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Abstract

A finite displacement formulation of a quadrilateral element containing an embedded
displacement discontinuity is presented. Lagrange multipliers are adopted to ensure the
crack closure before initiation. Six additional degrees of freedom in each element allow the
representation of the various states of the crack. The discretized equilibrium equations are
exposed, along with the corresponding exact linearization. Two examples illustrate both the
robustness and the accuracy of the algorithms.
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1 Introduction

The modern finite element analysis of crack initiation and propagation in solids can be carried
out through the use of embedded strong discontinuities.

Studies regarding embedded strong discontinuities were carried out, for example, in ref-
erences [2, 5, 6, 8, 9] for small strain situations and in reference [7] for finite strain situations
using triangular elements. These techniques circumvent the necessity for remeshing and require
less parameters than standard regularized strain softening implementations. However, penalty
parameters are often adopted for closing the crack.

The use of Lagrange multipliers for closing the crack before propagation is clearly an ap-
propriate methodology to avoid penalty parameters and therefore reduce the amount of data
required to accomplish a simulation.

Two important aspects for an efficient implicit finite element analysis of these problems are
the algorithm robustness and the verified rate of convergence of the Newton-Raphson method
(which, for conservative systems with Lagrange multipliers, can be classified as Lagrange-
Newton). Here, an exact linearization of the discretized equilibrium equations is carried out.
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2 The kinematics of the element

2.1 The element with an embedded displacement discontinuity: notation

For conciseness, the general considerations regarding the presence of a displacement discontinuity
can be consulted elsewhere (see references [2, 9] ).

A study of the quadrilateral element resented in Figure 1 is carried out.
The crack mid-line is identified through the vector OP and the crack position is identified

by the point O. It is noticeable that, if finite displacements are considered, it may occur that
the two crack faces can be widely separated.

Two local director vectors corresponding to a local frame are also represented, which can be
obtained from the vector OP: S is the tangential vector and N is the normal vector.

The proposed element with embedded discontinuity contains 4 nodes (k = 1, 2, 3, 4), as
illustrated in Figure 1. This figure also presents three sets of points Ω1 and Ω2 (such as Ω1∩Ω2 =
∅) and Γ. This last set of points represents the crack.

The complete element as a set of points is identify as Ω, such that Ω = Ω1 ∪ Ω2 ∪ Γ with
Ω1 ∩ Γ = ∅ and Ω2 ∩ Γ = ∅.

  

 

 

 

 Figure 1: The representation of the embedded discontinuity for a single quadrilateral element
(OP identifies the crack mid-line). A configuration with crack opening is shown.

In the presently adopted notation, a given point is denoted as X, its material and spatial
positions are denoted as X and x respectively. A converged position of X is identified as X ∗.
Finally the ith scalar component of X is presented as Xi.

2.2 Rigid body motion result from the crack

The existence of a crack, Γ, which separates the two parts of the element, Ω1 and Ω2 (see Figure
1) induces rigid body motions in these two parts.
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The rigid body motion displacements field of the two separated elements parts (Ω1 and Ω2

in 1) should be included into the original displacement field corresponding to the non-cracked
element.

If the converge coordinates X ∗ of an arbitrary point X ∈ Ω1 ∪ Ω2 are considered, the dis-
placement vector of this point due to the crack induced rigid body motion can be approximately
calculated as:

ū (X∗, r) =
[

S∗1 N∗
1

S∗2 N∗
2

]







[
cosα3 −r senα3

r senα3 cosα3

] [
O∗X∗.S∗

O∗X∗.N∗

]
−

[
O∗X∗.S∗

O∗X∗.N∗

]

︸ ︷︷ ︸
rotation


+

+
[

r α1

r α2

]

︸ ︷︷ ︸
displacement





(1)

where α1, α2, α3 are internal variables and r is a number belonging to the set {−1, 1}.
This definition presents the use of three internal variables αi. The variable α3 represents

the crack face rotation. The variables α1 and α2 represent the local displacements of the upper
crack face at the point O (see Figure 1).

These internal variables are additive, in contrast with the result ū.
A representation of the scalar components of ū can be carried out as ū1 = f1 (α1, α2, α3)

and ū2 = f2 (α1, α2, α3). The functions f1 e f2 are introduced to allow the representation of
the displacement jump at Γ.

The motivation of the use of the parameter r ∈ {−1, 1} in equation (1) is to identify the set
of points to which X belongs. For X ∈ Ω1 then r = 1 and for X ∈ Ω2 then r = −1.

For the analysis of the crack opening, it is necessary to rewrite a relation analogous to (1)
in local coordinates and valid for X ∈ Γ.

In the local frame S, N the scalar components of the local relative displacements at Γ can
be denoted as w1 and w2. To ensure that no penetration takes place between Ω1 and Ω2 it is
necessary to verify w1 ∈ < and w2 ∈ <+

0 .
The global displacement w̄ corresponding to the local coordinates w1 and w2 can be written

as:

w̄ =
[

S∗1 N∗
1

S∗2 N∗
2

] [
w1

w2

]
in Γ (2)

If the crack is closed, both ū and w̄ should be null vectors, a fact that can be achieved by
ensuring that αi = 0, i = 1, 2, 3.

The approximation (1) can be specified for a given node k, according to:
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ūk = ū


X∗

k ,
(X∗

k −O) .N∣∣(X∗
k −O

)
.N

∣∣
︸ ︷︷ ︸

r


 (3)

in Ω1 ∪ Ω2.
A notation for the scalar components of ūk can be carried out as: ūk1 = fk1 (α1, α2, α3)

and ūk2 = fk2 (α1, α2, α3).
With the introduction of the particular case (3), it is possible to define the contribution of

the crack to the rigid body displacement field as:

ū = Hkūk (4)

in which Hk are the standard isoparametric shape functions for the quadrilateral.
The total displacement field, u , can then be determined as the sum of the regular displace-

ment (which is identified with a hat, û) and the jump:

u = û︸︷︷︸
regular

− ū︸︷︷︸
jump

(5)

The regular displacement field corresponds to the displacement that occurs in the element
represented in grey in Figure 1, but without considering the discontinuity.

2.3 The deformation gradient and the spatial velocity gradient

With the definition of the displacement increment field, and hence of the displacement field, the
derived quantities follow using classical relations from continuum mechanics (see the presentation
given by Haupt [4]).

The discretized form of the deformation gradient can be written as:

F = F̂ − F̄ + I + δΓw̄ ⊗N in Ω (6)

The term δΓ in equation (6) represents the Dirac delta function defined on the set Γ. The
terms F̂ and F̄ can be evaluated according to its scalar components:

F̂ij =
∂Hk

∂Xj
(Xki + uki) in Ω1 ∪ Ω2 (7)

and
F̄ij =

∂Hk

∂Xj
(Xki + ūki) in Ω1 ∪ Ω2 (8)

The spatial velocity gradient (in Ω) can be denoted as L, and its scalar components are:
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Lij =
∂Hk

∂xj
u̇ki + gijpα̇p + δΓ ˙̄wiNkF

−1
kj in Ω (9)

In equation (9), the quantity

gijp = −∂Hr

∂xj

∂fr

∂αp
(10)

was introduced.

2.4 Existence of the displacement discontinuity

If the displacement discontinuity does not exist, which occurs when a fracture criterion is not
satisfied, then αi = 0. This is imposed through the introduction of a function h of the crack
state which is defined as:

h =
{

0 crack closed

1 crack opened

If h= 0 then αi = 0 for i = 1, 2, 3. A suitable method for imposing the constraints αi = 0 is the
Lagrange multiplier method, which is here adopted.

3 Equilibrium equations and related discretized forms

Let V0 represent the material integration volume corresponding to the domain Ω1 ∪ Ω2 and v0

represent the spatial integration volume corresponding to the same domain. The element is
defined as Ω.

The crack zone itself is represented by the material integration line l0. A given point X ∈
Ω1 ∪ Ω2 is represented by its material coordinates X and spatial coordinates x=X+u .

As ū(X ) and û(X ) are two independent fields, they can be used to introduce kinematically
admissible virtual displacements δ ū and δ û to project the equilibrium equations and obtain a
weak form.

The existence of a volume force field represented by its material vector b (X) is assumed.
If τ (F ) represents the Kirchhoff stress tensor, then the weak form of equilibrium can be

exposed as:
∫

V o
τ (F ) : ∇x δu dV o +

∫

lo
δw̄ . t dlo =

∫

V o
b . δu dV o in Ω (11)

This project form is very similar to the standard projected form for a non-cracked element
(with the noticeable exception of the crack term).

The condition for the non-existence of the crack is introduced imposing ūi = 0 for h = 0.
Additionally, the condition for crack closure should be introduced for h = 1. If Lagrange
multipliers λ are introduced then:
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∫

V o
τ (F ) : ∇xδu dV o +

∫

lo
δw̄ . t dlo + δ [λ ((1− h) α + hλ)] =

∫

V o
b . δu dV o (12)

For the application of the Newton-Raphson method, the first variations of equation (12) are
required.

4 Particular constitutive relations for the discrete crack

4.1 Fracture criterion

If the crack has not initiated yet, which occurs for the indicator h = 0, the following criterion
for the crack initiation is adopted for a given element:

^
τ 1 ≥ τ1c (13)

where τ1c is the maximum allowable positive Kirchhoff principal stress and τ̄1c is the following
quantity:

^
τ 1 =

1
V o

∫

V o
max (0, τ1) dV o (14)

with τ1 being the maximum principal Kirchhoff stress.
The definition of h is carried out using the maximum value of τ̄1c during the deformation

history:

h = H


 max︸︷︷︸

history

(^
τ 1

)− τ1c


 (15)

The function H in definition (15) is the unit step function. The calculation of the natural
coordinates ξQ of a point Q located on the crack is carried out using the following relation where
ξX represent the natural coordinates of a point X ∈ Ω1 ∪ Ω2:

ξQ =

∫
V o max (0, τ1) ξX dV o

V o
^
τ 1

(16)

The calculation of the material coordinates of the normal vector, N , is accomplish according
to:

N =

∫
V o max (0, τ1) N1 dV o

V o
^
τ 1

(17)

where N 1 is the second Piola-Kirchhoff stress principal direction.
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4.2 Interface compliance

The calculate t as a function of w , the local spatial coordinates of t in the frame {s,n} are
introduced:

t1 = t.s (18a)

t2 = t.n (18b)

Introducing an internal kinematic variable, k, the following local constitutive law is assumed
for t1 and t2:

{
t1
t2

}
=

{
dint w1

[Ξ (k) H (w2) + ρH (−w2)] w2

}
(19)

where Ξ (k) is the following function of k:

Ξ (k) =
τ1c

k
exp

(
− τ1c

Gf
k

)
(20)

and ρ is a penalty parameter.
The value of ρ is taken as the absolute value of the interface compliance before initiation:

ρ =
τ2
1c

Gf
= − lim

w2→0+

∂t2
∂w2

(21)

In equation (20) the term Gf represents the fracture energy, the term k is calculated using
the historical evaluation of w2:

k = max
history

[max (0, w2)] (22)

The property dint in equation (19) is the shear stiffness of the crack. A constant value of
dint is here adopted, but distinct strategies are possible (see reference [9]).

5 Numerical integration

For the domain Ω1 ∪ Ω2, a standard Gaussian quadrature is adopted. For the crack, a nodal
integration rule is employed. Due to the definition of the crack position, both Ω1 and Ω2 contain
at least one Gauss point.

The integration points are presented in Figure 2.
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Figure 2: The integration points in the crack and in the quadrilateral.

6 Numerical examples

6.1 Three point bending: mode I small strain test

This test consists in the bending of a cracked beam. A pre-existent crack is located at the mid
span and propagates upwards as the loading increases. Figure 3 shows the geometry, boundary
conditions and material properties of the model.

The geometrical data and the boundary conditions are taken form references [1, 3].
Two mesh densities are used, with the purposed of inspecting some possible mesh size depen-

dency of the crack propagation. The deformed meshes for 2 mm mid span displacement (scaled
100×) are represented in Figure 4. The sparse mesh contains 1268 elements and the refined
mesh contains 2099 elements.

The force magnitude is plotted as a function of the mid-span transversal displacement in
Figure 5. Along with the results obtained with the proposed formulation, some experimental
values, which were obtained by Peterson (see reference [1] for further details) are also presented.
There is a very close agreement between the numerical results and the experimental ones. For
comparison, the use of a gradient regularized media (see reference [3]) is not sufficient to represent
the experimental results.

6.2 Debounding problem: a finite strain test

This test consists on the finite strain analysis of a debounding problem.
The purpose of this analysis is to separate two initially bonded plates by pulling the top

notch. This test was carried out by Oliver et al. with triangular elements (see reference [7]) and
a very refined mesh.

Four distinct steps of the debounding analysis are represented in figure 6, where the contour
plot of the horizontal Kirchhoff stress τ11 is also represented. The crack tip can be identified by
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 Figure 3: Three point bending of a cracked beam (all dimensions are in mm).

 

 

 

 

 

 
Figure 4: The deformed meshes (with a scale factor of 100) corresponding to two distinct mesh
densities.
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 Figure 5: The force-displacement plot for the three point bending test (see Figure 3). The
experimental points were produced from reference [1].

 

 

 
Figure 6: Four distinct steps in the analysis of the debounding problem. The τ11 stress component
contour plot is also presented.
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 Figure 7: Force-crack opening plot for the debounding problem. Comparison with reference [7].

the very high stress gradient.
Finally, the force-crack opening is presented in Figure 7 and is compared with the results

from reference [7].

7 Conclusions

The proposed formulation allows accurate results (at least in mode I) for brittle fracture, as was
observed.

The robustness is very high, which is a consequence of the exact linearization and also of the
symmetric and isoparametric treatment of the rigid body motion induced by the crack. Further
developments are being carried out to accurately model mixed mode fracture and finite strain
plasticity.
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