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Abstract 

Derived from flexibility matrix, Uniform Load Surface (ULS) is 
used to identify damages in beam-type structures. This method is 
beneficial in terms of more participating the lower order modes 
and having less prone to noise and irregularities in the measured 
data in comparison with the original flexibility matrix technique. 
Therefore, these characteristics make this approach a practical 
tool in the field of damage identification. This paper presents a 
procedure to employ stationary wavelet transform multi-resolution 
analysis (SWT-MRA) to refine ULS obtained from the damaged 
structure and then using continuous wavelet transform (CWT) for 
localizing the discontinuity of improved ULS as a sign of damage 
site. Evaluation of the proposed method is carried out by examin-
ing a cantilever beam as a numerical case, where the ULS is 
formed by using mode shapes of damaged beam and two kinds of 
wavelets (i.e. symmetrical 4 and bior 6.8) is applied for discerning 
the induced crack. Moreover, a laboratory test is conducted on a 
free-free beam to experimentally evaluate the practicability of the 
technique. 
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1 BACKGROUND 

The wide assortment of efforts has been dedicated to assess the influence of damages on dynamic 
behavior of structures with the aim of proposing new techniques to localize flaws and cracks (Far-
rar and Worden, 2007; Alvandi and Cremona, 2006; Yan et al, 2007; Morassi and Vestroni, 2008; 
Farrar et al, 2001). Two fundamental dynamic properties including natural frequencies and mode 
shapes have gained more attention in the field of damage identification through modal analysis. 
Based on different numerical methods and state of the art signal processing techniques, different 
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procedures have been introduced. Up to now, fractal dimension (FD) and generalized fractal di-
mension (GFD) technique, gapped smoothing method (GSM), strain energy method (SEM), dif-
ferential quadrature method (DQM), global fitting method (GFM), and applying the discrete and 
continuous wavelet transforms to the mode shapes (Ratcliffe , 1997; Liew and Wang, 1998; Hong 
et al, 2002; Hadjileontiadis et al, 2005; Hadjileontiadis and E. Douka, 2007; Wang and Qiao, 
2007; Qiao et al, 2007; Yoon et al, 2005, 2010), flexibility matrix or uniform load surface (ULS) 
(Qiao et al, 2007; Bakhshizade et al, 2011; Masoumi and Ashory, 2012) have been used. 

A fractal dimension-based crack detector (FDCD) was put forward by Hadjileontiadis et al 
(Hadjileontiadis et al, 2005; Hadjileontiadis and E. Douka, 2007). They proved that since fractal 
dimension is able to measure the complexity of a signal, it can be used as a damage detector due 
to the fact that any crack in structure results in more complex vibrational signal. So as to im-
prove some shortcoming of the FD method in specific situations, Wang and Qiao (Wang and Qi-
ao, 2007) recommended GFD and modified FD by adding a scale parameter. SEM was firstly 
proposed by Stubbs et al (Stubbs et al, 1992) where their formulations were rooted in the strain 
energy of a Bernoulli-Euler beam and needed to have access to both mode shapes of intact and 
damaged structure. This technique was also used for plate-type structures by Cornwell et al 
(Cornwell et al, 1999). Bakhshizade et al (Bakhshizade et al, 2011) originally used DQM to eval-
uate a damaged beam and successfully localized the crack. GSM was brought into play by 
Ratcliffe (Ratcliffe, 1997) where he used a modified Laplacian operator to identify small damages 
from the fundamental mode shape of the damaged structure. GFM, which is an extended tech-
nique based on GSM, was developed by Yoon et al (Yoon et al, 2005, 2010) to detect damage in 
both beam- and plate-type structures. 

Granted Liew and Wang (Liew and Wang, 1998) firstly used spatial discrete wavelet trans-
form (DWT) to examine a numerical model of a simply supported damaged beam, but their 
method was in need of an oscillating excitation along the length of the beam. Wang and Deng 
(Wang and Deng, 1999) carried out an investigation on the use of DWT in vibration based dam-
age detection. Their technique was based on applying Haar DWT to the measured displacement, 
strain or acceleration. Hong et al (Hong et al, 2002) studied the use of Mexican hat continuous 
wavelet transform (CWT) with the aim of finding damage in a numerically modeled beam. Cao 
and Qiao (Cao and Qiao, 2008) proposed a method to have synergistic advantages of stationary 
wavelet transform (SWT) and CWT simultaneously. Their method includes implementing SWT 
Multiresolution analysis (SWT-MRA) to refine the obtained mode shapes of a damaged beam and 
then looking for damage site through applying CWT to the refined mode shapes. 

Using flexibility matrix was firstly proposed by Pandey and Biswas (Pandey and Biswas, 
1994). They defined a vector formed by the absolute difference between the flexibility matrix of 
intact and damaged state of a beam. As an attempt to improve the method, Zhang and Aktan 
(Zhang and Aktan, 1998) used uniform load surface (ULS) and showed that this new approach is 
more capable in comparison to traditional flexibility technique. They also performed experimental 
tests on a highway bridge. Wu and Law (Wu and Law, 2004) applied ULS to the mode shapes of 
a plate and numerically studied the effects of various boundary conditions, noise levels and sensor 
spacing. 
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In this paper, a new approach is used based on three major steps. First, extracted mode shapes 
of damaged beam are employed to form ULS and then SWT-MRA is used to improve the ob-
tained ULS and eliminate the irregularities and noises. Finally, the location of the induced crack 
is detected by using CWT multiscale analysis. 
 
2 FUNDAMENTAL THEORIES 

2.1 Wavelet Theories 

CWT of a space domain signal is given by 
 

  
CW (τ ,s) = f (x)ψ *

τ ,s(x)dx =
−∞

∞

∫ ψ τ ,s(x), f (x)  (1) 

 
where ψ *(x)  is the complex conjugate of the mother wavelet. The mother wavelet is defined as 

 

  
ψτ ,s(x) = 1

a
ψ x − s

τ
⎛
⎝⎜

⎞
⎠⎟

 (2) 

 
in which, τ , s  are translation and scale parameters respectively (  τ ,s ∈ℜ,τ > 0 ). When the des-
ignated scale is large, global view of the signal is provided and when small-scale is selected, a 
detailed view of the signal is given. Any function can be chosen as the mother wavelet if it satis-
fies the following admissibility condition 
 

  

Ψ(ω )
2

ω
dω < ∞

−∞

∞

∫  (3) 

 
Here,  Ψ(ω ) is the Fourier transform of   ψ (x) . Choosing the different mother wavelets pro-

vides various wavelet transforms. In this work, symmetrical 4 and bior 6.8 are selected as wavelet 
functions to identify damages in a beam structure. 

Although CWT has been extensively used in the field of damage detection, it has some inca-
pability in the face of noisy data. To overcome this weakness, SWT is used to de-noise the ob-
tained data before applying CWT to find damage location. SWT is similar to DWT except that 
the number of wavelet coefficients at each level remains equal to the number of sampling points 
of the original signal while using DWT results in reduction of the number of coefficients by 
N
2L , where N is the number of sampling points of the original signal and L stands for Lth de-

composition level (Cao and Qiao, 2008). To obtain DWT formulation, scale and translation pa-
rameters of CWT are considered on a discrete space which results in a discrete set of continuous 
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basis functions. By setting   τ = ξ0
j ,s = kξ0

jζ0  in which  ξ0 >1  is a dilated step and  ζ0 ≠ 0  is a 
translation step, the family of wavelets is given by 

 

  
ψ j ,k (x) = ξ0

− j
2ψ (ξ0

− j x − kζ0 )  (4) 

 
and DWT of a given signal f(x) is defined as 
 

  
DW ( j,k) = ψ j ,k

* (x) f (x) = ψ j ,k (x), f (x)
−∞

∞

∫  (5) 

 
As Cao and Qiao mentioned (Cao and Qiao, 2008), DWT has a significant drawback in com-

parison to SWT. Although DWT can decompose a multicomponent signal into a group of compo-
nent signals and remove unnecessary components, shift variance characteristic causes inaccurate 
outcomes in damage location procedure. This problem is especially noticeable when the sampling 
points are not close to each other and the measured data is not a high-resolution signal. It is 
worth mentioning that in this work, spline interpolation is utilized to increase the number of data 
points and provide smooth data, which is used as an input signal for wavelet analysis. 

 
2.2 ULS Theory 

Modal flexibility matrix for a system with m measured modes is approximately given by 
 

  
Fm ≈

φrφr
T

ω r
2

r=1

m

∑  (6) 

 
By defining the deflection vector under uniform load for a system with n degrees of freedom 
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ULS is obtained as: 
 

  
u j( ) =

k=1

n
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where  φr  is the rth mode shape of damaged structure and ω r  stands for the rth natural frequen-

cy.   
fi, j  is the modal flexibility at the point i under the unit load at the point j. As Zhang and 

Aktan (Zhang and Aktan, 1998) maintained, the inverse of the square of the frequency leads to 
the less contribution of higher order modes in comparison to the flexibility matrix and truncation 
error, stemmed from using lower order modes, can be small for a system with well-separated fre-
quencies. In the flexibility matrix based damage detection techniques, if either deflection location 
and load location or one of them is placed at the boundaries, an error may cause due to the high 
noise to signal ratio. They observed that ULS is less error-sensitive than the original modal flexi-
bility. 

 
3 DISCUSSION ABOUT THE CHOICE OF WAVELET 

Over the almost twenty years of using wavelet transform for damage identification many different 
wavelet transforms have been used and their efficiency has been evaluated for numerical and ex-
perimental cases. Ovanesova and Suarez (Ovanesova and Suarez, 2004) showed that Morlet, Mex-
ican Hat, Gaussian and Shannon wavelets are not suitable to use as DWT due to the lack of the 
scaling function. In addition, different authors have used various wavelets such as Symlets (Kha-
tam et al, 2007), Coiflets (Carrión et al 2006; Rucka and Wilde, 2006), biorthogonal (Cao and 
Qiao, 2008; Ovanesova and Suarez, 2004; Prasad et al 2006; Masoumi and Ashory, 2012), 
Daubechies (Hou et al, 2000) and symmetrical (Douka et al, 2003). Although a high number of 
vanishing moments leads to better outcomes, increasing the vanishing moments needs to provide 
longer support because a wavelet holding n vanishing moments should have at least 2n-1 support 
length (Hong et al, 2002). In this paper two mother wavelets called symmetrical 4 and biorthogo-
nal, mentioned by previous authors as efficient and practical in damage detection of beam type 
structures (Cao and Qiao, 2008; Ovanesova and Suarez, 2004; Prasad et al 2006; Masoumi and 
Ashory, 2012; Douka et al, 2003), are used.  

 
4 NUMERICAL CASE STUDY 

A cantilever beam, as a numerical case, is considered so as to investigate the proposed method. 
Its properties are as follows: width of 0.045 m, height of 0.012 m, length of 1 m, Young’s Modulus 

of 200 Gpa, and density of ρ = 7850 kg m3 . The number of elements of FE model is fifty and 

they have equal lengths. Nine damage scenarios are induced based on Table 1, in which a is the 
depth of the damage. 
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Figure 1   Layout of the damaged beam 

 
Table 1   Damage Scenarios 

 

 
Location 

( cL ) 
mm 

Severity 
(a/h) 

% 
 

Location 

( cL ) 
mm 

Severity 
(a/h) 

% 
 

Location 

( cL ) 
mm 

Severity 
(a/h) 

% 
Case 

I 
100 10 Case 

IV 
100 25 Case 

VII 
100 40 

Case 
II 500 10 

Case 
V 500 25 

Case 
VIII 500 40 

Case 
III 900 10 Case 

VI 900 25 Case 
IX 900 40 

 
Table 2 shows the first six natural frequencies before and after inducing damage on the beam. 

As expected, an increase in damage severity results in decreasing the natural frequencies. For 
cases close to the free-end, first natural frequency is unchanged while higher order natural fre-
quencies provide more tangible variations. One can conclude that the prediction of damage size 
based on only variation of frequencies of damaged beam and having no information from its FE 
model is not feasible owing to the fact that a decrease in frequencies ensuing from damage is con-
tingent on damage site.  

 
 

Table 2   Comparison of natural frequencies for nine damage scenarios 
 

Natural  
Frequency (Hz) Intact beam Case 

I 
Case 
II Case III Case IV Case 

V Case VI Case VII Case VIII Case IX 

First 9.78 9.75 9.78 9.78 9.50 9.73 9.78 9.32 9.70 9.78 
Second 61.32 61.25 61.16 61.31 60.78 60.08 61.29 60.44 59.28 61.27 
Third 171.69 171.67 171.69 171.63 171.52 171.68 171.18 171.41 171.67 170.81 
Fourth 336.45 336.41 335.59 336.11 336.16 330.00 333.69 335.96 326.00 331.72 
Fifth 556.18 555.75 556.14 555.14 552.86 555.89 547.89 550.73 555.70 542.14 
Sixth 830.85 829.49 828.77 828.67 820.72 815.78 814.15 814.40 806.90 803.43 
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ULSs were formed using eq. (8) for each case. Not only maximum wavelet coefficients of sym-
metrical 4 CWT and bior6.8 CWT but also all of the coefficients, before and after refining the 
ULSs by utilizing SWT, were obtained and tabulated in Table 3, Table 4 and graphically depict-
ed in Figures 3-11.  

As presented in Table 3 and Table 4, although there is no damage in the intact state of the 
beam, the maximum wavelet coefficient is almost equal to the coefficient obtained for case III 
where 10 percent damage was induced at 100 mm from free-end of the beam. This problem stems 
from irregularities in wavelet coefficients at the free-end boundary and it has been undermined by 
refining the data by using SWT before implementing symmetrical 4 CWT. Generally, wavelet 
coefficients are decreased due to the use of SWT to refine the vibration data, but this issue is 
worth dealing because of the compensation received from this technique where a noticeable re-
duced amount of unfavorable abnormalities is seen in the results.  

 
Table 3   Maximum wavelet coefficients for symmetrical 4 and the corresponding locations 

 

Damage Case 
Max Wavelet 

Coefficients for 
CWT (x10-7) 

Location (mm) 
Max Wavelet 

Coefficients for 
SWT+CWT (x10-7) 

Location (mm) 

Intact 1.81 900 0.063 938 
Case I 12.83 104.7 6.21 95.3 
Case II 3.55 536.4 2.04 475.4 
Case III 1.84 923.4 0.13 921.1 
Case IV 104.17 104.7 49.27 95.3 
Case V 32.95 484.8 16.16 475.4 
Case VI 2.55 935.2 0.9 876.5 
Case VII 177.17 104.7 83.68 95.3 
Case VIII 56.95 484.75 27.46 475.4 
Case IX 3.15 935.2 1.54 876.5 

 
Table 4   Maximum wavelet coefficients for bior6.8 and the corresponding location 

 

Damage Case 
Max Wavelet 

Coefficients for 
CWT (x10-7) 

Location (mm) 
Max Wavelet 

Coefficients for 
SWT+CWT (x10-7) 

Location (mm) 

Intact 0.96 945 0.048 937.5 
Case I 10.91 109.3 6.22 100 
Case II 3.55 489.4 2.04 480 
Case III 1.03 937.5 0.12 878.9 
Case IV 86.38 109.4 49.36 100 
Case V 28.2 489.4 16.2 480 
Case VI 1.66 940 0.92 878.9 
Case VII 146.7 109.4 83.84 100 
Case VIII 47.93 489.4 27.52 480 
Case IX 2.66 888.3 1.56 878.9 
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Inaccuracy in damage localization by utilizing CWT and SWT+CWT techniques for both 
wavelet transforms have been provided in Figure 2, where the error of each approach is presented. 
When the induced damage is at the location close to the clamped-end, the use of bior6.8 CWT 
provides us with the maximum value of error in the results whereas the use of SWT in association 
with bior6.8 CWT leads to a completely accurate localization procedure, containing no error. At 
these locations, i.e. close to the clamped-end, error in localization for symmetrical 4 CWT is equal 
to the error obtained through employing SWT in conjunction with symmetrical 4 CWT. When 
the crack is in the middle of the beam, bior6.8 CWT has the minimum error and an increase in 
damage severity results in a decrease in estimated error of damage localization for symmetrical 4 
CWT approach while the error in other three approaches remains consistent. 

 

 
Figure 2   Error in damage localization before and after using SWT 
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Figure 3 Wavelet coefficients for Case I: (a) symmetrical 4 CWT, (b) SWT+ symmetrical 4 CWT, (c) bior6.8 CWT, (d) SWT+ 

bior6.8 CWT 

 

 
Figure 4   Wavelet coefficients for Case II: (a) symmetrical 4 CWT, (b) SWT+ symmetrical 4 CWT, (c) bior6.8 CWT, (d) SWT+ 

bior6.8 CWT 
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Figure 5   Wavelet coefficients for Case III: (a) symmetrical 4 CWT, (b) SWT+ symmetrical 4 CWT, (c) bior6.8 CWT, (d) SWT+ 

bior6.8 CWT 

 

 
Figure 6   Wavelet coefficients for Case IV: (a) symmetrical 4 CWT, (b) SWT+ symmetrical 4 CWT, (c) bior6.8 CWT, (d) SWT+ 

bior6.8 CWT 
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Figure 7   Wavelet coefficients for Case V: (a) symmetrical 4 CWT, (b) SWT+ symmetrical 4 CWT, (c) bior6.8 CWT, (d) SWT+ 

bior6.8 CWT 

 

 
Figure 8   Wavelet coefficients for Case VI: (a) symmetrical 4 CWT, (b) SWT+ symmetrical 4 CWT, (c) bior6.8 CWT, (d) SWT+ 

bior6.8 CWT 
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Figure 9   Wavelet coefficients for Case VII: (a) symmetrical 4 CWT, (b) SWT+ symmetrical 4 CWT, (c) bior6.8 CWT, (d) SWT+ 

bior6.8 CWT 

 

 
Figure 10   Wavelet coefficients for Case VIII: (a) symmetrical 4 CWT, (b) SWT+ symmetrical 4 CWT, (c) bior6.8 CWT, (d) SWT+ 

bior6.8 CWT 
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Figure 11   Wavelet coefficients for Case IX: (a) symmetrical 4 CWT, (b) SWT+ symmetrical 4 CWT, (c) bior6.8 CWT, (d) SWT+ 

bior6.8 CWT 

 
Figures 3-11 show the wavelet coefficients for all damage scenarios, which are described in Ta-

ble 1. In all cases, using SWT to refine the data before applying CWTs has almost eliminated the 
unfavorable irregularities in the results. These figures indicate that locating damage close to the 
free-end causes more irregularities even though this effect decreases with increasing the damage 
severity. Moreover, they confirm the results provided in Table 3 and 4 showing that an increase 
in damage size brings about an increase in wavelet coefficients at the crack site and also coeffi-
cients are larger for symmetrical 4 CWT compared to bior6.8 CWT. The privilege of using the 
SWT_MRA is more noticeable when the crack is located close to the free-end where before refin-
ing the data by using SWT, it is challenging to discern the location of crack especially for sym-
metrical 4 CWT.  

 
5 EXPERIMENTAL CASE STUDY 

To experimentally establish the feasibility of the proposed technique for identifying damage in 
structures, a 0.94 m length beam with a cross-section of 0.05 x 0.01 m was tested. A 30% Damage 
was induced at 0.51 m from one end of the beam and an accelerometer was placed on 0.48 m. In 
the conducted hammer test, force and response signals were measured by using PULSE software 
and mode shapes were obtained by ICATS software. The test setup configuration for the hammer 
test of the free-free beam and measured Frequency Response Functions (FRFs) along with the 
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obtained first four mode shapes are shown in Figure 12. As shown, no sign of damage is noticed 
in the obtained mode shapes without using signal processing techniques. 
 

 
 

Figure 12   (a) hammer test setup configuration (b) 46 measured FRFs (c) First four mode shapes of free-free damaged beam 
 

Eq. (8) was used to form ULS and then spline interpolation and extrapolation were utilized to 
smooth the interior and boundary points of the formed ULS. At the first step, symmetrical 4 and 
bior 6.8 were employed to find the damage site. Results are shown in Figure 13 (a) and (c). Even 
though the damage site is detectable, there are irregularities especially at the boundaries. In order 
to de-noise the results and achieve outcomes with less irregularity, SWT_MRA was firstly used 
to refine the ULS of damaged beam and then wavelet coefficients of symmetrical 4 and bior6.8 
were calculated. This is shown in Figure 13 (b) and (d) for two aforementioned wavelets. 
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Figure 13   Wavelet coefficients for experimental case: (a) symmetrical 4 CWT, (b) SWT+ symmetrical 4 CWT, (c) bior6.8 CWT, (d) 
SWT+ bior6.8 CWT 

 
It can be seen that the wavelet coefficients at damage location are decreased compared to us-

ing CWT but most of the abnormalities in the coefficients are eliminated. The only point that 
should be noticed in the experimental case is that increasing the scale parameter for this ap-
proach is not a route to provide better results and as it shown in this case, there is a specific suit-
able range of scales for aptly finding the crack.  

 
6 SUMMARY AND CONCLUSIONS 

An approach for identifying damage in structures was proposed, where ULS of damaged structure 
was firstly refined by applying the SWT-MRA and then crack site was discerned by using CWT 
multiscale analysis. Proposed approach was numerically and experimentally investigated by a 
cantilever and a free-free beam respectively. Two kinds of continuous wavelets were applied to 
the ULS namely symmetrical 4 and bar 6.8. Equipped with the privilege of having less prone to 
noise and irregularities in the data, the new technique seemed to provide more accurate outcomes 
in damage detection procedures through wavelet based signal processing. For a cantilever beam, 
numerical studies revealed that damages located close to the free-end of the beam are more diffi-
cult to find when SWT-MRA is not implemented. The only drawback that happens is that SWT-
MRA generally decreases the values of obtained wavelet coefficients.  
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