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Abstract 
Applying the Covariance-driven Stochastic Subspace Identification method (SSI-COV) involves uncertainties in 
the numerical process of identifying modal parameters in a system. The main issue is that the method does 
not compute the uncertainty in the results, which is required in some problems such as outlier detection. 
Currently, one method is available to assess the uncertainty in modal parameters obtained using the SSI-COV. 
This method based on the sensitivity analysis of the modal parameters to perturbations in the collected data 
and is efficient but highly complex for its computational implementation. Thus, this article presents a 
validation of the uncertainty results obtained with this procedure through the uncertainty limits obtained 
using the Bootstrap technique. The validation is performed on the modal parameters of a numerical beam-
type structure with controlled noise levels and the modal parameters of a concrete block of the Itaipu 
Hydroelectric Dam. The uncertainty limits obtained using the two methodologies showed similarities in the 
two examples, which allowed validating the sensitivity analysis procedure. 
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1 INTRODUCTION 

Due to technological advances in measurement devices and the development of methods for automatized 
operational modal analysis (OMA), it is nowadays possible to extract the dynamic characteristics of large civil structures 
(such as buildings, bridges, and dams) under normal operating conditions from the response measurements caused by 
ambient vibrations. One of the main issues is selecting a reliable method to identify the structure's modal parameters 
(natural frequencies, damping ratios, and mode shapes). In that sense, results from applying the covariance-driven 
stochastic subspace identification method (SSI-COV) for built structures (Magalhães et al., 2008; Brownjohn et al., 2010; 
Liu et al., 2012; Pereira et al., 2018) show that the technique provides accurate results efficiently and robustly. However, 
the presence of several sources of error (e.g., finite number of data, stochastic nature of the ambient loading, non-
linearities, instrumentation noise) induce a certain degree of uncertainty in the identified modal parameters, and the 
SSI-COV algorithm does not provide the information for evaluating the accuracy in the results. 

Different types of uncertainties impact the SSI-COV method's stages during its application. At the beginning of the 
process, the uncertainty associated with the collected data affects the estimation of the covariance functions; then, the 
accumulated uncertainty propagates through each of the stages of system identification and finally to the modal 
parameters. Thus, the last stage of the method inherits the uncertainties from the previous step. Reynders et al. (2008) 
derived a numerical procedure to estimate the uncertainties of the modal parameters obtained at some given model 
order from the SSI-COV method to deal with that aspect. The approach quantifies the degree of uncertainty in the modal 
parameters by computing their covariances, estimated through a sensitivity analysis. The procedure was applied in the 
operational modal analysis of a steel transmitter mast to show its practicability. However, the direct implementation of 
this methodology is exceedingly expensive, mainly when the dynamic test implies an extensive sensor network and the 
use of high model order. 

The quantification of modal parameter uncertainties plays a significant role for different purposes. For instance, in 
(Pereira et al., 2020), modal parameter uncertainties identified in continuous dynamic monitoring were used to remove 
outliers during modal tracking. Döhler et al. (2015) improved the results of a damage localization method by including 
the computed uncertainty levels in modal parameters. Verboven et al. (2004) performed an EMA test, finding that the 
mathematical modes had a much higher level of uncertainty than the physical modes. Furthermore, Wu et al. (2020) 
used the uncertainty in the modal parameters to remove mathematical modes from the stabilization diagram. Therefore, 
it is of utmost importance to demonstrate that the results of uncertainty quantification are reliable by comparing them 
with the results obtained from other methods used to estimate uncertainties. 

Additionally, estimating the optimal model order of a structure is a difficult task and is often an overestimated 
parameter leading to the identification of mathematical modes. Stability diagrams are a tool to visualize the identified 
physical and mathematical modes at different model orders within an interval that aims to separate the physical modes 
from the mathematical modes. Döhler et al. (2013) modified the procedure proposed by Reynders et al. (2008) to 
determine more efficiently the covariances of modal parameters in multiple model orders as required by the stabilization 
diagram. 

This paper reports the computation of confidence intervals on the modal parameters identified by using the SSI-
COV method for two civil structures. Such estimations follow the uncertainty quantification approach proposed by 
(Reynders et al., 2008) and computationally improved by Döhler et al., (2013). Furthermore, the application of the 
bootstrap technique, which is a more versatile technique and not restricted to operational modal analysis through the 
SSI-COV method allows determining the validity of the results. As the bootstrap technique requires repetition of the 
identification process, a strategy for automatic estimation of modal parameters is configured. The organization of the 
paper is as follows: i) Section 2.1 introduces the SSI-COV method, ii) Section 2.2 presents the process of automatic 
estimation of the modal parameters, iii) Sections 3 explain the theory concerning the uncertainty approach from 
sensitivity analysis and bootstrap approach, and v) Section 4 reports the results of the validation of the two structures. 

2 MODAL PARAMETER IDENTIFICATION. 

This section will describe the procedure used to estimate the vibration modes from the system response. The 
method used to identify the modal parameters was the SSI-COV method, which is a time-domain parametric method 
that defines a state-space system realization from the correlation functions of the system response. A stabilization 
diagram is required in this methodology to identify the modal parameters. The stability diagram is an indicator of the 
system's poles at different model orders and it is a relatively effective way of identifying modes. However, the results of 
modal identification can contain spurious modes. Therefore, to extract the physical modes from the stability diagram, in 
this work, an automatic procedure is configured based on Reynders et al. (2012). This automatic estimation process 
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consists of three stages: a) cleaning the stabilization diagram, b) grouping similar modes, and c) selecting the physical 
modes. The automatic estimation process is applied a priori in the two methodologies used in this work to define the 
uncertainties of the modal parameters: Uncertainty quantification from (Reynders et al., 2008; Döhler et al., 2013) and 
Bootstrap technique. Each of process and methodologies applied in this work are described in detail below. 

2.1 COVARIANCE-DRIVEN STOCHASTIC SUBSPACE IDENTIFICATION METHOD (SSI-COV) 

The problem of system realization is as follows: given an external description of a system, determine an internal 
state variable description that generates the given external description (Antsaklis et al., 2014). The SSI-COV method 
addresses the stochastic realization problem solved by (Akaike, 1974; Aoki, 1987; Arun et al., 1990), since its objective is 
the identification from output-only data of the state transition matrix 𝐴𝐴 ∈ Rn×n and the observation matrix 𝐶𝐶 ∈ ℝ𝑟𝑟×𝑛𝑛 of 
the following stochastic state-space model: 

𝑥𝑥𝑘𝑘+1 = 𝐴𝐴𝑥𝑥𝑘𝑘 + 𝑤𝑤𝑘𝑘
  𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘

, (1) 

where 𝑤𝑤𝑘𝑘 and 𝑣𝑣𝑘𝑘 are stochastic input processes, which are assumed to have zero mean and a constant spectrum (white 
noise). From the system matrices 𝐴𝐴 and 𝐶𝐶 the modal parameters can be estimated. The SSI-COV algorithm starts with 
the evaluation of the output covariance matrices 𝛬𝛬𝑙𝑙  for time lags 𝑙𝑙 = 1,2, . . . ,2𝑖𝑖 − 1. By Assuming ergodicity, these 
covariance matrices can be formally defined as follows: 

𝛬𝛬𝑙𝑙 = 𝐸𝐸[𝑦𝑦𝑘𝑘+𝑙𝑙𝑦𝑦𝑘𝑘𝑇𝑇] = 𝑙𝑙𝑖𝑖𝑙𝑙
𝑁𝑁→∞

1
𝑁𝑁
∑ 𝑦𝑦𝑘𝑘+𝑙𝑙𝑁𝑁−1
𝑘𝑘=0 𝑦𝑦𝑘𝑘𝑇𝑇 . (2) 

Since a finite number of samples 𝑁𝑁 is available in practical applications, an estimation 𝛬𝛬𝑙𝑙  can be obtained by 
dropping the limit. However, the direct use of this expression can be very time-consuming; hence, another alternative 
consists in using an approach based on the Fast Fourier Transform (FFT) (Oppenheim et al., 1975). In a second step, these 
output covariance matrices are organized in a block Toeplitz matrix 𝑇𝑇1|𝑖𝑖  ∈  ℝ𝑖𝑖𝑟𝑟×𝑖𝑖𝑟𝑟: 

𝑇𝑇1|𝑖𝑖 = �

[𝛬𝛬𝑖𝑖] [𝛬𝛬𝑖𝑖−1] ⋯ [𝛬𝛬1]
[𝛬𝛬𝑖𝑖+1] [𝛬𝛬𝑖𝑖] ⋯ [𝛬𝛬2]
⋯ ⋯ ⋯ ⋯

[𝛬𝛬2𝑖𝑖−1] [𝛬𝛬2𝑖𝑖−2] ⋯ [𝛬𝛬𝑖𝑖]

�, (3) 

where 𝑖𝑖 is the number of block rows of the Toeplitz matrix and 𝑟𝑟 the total number of sensors. Furthermore, one of the 
properties for stochastic state-space models is the possibility to decompose the output covariance matrices in the form: 
𝛬𝛬𝑙𝑙 = 𝐶𝐶𝐴𝐴𝑙𝑙−1𝐺𝐺 where 𝐺𝐺  ∈ ℝ𝑟𝑟×𝑛𝑛 is the next-state output covariance matrix given by 𝐺𝐺 = 𝐸𝐸[𝑥𝑥𝑘𝑘+1𝑦𝑦𝑘𝑘𝑇𝑇]. According to these 
properties, 𝑇𝑇1|𝑖𝑖 can be decomposed as shown in Equation (4), where 𝒪𝒪 ∈ ℝ𝑖𝑖𝑟𝑟×𝑛𝑛 is the extended observability matrix, 𝛤𝛤 ∈
ℝ𝑛𝑛×𝑖𝑖𝑟𝑟 the reversed extended stochastic controllability matrix, and 𝑛𝑛 the model order. 

𝑇𝑇1|𝑖𝑖 = 𝒪𝒪𝛤𝛤 = �

𝐶𝐶
𝐶𝐶𝐴𝐴
⋯

𝐶𝐶𝐴𝐴𝑖𝑖−1
� [𝐴𝐴𝑖𝑖−1𝐺𝐺 ⋯ 𝐴𝐴𝐺𝐺 𝐺𝐺]. (4) 

This Equation shows that 𝑇𝑇1𝑖𝑖 is the result of multiplying a matrix with 𝑛𝑛 columns by a matrix with 𝑛𝑛 rows. Then, for 
𝑖𝑖𝑟𝑟 ≥ 𝑛𝑛 and an observable and controllable system, the rank of the 𝑖𝑖𝑟𝑟 by 𝑖𝑖𝑟𝑟 Toeplitz matrix is 𝑛𝑛. The application of the 
singular value decomposition (SVD) allows rewriting 𝑇𝑇1|𝑖𝑖 as: 

𝑇𝑇1∣𝑖𝑖 = 𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇 = [𝑈𝑈1 𝑈𝑈2] �𝑈𝑈1 0
0 𝑈𝑈2

� �𝑉𝑉1𝑉𝑉2
�
𝑇𝑇

= 𝑈𝑈1𝑈𝑈1𝑉𝑉1𝑇𝑇, (5) 

where 𝑈𝑈 ∈ ℝ𝑖𝑖𝑟𝑟×𝑖𝑖𝑟𝑟 and 𝑉𝑉 ∈  ℝ𝑖𝑖𝑟𝑟×𝑖𝑖𝑟𝑟  are orthonormal matrices, with 𝑈𝑈𝑇𝑇𝑈𝑈 = 𝑈𝑈𝑈𝑈𝑇𝑇 = 𝐼𝐼   ∈   ℝ𝑖𝑖𝑟𝑟×𝑖𝑖𝑟𝑟  and 𝑉𝑉𝑇𝑇𝑉𝑉 = 𝑉𝑉𝑉𝑉𝑇𝑇 = 𝐼𝐼 ∈
ℝ𝑖𝑖𝑟𝑟×𝑖𝑖𝑟𝑟. 𝑈𝑈  ∈  ℝ𝑖𝑖𝑟𝑟×𝑖𝑖𝑟𝑟  is a diagonal matrix containing the positive singular values in descending order. The observability 
and controllability matrices can be determined from the reduced singular value decomposition as shown in Equation (6), 
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where 𝑈𝑈1 ∈ ℝ𝑛𝑛×𝑛𝑛 contains the non-zero singular values with 𝑈𝑈1 ∈ ℝ𝑖𝑖𝑟𝑟×𝑛𝑛 and 𝑉𝑉1 ∈ ℝ𝑖𝑖𝑟𝑟×𝑛𝑛 their corresponding singular 
vectors. 

𝒪𝒪 = 𝑈𝑈1𝑈𝑈1
1 2⁄

𝛤𝛤 = 𝑈𝑈1
1 2⁄ 𝑉𝑉1𝑇𝑇

 . (6) 

Identifying system matrices 𝐴𝐴 and 𝐶𝐶 is simple from the previously computed observability 𝒪𝒪 and 𝛤𝛤 controllability 
matrices. 𝐶𝐶 equals the first 𝑟𝑟 rows of 𝒪𝒪, and the state transition matrix 𝐴𝐴 can be estimated by exploiting the shift structure 
of 𝒪𝒪 (Kung, 1978), as follows: 

�

𝐶𝐶𝐴𝐴
𝐶𝐶𝐴𝐴2
⋯
𝐶𝐶𝐴𝐴𝑖𝑖

� = �

𝐶𝐶
𝐶𝐶𝐴𝐴
⋯

𝐶𝐶𝐴𝐴𝑖𝑖−1
� 𝐴𝐴 ⇔ 𝐴𝐴 = �

𝐶𝐶
𝐶𝐶𝐴𝐴
⋯

𝐶𝐶𝐴𝐴𝑖𝑖−1
�

†

�

𝐶𝐶𝐴𝐴
𝐶𝐶𝐴𝐴2
⋯
𝐶𝐶𝐴𝐴𝑖𝑖

� = 𝒪𝒪†𝒪𝒪, (7) 

where (·)† represents the Moore-Penrose pseudo-inverse of a matrix. 𝒪𝒪 contains the first 𝑟𝑟(𝑖𝑖 − 1) rows of 𝒪𝒪, while 𝒪𝒪 
contains the last 𝑟𝑟(𝑖𝑖 − 1) rows of 𝒪𝒪. Alternatively, the matrix 𝐴𝐴 could also be computed from the decomposition property 
of a shifted block Toeplitz matrix (Zeiger et al., 1974): 

𝑇𝑇2∣𝑖𝑖+1 = 𝒪𝒪𝐴𝐴𝛤𝛤, (8) 

where the shifted matrix 𝑇𝑇2∣𝑖𝑖+1 is composed of the output covariance matrices 𝛬𝛬𝑙𝑙  for time lags 𝑙𝑙 = 2,3, . . . ,2𝑖𝑖. Introducing 
Equation (6) into Equation (8) and solving for 𝐴𝐴 gives: 

𝐴𝐴 = 𝒪𝒪†𝑇𝑇2∣𝑖𝑖+1(𝛤𝛤)† = 𝑈𝑈1
−1/2𝑈𝑈1𝑇𝑇𝑇𝑇2∣𝑖𝑖+1𝑉𝑉1𝑈𝑈1

−1/2. (9) 

From matrices 𝐴𝐴 and 𝐶𝐶 the modal parameters are extracted. The decomposition of the state transition matrix 𝐴𝐴 is 
given by: 

𝐴𝐴 = 𝛹𝛹𝛬𝛬𝛹𝛹−1,      𝐴𝐴𝜓𝜓𝑘𝑘 = 𝜆𝜆𝑘𝑘𝜓𝜓𝑘𝑘, (10) 

where 𝜓𝜓𝑘𝑘 and 𝜆𝜆𝑘𝑘 are the discrete-time eigenvectors and eigenvalues, respectively. As 𝐴𝐴 was obtained from the 
discretization of the continuous-time matrix 𝐴𝐴𝑐𝑐 , the equivalent continuous-time eigen-properties can be computed as 
follows: 

𝜓𝜓𝑐𝑐𝑘𝑘 = 𝜓𝜓𝑘𝑘 ,    𝜆𝜆𝑐𝑐𝑘𝑘 = 𝑙𝑙𝑛𝑛(𝜆𝜆𝑘𝑘)
𝛥𝛥𝛥𝛥

, (11) 

Finally, natural frequencies and damping ratios are computed from: 

𝑓𝑓𝑘𝑘 = |𝜆𝜆𝑐𝑐𝑘𝑘|
2𝜋𝜋

    [𝐻𝐻𝐻𝐻], (12) 

𝜉𝜉𝑘𝑘 = −ℜ(𝜆𝜆𝑐𝑐𝑘𝑘)
|𝜆𝜆𝑐𝑐𝑘𝑘| ∗ 100    [%],  (13) 

where ℜ(•) represents the real part of a complex number. Finally, the observed mode shapes 𝜙𝜙𝑘𝑘 can be computed 
through the multiplication of matrix 𝐶𝐶 with eigenvectors of matrix 𝐴𝐴: 

𝜙𝜙𝑘𝑘 = 𝐶𝐶𝜓𝜓𝑘𝑘 . (14) 
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2.2 AUTOMATIC MODAL PARAMETER ESTIMATION (MPE) 

An automated procedure based on the methodology proposed in Reynders et al. (2012) is configured to extract the 
physical modes obtained with the SSI-COV method. The automation of the MPE consists of three stages: cleaning the 
stabilization diagram, grouping similar modes, and selecting the physical modes. 

a) Cleaning the estabilization diagram. 

Hard validation criteria (HVC) and soft validation criteria (SVC) are used for mode elimination in the cleaning stage. 
The HVC are applied to all modes. Modes that do not meet the following criteria are eliminated immediately: i) 𝜉𝜉𝑘𝑘 > 0% 
and 𝜉𝜉𝑘𝑘 < 10%, ii) 𝑓𝑓𝑘𝑘 < 𝑓𝑓𝑠𝑠/2, where 𝑓𝑓𝑠𝑠 is the sampling frequency, and iii) mode with a complex conjugate pair. The SVC 
are summarized in Table 1. A mode is composed of a frequency (𝑓𝑓), a damping ratio (𝜉𝜉), and a mode shape (𝜙𝜙), then, 
assuming that 𝑖𝑖 and 𝑗𝑗 are a pair of closest modes according to the distance: 

𝑑𝑑(𝑖𝑖, 𝑗𝑗) = 𝑑𝑑𝑓𝑓�𝑓𝑓𝑖𝑖 , 𝑓𝑓𝑗𝑗� + 1 −𝑀𝑀𝐴𝐴𝐶𝐶�𝜙𝜙𝑖𝑖 ,𝜙𝜙𝑗𝑗�, (15) 

𝑑𝑑𝑓𝑓 ,𝑑𝑑𝜉𝜉  and 𝑀𝑀𝐴𝐴𝐶𝐶 measure the similarity between these modes. On the other hand, the 𝑀𝑀𝑀𝑀𝐶𝐶 and 𝑀𝑀𝑀𝑀𝑀𝑀 indicators measure 
the complexity of the mode shapes. (Reynders et al., 2012), presents detailed information on how to compute these 
criteria. 

Table 1 Soft validation criteria (SVC). 

Criterion Value Ideal Physical Ideal Mathematical 

𝜁𝜁(1) 𝑑𝑑𝑓𝑓 = Relative frequency 
 

0 1 

𝜁𝜁(2) 𝑑𝑑𝜉𝜉 = Relative damping ratio 
 

0 1 

𝜁𝜁(3) 𝑀𝑀𝐴𝐴𝐶𝐶 = Modal Assurance 
 

1 0 

𝜁𝜁(4) 𝑀𝑀𝑀𝑀𝐶𝐶 = Modal Phase Collinearity 1 0 

𝜁𝜁(5) 𝑀𝑀𝑀𝑀𝑀𝑀 = Mean Phase Deviation 0 1 

Based on these discriminative criteria, an iterative Fuzzy C-means (FCM) clustering algorithm is employed to classify 
the modes into likely physical and mathematical modes. This approach divides a dataset into C clusters or classes by 
minimizing the weighted sum of the Euclidean distance between the dataset and centroids of each class. Thus, for the 
case in question, the objective function of the FCM can be written as: 

𝐽𝐽𝑚𝑚 = � � 𝜂𝜂𝑖𝑖𝑗𝑗𝑚𝑚�𝜁𝜁𝑗𝑗 − 𝑉𝑉𝑖𝑖�
22

𝑖𝑖=1

𝑛𝑛𝑝𝑝

𝑗𝑗=1

, (16) 

where 𝜂𝜂𝑖𝑖𝑗𝑗 is the degree of membership of the mode 𝑗𝑗 to the class 𝑖𝑖 (likely physical mode or mathematical mode), 𝑉𝑉𝑖𝑖  is 
the center of the classes, and 𝑙𝑙 ≥ 1 (commonly set to 2) is a weighting exponent. The objective function optimization is 
carried out through an iterative process, updating each class's degrees of membership and centroids until a termination 
criterion is met, either a maximum number of iterations or a minimum error. In fuzzy logic theory, the degree of 
membership represents a value in the range of 0 and 1. A value closer to 1 indicates that an element belongs to a 
particular class, while values closer to 0 indicate that the element does not belong to the particular class. As a result, the 
factor 0 < 𝜂𝜂𝑖𝑖𝑗𝑗 < 1 indicates how much the modes 𝑗𝑗 = 1,2, . . . ,𝑛𝑛𝑝𝑝 belong to each class 𝑖𝑖 = 1,2. As the summation of 
membership of each mode should be equal to one, modes with a degree of membership of less than 0.5 to the probably 
physical class are considered mathematical modes and are eliminated. 

b) Grouping similar modes 

After the cleaning stage, the probably physical modes are grouped according to similar features. This grouping is 
carried out using a hierarchical clustering approach in which the similarity information between each pair of modes 
computed through Equation (15) is used to construct a distance matrix 𝑀𝑀. Then, modes/clusters that are in proximity are 
linked together using a linkage function. Finally, using a threshold 𝑑𝑑ℎ, cut the hierarchical tree into clusters. In 
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(Reynders et al., 2012), it is assumed that the likely physical modes are normally distributed, and the following threshold 
is proposed: 

𝑑𝑑ℎ = 𝜇𝜇𝑝𝑝 + 2𝜎𝜎𝑝𝑝, (17) 

where 𝜇𝜇𝑝𝑝 and 𝜎𝜎𝑝𝑝 are the mean and standard deviation, respectively, of 𝜁𝜁𝑖𝑖
(1) + 1 − 𝜁𝜁𝑖𝑖

(3) for 𝑖𝑖 = 1,2, . . . ,𝑛𝑛𝑒𝑒 , where 𝜁𝜁𝑖𝑖
(1) and 

𝜁𝜁𝑖𝑖
(3) represent the criteria 𝑑𝑑𝑓𝑓 and 𝑀𝑀𝐴𝐴𝐶𝐶, respectively, in Table 1 and 𝑛𝑛𝑒𝑒 represents the number of likely physical modes. 

Not all mathematical modes will likely be eliminated in the cleaning stage; therefore, the set of clusters obtained in 
the clustering phase can be divided into two classes: those containing physical modes and those having mathematical or 
spurious modes. Generally, physical modes are consistently identified in each model order from a specific model order 
on, while mathematical modes do not appear with such consistency. For this reason, clusters that contain physical modes 
are expected to have more elements than those that include mathematical modes. In this research, the FCM algorithm 
is used to select the clusters containing the physical modes. In this case, the objective function to minimize is 

𝐽𝐽𝑚𝑚 = � � 𝜂𝜂𝑖𝑖𝑗𝑗𝑚𝑚�ℒ𝑗𝑗-V𝑖𝑖�
22

𝑖𝑖=1

𝑛𝑛𝑐𝑐

𝑗𝑗=1

, (18) 

where ℒ𝑗𝑗 is the number of elements of the cluster 𝑗𝑗, 𝑛𝑛𝑐𝑐 is the number of clusters, 𝜂𝜂𝑖𝑖𝑗𝑗 is the degree of membership of the 
cluster 𝑗𝑗 to the class (physical or mathematical), 𝑉𝑉𝑖𝑖  is the center of classes, and 𝑙𝑙 is the weighting exponent Clusters with 
a degree of membership of higher than 0.5 to the physical class are selected as the final clusters. 

c) Selecting the physical modes 

Finally, the automatic MPE ends with the selection of the representative mode for each cluster. In this work, the 
following strategy is proposed. First, in the grouping stage, a distance matrix 𝑀𝑀   ∈   ℝ𝑛𝑛𝑒𝑒×𝑛𝑛𝑒𝑒  was constructed, then 
𝑀𝑀𝑗𝑗   ∈   ℝℒ𝑗𝑗×ℒ𝑗𝑗  is a subset of this matrix containing the distances of the elements of the cluster 𝑗𝑗. The smallest element 
of 𝑠𝑠𝑗𝑗   ∈   ℝℒ𝑗𝑗 in Equation (19) corresponds to the 𝑘𝑘 mode, which represents the cluster 𝑗𝑗. In this way, the mode closest 
to all modes, and with a high 𝑀𝑀𝑀𝑀𝐶𝐶 value is selected as representative. 

𝑠𝑠𝑗𝑗 = �� 𝑀𝑀𝑖𝑖𝑘𝑘
𝑗𝑗

ℒ𝑗𝑗

𝑖𝑖=1
� + 1 −𝑀𝑀𝑀𝑀𝐶𝐶𝑘𝑘 . (19) 

3 UNCERTAINTIES OF MODAL PARAMETERS 

3.1 Approach 1: Uncertainty quantification from (Reynders et al., 2008; Döhler et al., 2013) 

The uncertainties of modal parameters can be quantified through statistical values such as the variance or its square 
root, standard deviation. (Reynders et al., 2008) proposed a procedure to determine these uncertainties at a given model 
order by the propagation of perturbations of the collected data in each SSI-COV stage. Thus, the covariance of the modal 
parameters depends on the covariance of the system matrices, which depends on the covariance of the Toeplitz matrix. 

The quantification of the uncertainties in the system matrices is performed in two steps. In the first step, the 
uncertainty 𝛥𝛥𝑇𝑇1|𝑖𝑖 of the Toeplitz matrix is propagated to the uncertainty ∆𝒪𝒪 of the observability matrix through the 
Jacobian matrix 𝐽𝐽𝒪𝒪,𝑇𝑇1|𝑖𝑖. In the second step, the uncertainty ∆𝒪𝒪 of the observability matrix is propagated to the uncertainty 
𝛥𝛥𝐴𝐴 and 𝛥𝛥𝐶𝐶 of the system matrices through the Jacobian matrices 𝐽𝐽𝐴𝐴,𝒪𝒪 and 𝐽𝐽𝐶𝐶,𝒪𝒪, respectively. Mathematically, it is 
expressed as: 

𝑣𝑣𝑣𝑣𝑣𝑣(∆𝒪𝒪) = 𝐽𝐽𝒪𝒪,𝑇𝑇1|𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣�𝛥𝛥𝑇𝑇1|𝑖𝑖�, (20) 

�𝑣𝑣𝑣𝑣𝑣𝑣
(𝛥𝛥𝐴𝐴)

𝑣𝑣𝑣𝑣𝑣𝑣(𝛥𝛥𝐶𝐶)� = �
𝐽𝐽𝐴𝐴,𝒪𝒪
𝐽𝐽𝐶𝐶,𝒪𝒪

� 𝑣𝑣𝑣𝑣𝑣𝑣(𝛥𝛥𝒪𝒪), (21) 

where 𝑣𝑣𝑣𝑣𝑣𝑣(•) is the stacking vectorization operator. The covariance of the system matrices is then computed as: 
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𝑣𝑣𝑐𝑐𝑣𝑣 ��𝑣𝑣𝑣𝑣𝑣𝑣
(𝐴𝐴)

𝑣𝑣𝑣𝑣𝑣𝑣(𝐶𝐶)�� = �
𝐽𝐽𝐴𝐴,𝒪𝒪
𝐽𝐽𝐶𝐶,𝒪𝒪

� 𝐽𝐽𝒪𝒪,𝑇𝑇1∣𝑖𝑖𝑣𝑣𝑐𝑐𝑣𝑣 �𝑣𝑣𝑣𝑣𝑣𝑣(𝑇𝑇1∣𝑖𝑖)� 𝐽𝐽𝒪𝒪,𝑇𝑇1∣𝑖𝑖
𝑇𝑇 �
𝐽𝐽𝐴𝐴,𝒪𝒪
𝐽𝐽𝐶𝐶,𝒪𝒪

�
𝑇𝑇

. (22) 

The uncertainties 𝛥𝛥𝑓𝑓𝑘𝑘, 𝛥𝛥𝜉𝜉𝑘𝑘 and 𝛥𝛥𝜑𝜑𝑘𝑘 of the modal parameters (natural frequencies 𝑓𝑓𝑘𝑘, damping ratios 𝜉𝜉𝑘𝑘 and modal 
shapes 𝜑𝜑𝑘𝑘) are connected to the uncertainties 𝛥𝛥𝐴𝐴 and 𝛥𝛥𝐶𝐶 of the system matrices through: 

�𝛥𝛥𝑓𝑓𝑘𝑘𝛥𝛥𝜉𝜉𝑘𝑘
� = �

𝐽𝐽𝑓𝑓𝑘𝑘,𝐴𝐴
𝐽𝐽𝜉𝜉𝑘𝑘,A

� 𝑣𝑣𝑣𝑣𝑣𝑣(𝛥𝛥𝐴𝐴), (23) 

𝛥𝛥𝜑𝜑𝑘𝑘 = 𝐽𝐽𝜑𝜑𝑘𝑘,𝐴𝐴,𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣 �
𝛥𝛥𝐴𝐴
𝛥𝛥𝐶𝐶�, (24) 

where 𝐽𝐽𝑓𝑓𝑘𝑘,𝐴𝐴, 𝐽𝐽𝜉𝜉𝑘𝑘,A, and 𝐽𝐽𝜑𝜑𝑘𝑘,𝐴𝐴,𝐶𝐶  are the Jacobians for each mode 𝑘𝑘. Finally, the covariance of the modal parameters are 
estimated as: 

𝑣𝑣𝑐𝑐𝑣𝑣 ��𝑓𝑓𝑘𝑘𝜉𝜉𝑘𝑘
�� = �

𝐽𝐽𝑓𝑓𝑘𝑘,𝐴𝐴
𝐽𝐽𝜉𝜉𝑘𝑘,A

� 𝐽𝐽𝐴𝐴,𝒪𝒪𝐽𝐽𝒪𝒪,𝑇𝑇1∣𝑖𝑖𝑣𝑣𝑐𝑐𝑣𝑣 �𝑣𝑣𝑣𝑣𝑣𝑣(𝑇𝑇1∣𝑖𝑖)� 𝐽𝐽𝐴𝐴,𝒪𝒪
𝑇𝑇𝐽𝐽𝒪𝒪,𝑇𝑇1∣𝑖𝑖

𝑇𝑇
�����������������������

𝑐𝑐𝑐𝑐𝑐𝑐�𝑐𝑐𝑒𝑒𝑐𝑐(𝐴𝐴)�

�
𝐽𝐽𝑓𝑓𝑘𝑘,𝐴𝐴
𝐽𝐽𝜉𝜉𝑘𝑘,A

�
𝑇𝑇

, (25) 

𝑣𝑣𝑐𝑐𝑣𝑣 �ℜ
(𝜑𝜑𝑘𝑘)

ℑ(𝜑𝜑𝑘𝑘)� = �
ℜ�𝐽𝐽𝜑𝜑𝑘𝑘,𝐴𝐴,𝐶𝐶�
ℑ�𝐽𝐽𝜑𝜑𝑘𝑘,𝐴𝐴,𝐶𝐶�

� �
𝐽𝐽𝐴𝐴,𝒪𝒪
𝐽𝐽𝐶𝐶,𝒪𝒪

� 𝐽𝐽𝒪𝒪,𝑇𝑇1∣𝑖𝑖𝑣𝑣𝑐𝑐𝑣𝑣 �𝑣𝑣𝑣𝑣𝑣𝑣(𝑇𝑇1∣𝑖𝑖)� 𝐽𝐽𝒪𝒪,𝑇𝑇1∣𝑖𝑖
𝑇𝑇 �
𝐽𝐽𝐴𝐴,𝒪𝒪
𝐽𝐽𝐶𝐶,𝒪𝒪

�
𝑇𝑇

���������������������������
𝑐𝑐𝑐𝑐𝑐𝑐��𝑐𝑐𝑒𝑒𝑐𝑐(𝐴𝐴)

𝑐𝑐𝑒𝑒𝑐𝑐(𝐶𝐶)��

�
ℜ�𝐽𝐽𝜑𝜑𝑘𝑘,𝐴𝐴,𝐶𝐶�
ℑ�𝐽𝐽𝜑𝜑𝑘𝑘,𝐴𝐴,𝐶𝐶�

�
𝑇𝑇

. (26) 

To determine the confidence intervals of a mode k requires the availability of a large data sample, which requires a 
high computational cost. In this method, the original acceleration time series is divided into 𝑛𝑛𝑏𝑏 statistically independent 
blocks of length 𝑁𝑁𝑏𝑏 such that 𝑛𝑛𝑏𝑏𝑁𝑁𝑏𝑏 = 𝑁𝑁, where 𝑁𝑁 is the total number of data used to compute the output covariance 
matrices with Equation (2). Then, from this division, estimates of the Toeplitz matrix are calculated, and subsequently, 
with these estimates, the covariance 𝑣𝑣𝑐𝑐𝑣𝑣 �𝑣𝑣𝑣𝑣𝑣𝑣(𝑇𝑇1∣𝑖𝑖)� is calculated. This allows the determination of confidence intervals 
on modal parameters in a given order without repeating the identification process for each data block. However, the 
computational cost of the direct application of this method can also be expensive for high model orders and large sensor 
networks. Therefore, (Döhler et al. 2013) reformulated the procedure mathematically and proposed an algorithm to be 
efficiently applied to calculate the covariance of all modes in the stability diagram. The computational cost reduction was 
achieved by calculating the uncertainty bounds at the maximum-desired order before the calculations of the other 
orders. In this paper, this algorithm is implemented and applied immediately after obtaining the modes with the SSI-COV 
method. Then, the automatic modal parameter estimation procedure described in the previous section extracts the 
physical modes with their respective standard deviations. 

3.2 Approach 2: Bootstrap technique 

The bootstrap method was developed by (Efron, 1979). Suppose the random variable 𝑦𝑦 is the outcome of some stochastic 
process with unknown probability distribution 𝐹𝐹, and 𝑛𝑛 independent measurements collected in the sample 𝑌𝑌 = {𝑦𝑦1,𝑦𝑦2, . . . ,𝑦𝑦𝑛𝑛} 
are available to estimate a parameter of interest 𝑠𝑠(𝑌𝑌). The bootstrap method creates additional data collections, denoted 
𝑌𝑌(𝑏𝑏)∗ = �𝑦𝑦1

∗(𝑏𝑏), 𝑦𝑦2
∗(𝑏𝑏), . . . ,𝑦𝑦𝑛𝑛

∗(𝑏𝑏)�, as a randomized or resampled version of the original sample 𝑌𝑌 = {𝑦𝑦1,𝑦𝑦2, . . . ,𝑦𝑦𝑛𝑛}. Once these 
additional samples are formed, the usual sample statistics can be applied. The basic assumptions in this method are: The 
measured outcomes of the random variable, and collected in 𝑌𝑌 = {𝑦𝑦1,𝑦𝑦2, . . . ,𝑦𝑦𝑛𝑛}, must be independent, and the measured 
outcomes 𝑦𝑦𝑖𝑖 must be representative of the random source. When working with time series, the first assumption is violated 
because 𝑌𝑌 = {𝑦𝑦1,𝑦𝑦2, . . . ,𝑦𝑦𝑛𝑛}is a collection of serially dependent measurements. Hence, applying the resampling process with 
individual outcomes will break up the covariance structure of the time series. Then, it is possible to extend the method to time 
series through the resample blocks of data rather than individual observations. Thus, the moving blocks bootstrap are a simple 
resampling algorithm used for time series. 

The steps to apply the moving block bootstrap given by (Kunsch, 1979) can be summarized as follows: 



Validation of the uncertainty bounds on modal parameters identified with the SSI-COV method Yeny V. Ardila A. et al. 

Latin American Journal of Solids and Structures, 2021, 18(7), e398 8/20 

1. Break the time series 𝑌𝑌 = {𝑦𝑦1,𝑦𝑦2, . . . ,𝑦𝑦𝑛𝑛}, into 𝑛𝑛 − 𝑙𝑙 + 1 overlapping blocks 𝐵𝐵𝑖𝑖 = {𝑦𝑦𝑖𝑖 ,𝑦𝑦𝑖𝑖+1, . . . ,𝑦𝑦𝑖𝑖+𝑙𝑙−1} of length 𝑙𝑙 
for 𝑖𝑖 = 1,2, . . . ,𝑛𝑛 − 𝑙𝑙 + 1. Then, form the collection 𝐵𝐵 = {𝐵𝐵1,𝐵𝐵2, . . . ,𝐵𝐵𝑛𝑛−𝑙𝑙+1}. 

2. Resample 𝑘𝑘 = 𝑛𝑛/𝑙𝑙 blocks 𝐵𝐵𝑖𝑖  with replacement to form 𝐵𝐵 bootstrap time series replica by collecting the 𝑘𝑘 resampled 
𝐵𝐵𝑖𝑖. For example, the 𝑏𝑏𝛥𝛥ℎ bootstrapped time series may be: 𝑌𝑌(𝑏𝑏)∗ = {𝐵𝐵1,𝐵𝐵5, . . . ,𝐵𝐵𝑛𝑛−𝑙𝑙+1, . . . ,𝐵𝐵1}. 

3. Compute the bootstrap replica of the statistic of interest, 𝑠𝑠�𝑌𝑌(𝑏𝑏)∗�. For instance, this estimator could be the sample 
correlation estimates 𝛬𝛬𝑙𝑙

𝑌𝑌(𝑏𝑏)∗ of the bootstrapped time series 𝑌𝑌(𝑏𝑏)∗, where 𝑙𝑙 denotes the lag. 

4. Compute the sample statistic of interest over the ensemble of the 𝐵𝐵 generated bootstrap replica 𝑠𝑠�𝑌𝑌(𝑏𝑏)∗�. 

In Figure 1. a time series with length 𝑛𝑛 = 12 and block length equal to 𝑙𝑙 = 3 illustrate steps 1 and 2 schematically. 

 
Figure 1. Moving block bootstrap: schematic diagram. 

Bootstrap for operational modal analysis 

As mentioned in the previous section, to obtain modal parameters statistics such as mean, standard deviation, and 
confidence intervals, it is necessary to have a sufficiently large set of modal parameters. In addition to repeating the 
identification process B times, this involves performing B measurement tests to obtain B time series long enough for 
acceptable identification. Furthermore, calculating the uncertainty in the modal parameters obtained from ambient 
vibrations measured at different time instants requires a preliminary analysis to identify whether environmental and 
operational variables influence the modal parameters. Therefore, these limitations make the process of repeating the 
measurement tests impractical. The Bootstrap technique allows the simulation of response data from only the set of 
available measurements. Thus, during the application of the Bootstrap method, it is assumed that there is only one set 
of simultaneous response data measured at different locations along with the structure. 

According to Giampellegrini (2007), once response data are obtained, it is then possible to get a collection of B sets 
of bootstrapped modal parameters. Therefore, in this paper, for each simulated response, the SSI-COV method is applied. 
In this way, a set B of stabilization diagrams is obtained. Subsequently, the automated modal parameter estimation 
process extracts the physical modes from each of these diagrams. These physical modes are compared using the physical 
modes obtained with the original time series through the relative distance between the natural frequencies to group the 
similar modes. As a mode 𝑘𝑘 may not be identified in each repetition, the whole procedure is performed until for each 
physical mode; there is a set 𝐵𝐵∗of modal parameters, which the statistics of the system's model can be determined. 
Finally, the 95% confidence intervals for each vibration mode are estimated as the 2  bound. 

4 VALIDATION OF UNCERTAINTY BOUNDS 

4.1 Validation with simulated data 

A simulation of experimental data was performed to obtain data similar to those obtained in a dynamic test of 
ambient vibration measurement. The structural model consists of a simply supported beam. The structure has a length 
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of 10  [𝑙𝑙], a uniform square cross-section equal to 0.2  [𝑙𝑙], and is discretized 11 elements of equal length. The Young’s 
modulus in each element is 𝐸𝐸 = 1.787 ∗ 109  [𝑁𝑁 𝑙𝑙2⁄ ] and density is equal to 12816kg/m3. These properties are just 
generic and do not belong to any material. As shown in Figure 2, this beam is also elastically restrained against 
translational and rotational movements at nodes B and C. 𝑘𝑘𝑇𝑇 = 440000  [𝑁𝑁 𝑙𝑙⁄ ] and 𝑘𝑘𝑅𝑅 = 880000  [𝑁𝑁 𝑙𝑙⁄ ] are the 
translational spring and rotational spring constants, respectively. 

 
Figure 2. Structural model. 

The mass and stiffness matrices were obtained from the geometric and material properties and condensed into ten 
vertical degrees of freedom to reduce the problem size. Then, vertical accelerations time series with durations of 
15  [𝑙𝑙𝑖𝑖𝑛𝑛] at a sampling frequency of 200  [𝐻𝐻𝐻𝐻] were simulated, considering a noise level of 𝑈𝑈𝑁𝑁𝑆𝑆 = 40  [𝑑𝑑𝐵𝐵]. All ten 
vertical degrees of freedom were loaded with gaussian excitation loads. These simulated data were used for the 
identification of modal parameters using the SSI-COV method. The number of block rows of the Toeplitz matrix 𝑇𝑇1𝑖𝑖  was 
set in 𝑖𝑖 = 60, and for constructing the stability diagram, a range of orders from 𝑛𝑛 = 2 to 𝑛𝑛 = 120 in increments of 2 was 
used. Then, the approach 1 to quantifying uncertainties was applied with a number of blocks 𝑛𝑛𝑏𝑏 = 100. As the entire 
series consists of 𝑁𝑁 = 180000, each block comprises 𝑁𝑁𝑏𝑏 = 1800 samples, which amounts to 9  𝑠𝑠 of data per block. 

The automated MPE procedure was implemented to extract the physical modes of the structure. Figure 3. (a) shows 
the stabilization diagram constructed immediately after the cleaning stage. The stabilization diagram shows the poles 
identified in the system by the SSI-COV method, however performing a variation of the model order of the state space 
matrix A. Thus, this diagram allows observing stable poles of the system as the model order is varied. Then, in Figure 3, 
the classification of the poles into the probably physical and mathematical groups can be observed when applied the 
cleaning stage. The horizontal bars indicate the standard deviation of each pole. According to these results, there are 
both probably physical and mathematical poles with high uncertainties. However, in Figure 3.(b) shows the stability 
diagram constructed after applying the automated MPE procedure, it can be seen that the modes selected as physical 
(blue vertical lines) present a lower uncertainty, as the standard deviations are imperceptible. According to the work of 
Verboven et al (2004), it is concluded that the uncertainty levels of the physical modes are much smaller than for the 
mathematical modes. Thus, the obtained results support these conclusions and validated the standard deviations’ 
consistency computed through approach 1. In the stabilization diagram of Figure 3(b), the red dots are the representative 
modes of each cluster, and in Figure 4, the extracted information is shown. It can be observed in the polar plot that all 
representative modes are monophasic, thus representing real modes. 

 
Figure 3. Example 1: (a) Stability diagram after the cleaning stage. (b) Stability diagram after the MPE procedure. 
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For the bootstrap, 1000 pseudo time series were generated through the moving blocks resampling method with 
either length 𝑙𝑙 = 30000 samples or 150 𝑠𝑠. Tables 2 and 3 and Figure 5 present the results of the ±2𝜎𝜎 uncertainty bounds 
estimated using the two approaches for frequencies, damping ratios, and vibration modes, respectively. The means 
obtained for the three modal parameters (frequencies, damping ratios, mode shapes) are pretty close to the parameters 
shown in Figure 4. Thus, the bias errors found are minor, indicating that the bootstrap result is robust. The standard 
deviations estimated using the two approaches are similar in magnitude. Regarding the confidence intervals, these differ 
a little for the two approaches. However, they overlap, so it is verified that approach 1 provides consistent results 
concerning the Bootstrap approach. Figures 6 and 7 show the cumulative distributions of the bootstrap samples obtained 
for the natural frequencies and damping ratios. It is observed that the identified modes are normally distributed in all 
cases. 

  
Figure 4. Modal parameters identified in the structural model. 

Table 2. Example 1: Confidence intervals of natural frequencies. 

Mode 

Bootstrap verification Uncertainty quantification from 
(Reynders et al., 2008; Döhler et al., 2013) 

Estimate Bias Standard 
Deviation 

95% Confidence intervals Standard 
Deviation 

95% Confidence intervals 

Lower Upper Lower Upper 

1 0.7187 8.17E-03 0.0248 0.6691 0.7683 0.0260 0.6749 0.7789 
2 2.3358 8.18E-05 0.0017 2.3324 2.3392 0.0029 2.3301 2.3417 
3 4.5056 2.09E-04 0.0024 4.5008 4.5105 0.0025 4.5004 4.5104 
4 6.9228 6.63E-05 0.0017 6.9194 6.9261 0.0025 6.9178 6.9278 
5 10.5283 1.35E-04 0.0021 10.5241 10.5325 0.0025 10.5234 10.5334 
6 15.4208 9.51E-04 0.0017 15.4174 15.4243 0.0020 15.4178 15.4258 
7 21.1160 8.00E-04 0.0016 21.1128 21.1192 0.0021 21.1110 21.1194 
8 27.6007 7.95E-04 0.0022 27.5964 27.6050 0.0033 27.5933 27.6065 
9 34.3577 1.80E-04 0.0027 34.3523 34.3631 0.0022 34.3531 34.3619 

10 39.4666 5.72E-04 0.0024 39.4618 39.4714 0.0052 39.4556 39.4764 
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Table 3. Example 1: Confidence intervals of damping ratios. 

Mode 

Bootstrap verification Uncertainty quantification from 
(Reynders et al., 2008; Döhler et al., 2013) 

Estimate Bias Standard 
Deviation 

95% Confidence intervals Standard 
Deviation 

95% Confidence intervals 

Lower Upper Lower Upper 

1 6.1800 3.28E-01 0.7480 4.6840 7.6760 0.7590 4.3335 7.3695 
2 1.6583 4.10E-02 0.1382 1.3819 1.9347 0.1060 1.4873 1.9113 
3 0.8555 1.86E-02 0.0443 0.7669 0.9441 0.0446 0.7478 0.9262 
4 0.5443 1.40E-04 0.0355 0.4733 0.6154 0.0257 0.4931 0.5959 
5 0.3898 5.22E-03 0.0252 0.3394 0.4402 0.0177 0.3492 0.4200 
6 0.2601 3.96E-03 0.0147 0.2307 0.2895 0.0143 0.2275 0.2847 
7 0.1899 1.04E-02 0.0141 0.1618 0.2180 0.0086 0.1623 0.1967 
8 0.1250 3.37E-03 0.0063 0.1123 0.1377 0.0082 0.1052 0.1380 
9 0.1022 7.49E-04 0.0127 0.0768 0.1277 0.0050 0.0915 0.1115 

10 0.0930 8.81E-03 0.0087 0.0756 0.1104 0.0114 0.0614 0.1070 

 

Figure 5. Confidence intervals of mode shapes. 
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Figure 6. Example 1: Empirical cumulative distribution function of natural frequencies and normal cumulative distribution 
constructed from the sample mean and sample variance. 
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Figure 7. Example 1: Empirical cumulative distribution function of damping ratios and normal cumulative distribution constructed 

from the sample mean and sample variance. 
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4.2 Validation with data from ambient vibration test 

This section validates the confidence intervals of the modal parameters of the F-17/18 concrete block (see Figure 
8) of the Itaipú Hydroelectric Dam. This concrete block is located on stretch F of the main dam. It is equipped with two 
triaxial accelerometers ACL05-F18 (station 5GS6) and ACL06-F18 (station 5GS8), which are configured to acquire signals 
at a frequency of 200 Hz and produce hourly .gcf files (Guralp compressed file). For this example, records were collected 
from 01/07/2018 from 02:00:00 to 02:59:599, for a total of 720000 samples in each direction (longitudinal, transverse 
and vertical), as can be seen in Figure 9. These time series were decimated by a factor of 5 to obtain a final sample 
frequency of 40 Hz, thus reducing the total number of samples to 144000. 

 
Figure 8. Cross-section of the F-17/18 concrete block 

 
Figure 9. Measured responses caused by environmental vibrations. Left (ACL05-F18), (Right ACL06-F18). 
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The SSI-COV method uses the following parameters: the number of blocks of the Toeplitz matrix 𝑇𝑇1𝑖𝑖  was set to 𝑖𝑖 = 80, 
and for the construction of the stability diagram, a range of orders from 𝑛𝑛 = 2 to 𝑛𝑛 = 160 in increments of 2 was used. To 
quantify the uncertainties with approach 1, a number of blocks 𝑛𝑛𝑏𝑏 = 200 was used. Each block has a length of 𝑁𝑁𝑏𝑏 = 720 
samples, which amounts to 18 𝑠𝑠. 

The resulting stability diagrams are more polluted by poles because the noise is not controlled in this application. 
Figure 10 (a) shows the stability diagram constructed immediately after the cleaning stage. It can be seen that with the 
adopted methodology for cleaning the stability diagram, the number of poles was significantly reduced. Some of the 
probably physical poles remaining after this stage have large standard deviations (grey horizontal bars). However, Figure 
10 (b) shows that the resulting physical poles have minor standard deviations. Therefore, in this example, the standard 
deviations from approach 1 agree well with the expected results. The modal parameters information for the physical 
modes, represented by the red dots in the stability diagram in Figure 10 (b), is presented in Table 4. All vibration modes 
show an MPC close to 1, indicating a high degree of physicality. 

 
Figure 10. Example 2: (a) Stability diagram after the cleaning stage. (b) Stability diagram after the MPE procedure 

Table 4. Modal parameters identified in the F-17/18 concrete block 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10 
Frequency 

[Hz] 2.639 3.172 3.530 5.302 6.064 8.611 9.471 10.956 13.075 14.831 

Damping 
ratio [%] 3.917 2.634 3.684 3.451 0.306 1.395 0.492 0.554 1.732 1.329 

MPC 0.937 0.981 0.998 0.977 0.973 0.953 0.943 0.932 0.899 0.947 

To apply the Bootstrap technique, 1000 pseudo time series were generated using a length 𝑙𝑙 = 24000. Figures 
11 and 12 compare the empirical cumulative distribution of the samples obtained for the natural frequencies and 
damping ratios, respectively, with the normal distribution constructed from each sample's means and standard 
deviations. It can be observed that most vibration modes fit to a normal distribution. Tables 5 and 6 present the 
confidence intervals obtained by the two approaches for the natural frequencies and the damping ratios, 
respectively. At first glance, it can be seen that the standard deviations obtained for the damping ratios are larger 
than those obtained for the natural frequencies. This is because the damping ratios are a parameter that is highly 
sensitive to the quality of the covariance matrices and the SSI-COV parameters, such as the number of blocks rows 
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of the Toeplitz matrix. Although not precisely equal, the confidence intervals obtained by the two approaches are 
consistent in their magnitude. 

Additionally, it is essential to report that the propagation method demonstrated a computational processing 
time drastically inferior to the Boostrap technique in both examples applied in this work. The procedures used in 
this article were implemented in the Python programming language and executed on Intel(R) Core(TM) i7-8700k 
CPU 3.70 GHz with 32 GBytes. The computational time used for the concrete block example was 30 seconds to 
obtain the standard deviations of all modes in the multi-order model (approach 1) and 5 seconds to get the modal 
parameters of each bootstrap time series, adding up to a total time of approximately 83 min for Bootstrap 
technique. 

Table 5. Example 2: Confidence intervals of natural frequencies 

Mode 

Bootstrap verification Uncertainty quantification from 
(Reynders et al., 2008; Döhler et al., 

2013) 

Estimate Bias Standard 
Deviation 

95% Confidence 
intervals Standard 

Deviation 

95% Confidence 
intervals 

Lower Upper Lower Upper 
1 2.6369 2.10E-03 0.0062 2.6245 2.6493 0.0081 2.6228 2.6552 
2 3.1740 2.10E-03 0.0070 3.1600 3.1880 0.0064 3.1591 3.1847 
3 3.5288 9.60E-04 0.0067 3.5154 3.5422 0.0123 3.5052 3.5544 
4 5.2920 9.81E-03 0.0209 5.2502 5.3338 0.0270 5.2478 5.3558 
5 6.067 2.90E-03 0.0061 6.0551 6.0795 0.0114 6.0415 6.0873 
6 8.6420 3.14E-02 0.0196 8.6028 8.6812 0.0204 8.5699 8.6513 
7 9.4920 2.15E-02 0.0215 9.4490 9.5350 0.0355 9.3996 9.5414 
8 10.9530 3.30E-03 0.0130 10.9270 10.9790 0.0154 10.9254 10.9872 
9 13.1070 3.21E-02 0.0562 12.9946 13.2194 0.0100 13.0550 13.0948 

10 14.8640 3.34E-02 0.1750 14.5140 15.2140 0.1387 14.5532 15.1080 

Table 6. Example 2: Confidence intervals of damping ratios 

Mode 

Bootstrap verification 
Uncertainty quantification from 

(Reynders et al., 2008; Döhler et al., 
2013) 

Estimate Bias Standard 
Deviation 

95% Confidence 
intervals Standard 

Deviation 

95% Confidence 
intervals 

Lower Upper Lower Upper 
1 4.5410 6.24E-01 0.4350 3.6710 5.4110 0.5447 2.8277 5.0063 
2 2.9190 2.85E-01 0.4410 2.0370 3.8010 0.3210 1.9919 3.2761 
3 3.4120 2.72E-01 0.3210 2.7700 4.0540 0.4214 2.8409 4.5265 
4 3.6820 2.31E-01 0.4460 2.7900 4.5740 0.7103 2.0303 4.8717 
5 0.3215 1.55E-02 0.1370 0.0475 0.5955 0.1496 0.0067 0.6053 
6 1.3743 2.02E-02 0.3418 0.6907 2.0579 0.2864 0.8217 1.9674 
7 0.4095 8.29E-02 0.1525 0.1045 0.7145 0.1359 0.2206 0.7641 
8 0.5869 3.29E-02 0.1312 0.3245 0.8493 0.1452 0.2636 0.8444 
9 1.2578 4.74E-01 0.3699 0.5180 1.9976 0.2147 1.3026 2.1615 

10 1.3456 1.59E-02 0.3010 0.7436 1.9476 0.5473 0.2351 2.4242 
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Figure 11. Example 2: Empirical cumulative distribution function of natural frequencies and normal cumulative distribution 
constructed from the sample mean and sample variance. 
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Figure 12. Example 2: Empirical cumulative distribution function of damping ratios and normal cumulative distribution constructed 
from the sample mean and sample variance 
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5 CONCLUSIONS 

In this work, the Bootstrap technique was used to validate the confidence intervals obtained from the approach 
proposed by (Reynders et al., 2008; Döhler et al., 2013), which is based on the propagation of the uncertainties of the 
collected data through all stages of the SSI-COV method. In the bootstrap technique, the response due to ambient 
vibrations is resampled to generate a bootstrap set of pseudo time series used to perform the stochastic subspaces and 
obtain a bootstrap set of modal parameters. Therefore, the computational time used by the bootstrap method to 
quantify the uncertainty is high. However, being a numerical method and easy to apply, it is a powerful tool in evaluating 
uncertainty. Furthermore, the experiments with simulated and real data showed similarities in evaluating uncertainties 
in the modal parameters by the two methodologies. Therefore, it is possible to conclude that the approach proposed by 
(Reynders et al., 2008; Döhler et al., 2013), provides reliable estimates of the covariances for the modal parameters with 
a very low computational cost compared to the Bootstrap technique. Futhermore, applying this procedure to estimate 
uncertainties in the SSI-COV method becomes attractive for the continuous dynamic monitoring of structures. 
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