is essential to point out two significant challenges in the application of TFA: the approximation of the inelastic 
field (the bases that are employed for its calculation) and the accurate solution of the temporal evolution problem of the 
inelastic field, which is related to the number of variables calculated step by step along the time. Several applications are 
addressing both problems, but their resolutions are still challenging. 

This investigation addresses the second challenge, analyzing the performance of the TFA-based Finite Element 
approach for elastoplastic analysis of periodic porous media. Evaluation of numerical and experimental case studies 
appraise accuracy and computational cost for different discretizations, considering h- and p- refinements in FEA to assess 
favorable scenarios for applying the technique. 

2 HOMOGENIZATION OF PERIODIC MATERIALS 

Mechanical analysis of periodic materials under homogeneous loading is defined by the behavior of the repeating 
unit cell, which consists of the pattern used to generate the whole material. The solution of the boundary-value problem 
subject to periodic traction and displacement boundary conditions defines the macroscale response of the material 
(Drago and Pindera, 2007). 

The unit cell should be well enough discretized to capture the microstructural details. Also, the displacement field 
in subdomains is expressed in terms of macroscopic and local contributions using a two-scale expansion in global and 
local coordinates, 

𝑢𝑢𝑖𝑖
(𝑞𝑞)(𝒙𝒙,𝒚𝒚) = 𝜀𝜀𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑢𝑢�𝑖𝑖

𝑟𝑟(𝑞𝑞)(𝒚𝒚) , 𝑖𝑖 = 1,2,3 (1) 

where 𝜀𝜀𝑖𝑖𝑖𝑖 is the macroscopic strain field applied to the entire material and 𝑢𝑢�𝑖𝑖
𝑟𝑟(𝑞𝑞)(𝒚𝒚) is the local fluctuating displacement 

in the qth subdomain for the rth phase. Accordingly, the strain field is also decomposed into average and fluctuating 
parts 𝜀𝜀𝑖𝑖

(𝑞𝑞)(𝒙𝒙,𝒚𝒚) = 𝜀𝜀𝑖𝑖𝑖𝑖 + 𝜀𝜀�̃�𝑖𝑖𝑖
𝑟𝑟(𝑞𝑞)(𝒚𝒚). FEA solution produces a set of equations for the parameters defining the subdomain 

fluctuating displacement field of the form 

𝑲𝑲𝒖𝒖�  = Δ𝑪𝑪𝜺𝜺 + 𝑮𝑮�∫ 𝜺𝜺𝑝𝑝(𝑞𝑞)𝑑𝑑𝑑𝑑𝑉𝑉(𝑞𝑞) � (2) 

with Δ𝑪𝑪 having terms of the differences in the stiffness matrix, 𝑮𝑮 contains volume integrals of the unknown plastic strains 
over the subdomains and 𝒖𝒖� represent nodal fluctuating displacements that are common to adjacent subdomains, which 
depends only on the plastic strain field 𝜺𝜺𝑝𝑝(𝑞𝑞). 

Solution of the system, coupled with homogeneous displacement field, determines the displacement in each 
subdomain, wherein the volume-averaged strain in the qth subdomain can be evaluated as 

𝜺𝜺(𝑞𝑞) = 𝑨𝑨(𝑞𝑞)𝜺𝜺 + 𝑫𝑫(𝑞𝑞) (3) 

with 𝑨𝑨(𝑞𝑞) and 𝑫𝑫(𝑞𝑞) as the elastic strain concentration tensors (Hill, 1963) and inelastic influence tensors, respectively. 
Based on these definitions, using subdomain stresses and strains through local constitutive equations 



Elastoplastic Analysis of Perforated Metal Sheets using Transformation Field Analysis and Finite Element 
Method 

Christiano Augusto Ferrário Várady Filho et al. 

Latin American Journal of Solids and Structures, 2021, 18(6), e391 4/20 

𝝈𝝈(𝑞𝑞) = 𝑪𝑪(𝑞𝑞)�𝜺𝜺(𝑞𝑞) − 𝜺𝜺𝑝𝑝(𝑞𝑞)� (4) 

we can evaluate the volume-averaged stress in terms of the volume-averaged subdomain stress 

𝝈𝝈 = 1
𝑉𝑉
∑ ∫ 𝝈𝝈(𝑞𝑞)𝑑𝑑𝑑𝑑 = ∑ 𝑐𝑐(𝑞𝑞)𝝈𝝈

(𝑞𝑞)𝑁𝑁𝑞𝑞
𝑞𝑞=1 =𝑉𝑉𝑞𝑞

𝑁𝑁𝑞𝑞
𝑞𝑞=1 ∑ 𝑐𝑐(𝑞𝑞)𝑪𝑪(𝑞𝑞) �𝜺𝜺(𝑞𝑞) − 𝜺𝜺𝑝𝑝(𝑞𝑞)�𝑁𝑁𝑞𝑞

𝑞𝑞=1 = 𝑪𝑪∗�𝜺𝜺 − 𝜺𝜺𝑝𝑝� (5) 

which is the homogenized Hooke’s law. The homogenized stifness matrix 𝑪𝑪∗ and plastic strain 𝜺𝜺𝑝𝑝(𝑞𝑞)can be evaluated as 

𝑪𝑪∗ = ∑ 𝑐𝑐(𝑞𝑞)𝑪𝑪(𝑞𝑞)𝑨𝑨(𝑞𝑞)𝑁𝑁𝑞𝑞
𝑞𝑞=1 , (6) 

𝜺𝜺𝑝𝑝 = [𝑪𝑪∗]−𝟏𝟏 ∑ 𝑐𝑐(𝑞𝑞)𝑪𝑪(𝑞𝑞) �𝜺𝜺𝑝𝑝(𝑞𝑞) −  𝑫𝑫(𝑞𝑞) �𝑁𝑁𝑞𝑞
𝑞𝑞=1  (7) 

where 𝜺𝜺𝑝𝑝(𝑞𝑞) is the volume-averaged plastic strains in the qth subdomain. Calculation of the strain concentration and 
influence tensors is presented in next section. 

2.1 Transformation Field Analysis 

Eigenstrains, from which TFA is based, is a mathematical concept and can represent some physical phenomenon in 
the manufacture or operation of composite materials caused by thermal changes, variations in the humidity of the phase 
material, or inelastic strains. It is essential to point out that the strains caused by stresses superior to the material's yield 
stress can be decomposed into its elastic and inelastic parts, and only the latter is an eigenstrain. Also, for an incremental 
increase in the stress field, changes in the inelastic strain field depend on the loading history. 

The presence of eigenstrain 𝝁𝝁(𝑟𝑟) and eigenstress 𝝀𝝀(𝑟𝑟) in the rth phase affects the constitutive relationships as follows 

𝝈𝝈(𝑟𝑟) = 𝑪𝑪(𝑟𝑟)𝜺𝜺(𝑟𝑟) + 𝝀𝝀(𝑟𝑟) ↔ 𝜺𝜺(𝑟𝑟) = 𝑺𝑺(𝑟𝑟)𝝈𝝈(𝑟𝑟) + 𝝁𝝁(𝑟𝑟) where (8) 

𝝀𝝀(𝑟𝑟) = −𝑪𝑪(𝑟𝑟)𝝁𝝁(𝑟𝑟) and 𝝁𝝁(𝑟𝑟) = −𝑺𝑺(𝑟𝑟)𝝀𝝀(𝑟𝑟) (9) 

∴ 𝝈𝝈(𝑟𝑟) = 𝑪𝑪(𝑟𝑟)�𝜺𝜺(𝑟𝑟) − 𝝁𝝁(𝑟𝑟)� ↔ 𝜺𝜺(𝑟𝑟) = 𝑺𝑺(𝑟𝑟)�𝝈𝝈(𝑟𝑟) − 𝝀𝝀(𝑟𝑟)�. (10) 

An interesting way of representing the local stress/strain fields in a heterogeneous media is to employ 
transformation variables with uniform distributions, as proposed in Dvorak (1990). Thus, the volume-averaged strain and 
stress in the rth phase can be evaluated as follows 

𝜺𝜺(𝑟𝑟) = 𝑨𝑨(𝑟𝑟)𝜺𝜺 + ∑ 𝑫𝑫(𝑟𝑟,𝑠𝑠)𝝁𝝁(𝑠𝑠) 𝑁𝑁
𝑠𝑠=1 and 𝜎𝜎(𝑟𝑟) = 𝑩𝑩(𝑟𝑟)𝝈𝝈 + ∑ 𝑭𝑭(𝑟𝑟,𝑠𝑠)𝝀𝝀

(𝑠𝑠)𝑁𝑁
𝑠𝑠=1  (11) 

where 𝑨𝑨(𝑟𝑟) and 𝑩𝑩(𝑟𝑟) are the strain and stress concentration tensors for the rth phase, respectively. The tensors 𝑫𝑫(𝑟𝑟,𝑠𝑠) 
and 𝑭𝑭(𝑟𝑟,𝑠𝑠) are called transformation influence tensors for strain and stress, respectively. They measure the strain/stress 

in the rth phase caused by uniform eigenfields 𝝁𝝁(𝑠𝑠) and 𝝀𝝀
(𝑠𝑠)

 in the sth phase applied in a model where 𝜺𝜺 = 𝟎𝟎 and 𝝈𝝈 = 𝟎𝟎, 
respectively. The influence tensors 𝑫𝑫(𝑟𝑟,𝑟𝑟) and 𝑭𝑭(𝑟𝑟,𝑟𝑟) indicate self-induced influences in the analysis. In biphasic materials 
(matrix and inclusions of the same type of material), the influence tensors can be calculated as 

𝑫𝑫(𝑟𝑟,𝑚𝑚) = �𝑰𝑰 − 𝑨𝑨(𝑟𝑟)��𝑪𝑪(𝑚𝑚) − 𝑪𝑪(𝑖𝑖)�
−1𝑪𝑪(𝑚𝑚) 𝑭𝑭(𝑟𝑟,𝑚𝑚) = �𝑰𝑰 − 𝑩𝑩(𝑟𝑟)��𝑺𝑺(𝑚𝑚) − 𝑺𝑺(𝑖𝑖) �

−1𝑺𝑺(𝑚𝑚) (12) 

𝑫𝑫(𝑟𝑟,𝑖𝑖) = −�𝑰𝑰 − 𝑨𝑨(𝑟𝑟)��𝑪𝑪(𝑚𝑚) − 𝑪𝑪(𝑖𝑖)�
−1
𝑪𝑪(𝑖𝑖) 𝑭𝑭(𝑟𝑟,𝑖𝑖) = −�𝑰𝑰 − 𝑩𝑩(𝒓𝒓)��𝑺𝑺(𝑚𝑚) − 𝑺𝑺(𝒊𝒊) �

−1
𝑺𝑺(𝑖𝑖) (13) 

for 𝑟𝑟 = 𝑚𝑚, 𝑖𝑖. 
Transformational influence tensors have emerged as an alternative for evaluating inelastic behavior caused by 

different types of loads. Coupling with Finite Element Analysis (displacement formulation) involves the evaluation of 
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strain concentration and influence tensors for each finite element. The main advantage is that these tensors are 
evaluated just once, allowing for inelastic analysis in various situations (different loadings). 

Calculation of Strain Concentration Tensors 

Strain concentration tensors are evaluated in turns, where each shift fills the values of parts of the tensor. Each shift 
consists of the solution of the model with the application of components of macroscopic stress and strain (𝜺𝜺𝑘𝑘  = 𝒊𝒊𝑘𝑘 or 
𝝈𝝈𝑘𝑘  = 𝒊𝒊𝑘𝑘), where 𝒊𝒊𝑘𝑘 is the kth column of the identity tensor. For each calculated solution, the volume-averaged local 
strains compose the columns of the strain concentration tensors. Below, the representation of a pseudo-algorithm for 
the calculation of the strain concentration tensors. 

For each macroscopic strain 𝜺𝜺𝑘𝑘: 

1. Calculate the global force vector for the macroscopic strain 𝜺𝜺𝑘𝑘; 

2. Calculate the global fluctuating displacement vector 𝒖𝒖�; 

3. For each element 𝑒𝑒: the column related to component 𝑘𝑘 is the sum of the macroscopic homogenous strain and the 
volume-averaged fluctuating strain of each finite element, which is obtained by multiplying the volume-averaged 

strain tensor 𝑩𝑩
(𝑒𝑒)

 and the local fluctuating displacement vector 𝒖𝒖�(𝑒𝑒): 

𝑨𝑨(𝑒𝑒)(𝑘𝑘, ∶) = 𝜺𝜺 + 𝑩𝑩
(𝑒𝑒)
𝒖𝒖�(𝑒𝑒) (14) 

Calculation of Transformation Influence Tensors 

The process for evaluation of the influence tensors is similar. Macroscopic strain (or stress) tensors (𝜺𝜺 = 𝟎𝟎 or 𝝈𝝈 = 𝟎𝟎) are 
applied. Next, the model is submitted to unit values for each eigenstrain component 𝝁𝝁�𝑘𝑘

(�̂�𝑒) = 𝒊𝒊𝑘𝑘 in the element �̂�𝑒. For each 
component applied, the volume-averaged strain is calculated for all elements, composing each column of the influence tensor 
𝑫𝑫(𝑒𝑒,�̂�𝑒) in the element �̂�𝑒. Below, the representation of a pseudo-algorithm for the calculation of the transformation influence 
tensors. 

For each eigenstrain 𝝁𝝁�𝑘𝑘
(�̂�𝑒) = 𝒊𝒊𝑘𝑘 : 

1. Calculate the global force vector for the local eigenstrain 𝝁𝝁�𝑘𝑘
(�̂�𝑒) in the element �̂�𝑒. 

2. Calculate the global fluctuating displacement vector 𝒖𝒖�; 

3. For each element 𝑒𝑒: the column related to the 𝑘𝑘 component of the influence tensor is the product between the volume-

averaged strain tensor 𝑩𝑩
(𝑒𝑒)

 and the local fluctuating displacement vector 𝒖𝒖�(𝑒𝑒): 

𝑫𝑫(𝑒𝑒,�̂�𝑒)(𝑘𝑘, : ) = 𝑩𝑩
(𝑒𝑒)
𝒖𝒖�(𝑒𝑒) (15) 

2.2 Elastoplastic Analysis 

Evaluation of the elastic strain concentration and plastic influence tensors permits calculation of the homogenized 
elastic-plastic behavior of a periodic material for all loading steps. Assessment of the mechanical behavior is done by 
successive integrations in incremental form of the homogenized plastic strains using the localization equations. The 
homogenized plastic strain increment is given as 

𝑑𝑑𝜺𝜺𝑝𝑝 = ∑ 𝑐𝑐(𝑒𝑒)𝑩𝑩(𝒆𝒆)𝑑𝑑𝜺𝜺𝑝𝑝(𝑒𝑒)𝑁𝑁𝑒𝑒
𝑒𝑒=1  (16) 

where the elastic stress concentration tensor is evaluated by 𝑩𝑩(𝒆𝒆) = [𝑪𝑪∗]−𝟏𝟏�𝑨𝑨(𝑒𝑒)�
𝑇𝑇
𝑪𝑪(𝑒𝑒) and the local plastic strain 

increment 𝑑𝑑𝜺𝜺𝑝𝑝(𝑒𝑒) is determined by plasticity theory with isotropic hardening employing Mendelson’s reformulation of 
the Prandtl-Reuss Equations in terms of the strain deviators 𝑒𝑒𝑖𝑖𝑖𝑖′  (Mendelson, 1968) 

𝑑𝑑𝜀𝜀𝑖𝑖𝑖𝑖
𝑝𝑝(𝑒𝑒) = � 𝑒𝑒𝑖𝑖𝑖𝑖

′

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
�

(𝑒𝑒)

𝑑𝑑𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒
𝑝𝑝(𝑒𝑒) where (17) 
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𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �2
3
�̅�𝑒𝑖𝑖𝑖𝑖′ �̅�𝑒𝑖𝑖𝑖𝑖′  and (18) 

�̅�𝑒𝑖𝑖𝑖𝑖′ = 𝜀𝜀�̅�𝑖𝑖𝑖 −
1

3𝜀𝜀�𝑘𝑘𝑘𝑘
𝛿𝛿𝑖𝑖𝑖𝑖 − 𝜀𝜀�̅�𝑖𝑖𝑖

𝑝𝑝 |𝑝𝑝𝑟𝑟𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑠𝑠 (19) 

with 𝜀𝜀�̅�𝑖𝑖𝑖
𝑝𝑝 |𝑝𝑝𝑟𝑟𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑠𝑠 being the plastic strains of the previous load step. The effective plastic strain increment is 

𝑑𝑑𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒
𝑝𝑝(𝑒𝑒) = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(𝑒𝑒) − 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒
(𝑒𝑒) /3𝜇𝜇 (20) 

where 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒
(𝑒𝑒)  is the effective von-Mises stress in the element 𝑒𝑒. The load history is defined by homogenized strain increment 

𝑑𝑑𝜺𝜺, and the subdomain plastic strains are calculated iteratively using the method of successive elastic solutions proposed 
in Mendelson (1968), decomposing uniform subdomain plastic strains in previous and incremental parts 

𝜀𝜀�̅�𝑖𝑖𝑖
𝑝𝑝(𝑒𝑒) = 𝜀𝜀�̅�𝑖𝑖𝑖

𝑝𝑝(𝑒𝑒)|𝑝𝑝𝑟𝑟𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑠𝑠 + 𝑑𝑑𝜀𝜀�̅�𝑖𝑖𝑖
𝑝𝑝(𝑒𝑒) (21) 

A pseudo-algorithm is presented below for each loading step: 

1. Definition of the homogenized strain increment 𝑑𝑑𝜺𝜺; 

2. Evaluation of the volume-averaged total strain in every element 𝑒𝑒: 

a. Apply the localization relation 𝜺𝜺(𝑒𝑒) = 𝑨𝑨(𝑒𝑒)𝜺𝜺 + ∑ 𝑫𝑫(𝑒𝑒,�̂�𝑒)𝜺𝜺𝑝𝑝(�̂�𝑒)𝑁𝑁𝑒𝑒
𝑟𝑟=1  (initially, 𝜀𝜀�̅�𝑖𝑖𝑖

𝑝𝑝(�̂�𝑒) = 𝜀𝜀�̅�𝑖𝑖𝑖
𝑝𝑝(�̂�𝑒)|𝑝𝑝𝑟𝑟𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑠𝑠); 

b. Calculate 𝑑𝑑𝜀𝜀𝑖𝑖𝑖𝑖
𝑝𝑝(𝑒𝑒) = � 𝑒𝑒𝑖𝑖𝑖𝑖

′

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
�

(𝑒𝑒)
𝑑𝑑𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒

𝑝𝑝(𝑒𝑒); 

c. Find 𝜀𝜀�̅�𝑖𝑖𝑖
𝑝𝑝(𝑒𝑒) = 𝜀𝜀�̅�𝑖𝑖𝑖

𝑝𝑝(𝑒𝑒)|𝑝𝑝𝑟𝑟𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑠𝑠 + 𝑑𝑑𝜀𝜀�̅�𝑖𝑖𝑖
𝑝𝑝(𝑒𝑒); 

d. Repeat until 𝑑𝑑𝜀𝜀�̅�𝑖𝑖𝑖
𝑝𝑝(𝑒𝑒) converges. 

3. Evaluate the homogenized plastic strain increment 𝑑𝑑𝜺𝜺𝑝𝑝 = ∑ 𝑐𝑐(𝑒𝑒)𝑩𝑩(𝑒𝑒)𝑑𝑑𝜺𝜺𝑝𝑝(𝑒𝑒)𝑁𝑁𝑒𝑒
𝑒𝑒=1 ; 

4. Update 𝜺𝜺 and 𝜺𝜺𝑝𝑝 and calculate the homogenized stress 𝝈𝝈 = 𝑪𝑪∗�𝜺𝜺 − 𝜺𝜺𝑝𝑝�. 

3 RESULTS 

3.1 Numerical Analysis 

3.1.1 Problem Description 

The elastoplastic analysis of periodically perforated metal sheets was carried out employing the concepts discussed 
in the previous sections to analyze the TFA's capabilities. The domain was discretized in several ways for the adoption of 
different types of elements. It should be noted that a similar analysis can be seen in Cavalcante and Pindera (2013). All 
analyzes were performed in a Matlab 2019a environment (The MathWorks Inc., 2019) with an Intel Core i7-7700HQ 
processor running at 3.80 GHz with 16 GBs of RAM. 

The perforated metal sheet presents circular holes distributed in a hexagonal array with a volume fraction of 25%. 
Discretizations disposes the elements along the angular and radial directions: 18x3 (54 elements), 30x5 (150 elements) 
and 90x15 (1350 elements). Figure 2 shows the discretizations for quadrilateral elements. 

The strain hardening of the aluminum matrix is described by a power-law hardening, which takes the form 

𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜎𝜎𝑦𝑦 + 𝐻𝐻𝑝𝑝�𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒
𝑝𝑝 �

𝑛𝑛
 (22) 

where 𝜎𝜎𝑦𝑦 is the yield stress, 𝐻𝐻𝑝𝑝 is the strain-hardening slope and 𝑛𝑛 is the exponent of the power-law. Elastic and plastic 
parameters of the aluminum alloy employed in the perforated sheet studies and analyzed by Öchsner (2003): 𝐸𝐸 = 72.7 𝑀𝑀𝑀𝑀𝑀𝑀, 
𝜈𝜈 = 0.34, 𝜎𝜎𝑦𝑦 = 240 𝑀𝑀𝑀𝑀𝑀𝑀, 𝐻𝐻𝑝𝑝 = 457.589 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑛𝑛 = 0.4218. 
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Figure 2: Discretizations of the unit cell. 

Complementary to linear quadrilateral elements, a study is also made employing quadratic elements with the same 
meshes. In this case, the element can represent more complex strain fields, delivering better results than the linear 
element with less discretization. However, it is noteworthy that the number of nodes increases significantly. Table 1 
shows a comparison between the number of nodes for each of the adopted meshes. A higher-order quadrilateral element 
with five-degree Lagrangian interpolation (or 36 nodes) is also employed. For instance, an 18x3 mesh has 54 elements 
and 1440 nodes, the same number of nodes of the 90x15 mesh with linear elements. With this higher-order element, it 
was possible to verify the influence of node density per element in the analyses. 

Table 1: Number of elements and nodes per discretization. 

 Discretizations 
18x3 30x5 90x15 

Elements 54 150 1350 
Nodes (Linear Element) 72 180 1440 

Nodes (Quadratic Element) 252 660 5580 
Nodes (Fifth-Order Element) 1440 3900 34200 

All models were subjected to periodic boundary conditions and macroscopic loadings to reflect uniaxial tension and 
pure shear scenarios. The load was applied in 30 equal increment steps until reaching homogeneous strains of 3%. 
Boundary conditions in the fluctuating displacement are established according to Figure 3 to avoid rigid body motions. 
The TFA results are compared with the classical Finite Element Analysis. 

 
Figure 3: Displacement fluctuating restrictions. 

The results are presented below, considering the scenarios of uniaxial tension and pure shear, Figure 4. The analyses 
were carried out as follows: comparing models employing the same finite element but with different mesh discretizations 
and models with the same number of nodes (the same number of degrees of freedom) but with different numbers of 
finite elements with distinguished orders. Thus, the objective was to highlight the influence of the mesh discretization 
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for the same type of finite element and the order of the employed finite element for the same number of nodes, i.e., the 
same number of degrees of freedom. 

 
Figure 4: Uniaxial tension and pure shear macroscopic loadings. 

3.1.2 Uniaxial Tension 

Figure 5 shows the results of the models with all meshes using the linear, quadratic, and high-order elements. The 
TFA data is compared with classical FEA results. 

 
Figure 5: Macroscopic response for uniaxial tension employing FEA and TFA. 

Table 2 shows the relative differences between the classical FEA and TFA for the same finite element and 
discretization (number of elements). Because TFA approximates stress/strain fields assuming uniform distribution per 
element, it was expected that TFA results would converge with FEA results for higher levels of discretization because it 
can capture the localized plastic strain field. The quadratic finite element presented similar results compared with the 
fifth-order finite element. Higher-order finite elements give a less stiff macroscopic response for TFA because they can 
more correctly capture the localized field when a uniform eigenstrain is imposed per element. For the coarsest meshes, 
the maximum relative difference was lower than 10% for the macroscopic strain of 3%, and for the most refined meshes, 
the relative differences were less than 1.5%. 

The effective plastic strain and stress distributions are presented for the 90x15 meshes of linear, quadratic, and 
fifth-order finite elements (Figure 6, Figure 7, and Figure 8). These fields present uniform averaged distributions per 
element to compare the results obtained by classical FEA and TFA approaches more directly. For this level of 
discretization, the localized response obtained by TFA is as good as the localized response obtained by classical FEA for 
all the analyzed finite elements. 
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Table 2: Relative differences between FEA and TFA (uniaxial tension). 

Uniaxial Tension 

Macroscopic Strain 0.5% 1% 1.5% 2% 2.5% 3% 
Q4 18x3 2.50% 4.23% 5.78% 7.17% 8.34% 9.34% 
Q4 30x5 1.11% 2.35% 3.26% 4.06% 4.77% 5.40% 

Q4 90x15 0.16% 0.40% 0.61% 0.81% 0.98% 1.14% 
Q9 18x3 2.57% 4.60% 5.80% 6.86% 7.79% 8.59% 
Q9 30x5 1.42% 2.35% 3.10% 3.70% 4.22% 4.68% 

Q9 90x15 0.17% 0.34% 0.49% 0.61% 0.73% 0.83% 
Q36 18x3 2.58% 4.69% 5.89% 6.90% 7.78% 8.55% 
Q36 30x5 1.44% 2.28% 3.02% 3.62% 4.13% 4.58% 

Q36 90x15 0.18% 0.34% 0.48% 0.60% 0.72% 0.82% 

 

Figure 6: Effective plastic strain distributions for uniaxial tension. 
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Figure 7: Horizontal normal stress distribution for uniaxial tension. 
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Figure 8: Shear stress distribution for uniaxial tension. 

3.1.3 Pure Shear 

Figure 9 and Table 3 show the results for a pure shear macroscopic loading. The macroscopic responses present 
similar trends to those presented in the case of macroscopic uniaxial tension. However, the macroscopic response is 
more affected by the discretization level and the order of the finite element for this case. 

 
Figure 9: Macroscopic response for pure shear employing FEA and TFA. 
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Table 3: Relative differences between FEA and TFA (pure shear). 

Pure Shear 

Macroscopic Strain 0.5% 1% 1.5% 2% 2.5% 3% 
Q4 18x3 1.81% 5.56% 8.69% 11.14% 13.08% 14.66% 
Q4 30x5 1.02% 3.98% 5.77% 7.31% 8.52% 9.53% 

Q4 90x15 0.15% 0.77% 1.29% 1.70% 2.05% 2.35% 
Q9 18x3 1.89% 8.90% 11.58% 13.59% 15.29% 16.60% 
Q9 30x5 1.72% 4.96% 6.41% 7.59% 8.55% 9.38% 

Q9 90x15 0.19% 0.73% 1.11% 1.40% 1.64% 1.85% 
Q36 18x3 2.03% 8.87% 11.15% 12.86% 14.29% 15.59% 
Q36 30x5 1.72% 4.84% 6.21% 7.30% 8.20% 8.98% 

Q36 90x15 0.19% 0.72% 1.08% 1.37% 1.60% 1.81% 

As seen in uniaxial tension, an increased number of elements results in lower differences among the approaches. In 
this case, the maximum relative difference for the most refined meshes is lower than 3%, while for the coarsest meshes, 
the relative difference peaked at almost 17%. These results corroborate for TFA to be employed with a higher level of 
discretization and with higher-order finite elements. 

For the macroscopic pure shear, effective plastic strain and stress fields are shown for 90x15 meshes of linear, 
quadratic, and fifth-order finite elements (Figure 10, Figure 11, and Figure 12). These fields present uniform averaged 
distributions per element to compare the results obtained by classical FEA and TFA approaches more directly. Once again, 
for this level of discretization, the localized response obtained by TFA is as good as the localized response obtained by 
classical FEA for all the analyzed finite elements. 

 
Figure 10: Effective plastic strain distributions for pure shear. 
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Figure 11: Horizontal normal stress distribution for pure shear. 
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Figure 12: Shear stress distribution for pure shear. 

3.2 Experimental Validation 

The coupling TFA-FEM is also analyzed employing an experiment found in Öchsner (2003) for elastic-plastic analysis 
of perforated metal sheets under uniaxial tension, as shown in Figure 13. Experimental tests employed void fractions of 
19% and 28%. Three discretization levels were adopted: the coarsest meshes have 1680 nodes, and the most refined 
meshes have 3720 nodes. Elements of first, second and fifth order were organized into these meshes. Table 4 shows the 
number of elements and nodes for each discretization level. All meshes for 28% void fraction are shown with the 
element’s distribution in Figure 14. 

Figure 15 shows the results for the two void fractions and all discretizations. As can be seen, finer discretization 
leads to results closer to the experimental data. Also, the macroscopic response obtained by the numerical simulations 
is stiffer than the experimental values; the board's effect can explain this once a traction-free condition can be observed 
in the experimental test. 
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Figure 13: Öschner experiment. 

Table 4: Discretization levels and domain subdivisions. 

 Coarse Mesh (C) Intermediate Mesh (I) Fine Mesh (F) 

Number of Nodes 440 1680 3720 
Linear Elements 400 1600 3600 

Quadratic Elements 100 400 900 
5th Order Elements 16 64 144 

 
Figure 14: Meshes for the 28% void fraction and distribution of linear (black), quadratic (red) and fifth-order (blue) finite elements. 
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Figure 15: Numerical and experimental results for 19% and 28% void fractions [𝜎𝜎�22(𝑀𝑀𝑀𝑀𝑀𝑀) 𝑥𝑥 𝜀𝜀�22(%)]. 

Table 5 and Table 6 present relative differences between the numerical and experimental results for the fine meshes. 
As expected, FEA and TFA resulted in stiffer responses due to the board's effect caused by the traction-free condition in the 
experimental test. The difference between macroscopic stresses increased alongside macroscopic strain evolution, 
culminating in a maximum divergence of 4% between TFA and FEA using the fifth-order element for the 19% void fraction. 
The relative differences between FEA and TFA for meshes using linear and quadratic elements were less than 1%. 

As results show, there are situations where the coupling of Transformation Field Analysis with Finite Element 
Method can present accurate data compared with classical FEA. It is also essential to assess the computational cost 
regarding this analysis to understand TFA’s potential as a viable alternative to classical FEA. 

Table 5: Relative diferrences between the numerical and experimental results for void fraction of 19%. 

Macroscopic Strain 
(%) 

FEA TFA Difference 
Q4 Q9 Q36 Q4 Q9 Q36 Q4 Q9 Q36 

0.4 3.64% 3.57% 3.56% 3.70% 3.77% 4.59% 0.06% 0.19% 1.03% 
0.7 7.01% 6.95% 6.94% 7.12% 7.23% 8.51% 0.10% 0.29% 1.57% 
1 6.06% 5.99% 5.98% 6.23% 6.38% 7.98% 0.17% 0.40% 1.99% 

1.3 5.55% 5.47% 5.47% 5.79% 5.97% 7.87% 0.24% 0.49% 2.40% 
1.6 5.08% 5.00% 5.00% 5.39% 5.58% 7.81% 0.31% 0.58% 2.81% 
2 5.65% 5.57% 5.57% 6.05% 6.26% 8.88% 0.39% 0.69% 3.32% 

2.3 5.12% 5.03% 5.03% 5.57% 5.80% 8.63% 0.45% 0.77% 3.60% 
2.8 5.88% 5.79% 5.79% 6.42% 6.68% 9.85% 0.55% 0.89% 4.06% 
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Table 6: Relative diferrences between the numerical and experimental results for void fraction of 28%. 

Macroscopic Strain (%) 
FEA TFA Difference 

Q4 Q9 Q36 Q4 Q9 Q36 Q4 Q9 Q36 

0.4 9.69% 9.60% 9.58% 9.73% 9.81% 10.56% 0.04% 0.20% 0.98% 
0.5 9.16% 9.07% 9.06% 9.21% 9.29% 10.28% 0.05% 0.23% 1.22% 
0.7 9.08% 8.99% 8.98% 9.16% 9.29% 10.57% 0.08% 0.30% 1.58% 
1 9.74% 9.65% 9.65% 9.88% 10.02% 11.52% 0.13% 0.37% 1.87% 

1.2 8.92% 8.83% 8.82% 9.08% 9.24% 10.81% 0.16% 0.41% 1.99% 
1.4 8.62% 8.53% 8.52% 8.81% 8.97% 10.66% 0.19% 0.45% 2.14% 
1.8 8.59% 8.49% 8.49% 8.83% 9.01% 10.93% 0.25% 0.51% 2.44% 
2.2 7.93% 7.83% 7.83% 8.23% 8.41% 10.54% 0.30% 0.58% 2.71% 
2.7 8.74% 8.64% 8.64% 9.11% 9.30% 11.71% 0.38% 0.66% 3.08% 

3.4 Performance Analysis 

The computational cost analysis is crucial due to the cost-benefit aspect regarding the increase of domain discretization 
and the adoption of higher-order finite elements. It is essential not only to evaluate the accuracy of both methods (as 
presented in the previous section) but to appraise the computational time of both approaches. It is important to remark 
that all computational effort measured considers only the elastoplastic analysis, i.e., the computational cost involving the 
calculation of the strain concentration and influence tensors for TFA was not computed. However, once evaluating these 
tensors, any macroscopic loading can be imposed on the model, generating failure surfaces, for instance. 

As said before, the application of TFA coupled with FEM changes the formulation used to evaluate the macroscopic 
response of periodic media. Classical FEA assembles and solves a linear equation system to find displacement and, 
therefore, strain and stress – this step is considered the main bottleneck of the method. TFA finds strain field by 
summation of a multiplication of the pre-calculated tensors with the local uniform strain of each finite element of the 
discretized analysis domain. Both operations can become cumbersome depending on the model's size: TFA's advantage 
can become a problem if domain discretization is too high because, for 𝑁𝑁 elements, there are 𝑁𝑁2 influence tensors. In 
the sequence, classical FEA computational time is compared with sequential and parallel TFA. The parallelization 
technique is only applied in the summation step and shows the TFA's potential. 

All analyzes were performed in a Matlab 2019a environment (The MathWorks Inc., 2019) with an Intel Core i7-7700HQ 
processor running at 3.80 GHz with 16 GBs of RAM. Figure 16 shows computational time spent in all simulations of the 
Ochsner results, except TFA’s processing time for the intermediate and fine meshes using linear elements because it was 
too high and exceeded the plots. On the other hand, Table 7 and Table 8 show all processing time measured. 

 
Figure 16: Processing times of elastoplastic analysis of the Ochsner experiments (seconds). 
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Table 7: Processing time in seconds for FEA and TFA (void fraction of 19%). 
 

Coarse Mesh Intermediate Mesh Fine Mesh 

FEA TFA SEQ TFA PAR FEA TFA SEQ TFA PAR FEA TFA SEQ TFA PAR 

Q4 86.40 153.00 92.00 452.40 3116.00 1906.00 1119.20 18124.00 25324.00 

Q9 52.06 12.50 9.56 209.07 188.50 118.68 592.34 1154.50 661.75 

Q36 21.11 0.69 0.79 133.86 4.64 4.20 334.67 20.05 14.69 

Table 8: Processing time in seconds for FEA and TFA (void fraction of 28%). 
 

Coarse Mesh Intermediate Mesh Fine Mesh 

FEA TFA SEQ TFA PAR FEA TFA SEQ TFA PAR FEA TFA SEQ TFA PAR 

Q4 120.60 243.000 155.000 588.00 4512.000 2854.000 1467.10 24536.000 41281.000 

Q9 71.35 17.400 15.838 323.47 272.500 176.808 848.31 1632.700 874.656 

Q36 26.02 0.773 0.696 162.12 4.832 4.699 459.14 33.185 24.309 

TFA’s computational cost increases as discretization increases, which can be seen in the results for both void fractions. 
However, in the case of linear elements, considering the fine mesh, the communication between cores becomes so 
cumbersome that using sequential TFA presents a lower computational cost relative to the parallel TFA. This problem can 
be addressed by increasing the number of cores or employing more powerful CPUs or GPU-based parallel programming. 

In the analyses employing the quadratic finite element, both sequential and parallel TFA presented lower 
computational costs than the FEA, considering the coarse and intermediate meshes. For the fine mesh, the parallel TFA 
presented slightly higher times than those observed in the classical FEA. The parallel TFA performed better than the 
sequential TFA for all meshes. 

In terms of computational cost, the best results employing TFA were obtained by higher-order elements, as observed 
for the fifth-order finite element. Delivering a maximum of 4% difference relative to the FEA, sequential TFA obtained results 
using only 7% of the time spent with classical FEA. Using parallel TFA, this time drops to 5%. However, it is necessary to 
refine the mesh to obtain more accurate results without substantially increasing the computational cost. 

4 CONCLUSIONS 

The association between the discretization of the mesh and the stiffness of the FEA result is well known. This relation 
is associated with the element capacity to represent the local deformation: the deformation representation is simplified 
by decreasing the element size, demanding less from the finite element to represent the local response. 

The coupling of TFA with higher-order finite elements improves the concordance with the classical FEA results. 
However, the employment of higher-order finite elements must be integrated with a suitable discretization of the mesh. 
The mesh refinement is more critical in obtaining better results with TFA than the application of higher-order finite 
elements. Thus, capturing the localized plastic strains by a refined mesh is more critical than the tendency to obtain 
stiffer results due to the limitation of the finite element to represent the local response when a lower-order finite 
element is employed. 

Subsequently, numerical results were compared to experimental data obtained in the literature. This investigation consists 
of perforated metal sheets with two void fractions subjected to uniaxial tension and pure shear macroscopic loadings. Although 
the simulations presented stiffer responses for all the adopted meshes due to the board's effect caused by the traction-free 
condition in the experimental test, numerical results were reasonably close to experimental values. The worst results obtained 
from this investigation showed a relative difference of 4% in the macroscopic stress between classical FEA and TFA. 

The last analysis assessed the computational costs of FEA and TFA approaches. The TFA adopts the simplification of 
uniform fields in the elements of the discretized analysis domain. The TFA was faster for the coarse and intermediate meshes 
when compared to the respective classical FEA, independently of the adopted finite element. Only the higher-order finite 
element presented a smaller computational cost for the fine mesh when compared to the respective classical FEA. 
Nevertheless, more refined meshes performed better, and good levels of accuracy were achieved, culminating with a 
maximum of 4% relative difference for the higher-order finite element, but obtaining results for the sequential TFA with only 
7% of the time spent in classical FEA. This time drops to 5% for the parallel TFA. Also, the parallel TFA employing quadratic 
finite elements performed better or presented similar processing times when compared to the respective classical FEA. 
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The advantages of the TFA for elastoplastic analysis of periodically perforated metal sheets are highlighted. In all 
cases, the processing time to generate the elements' strain concentration and influence tensors was not considered. 
After obtaining these tensors, any macroscopic loadings can be imposed, including those necessary to generate the 
failure surfaces. Thus, the TFA can be well employed in cases where the discretization of the mesh and the element's 
order can produce good results with less computational cost when compared to the classical FEA. 

Author Contributions: Conceptualization, MAA Cavalcante; Investigation, CAF Várady Filho; Methodology, CAF Várady 
Filho and MAA Cavalcante; Supervision, MAA Cavalcante; Validation, CAF Várady Filho; Writing – original draft, CAF 
Várady Filho; Writing – review & editing, CAF Várady Filho and MAA Cavalcante. 

Editor: Marcílio Alves. 
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