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Abstract 
The fundamental difference in the solution of solids and fluids relies on the respective constitutive laws. Based 
on the Rivlin-Saunders-Düster-Hartmann hyperelastic model and using the Flory’s strain decomposition, we 
present a new total Lagrangian viscoelastic constitutive model for both Kelvin-Voigt viscoelastic solids and 
free-surface compressive viscous isothermal fluids. A dissipative viscous virtual work is written as a function 
of the time rate of isochoric invariants and its relation with the viscous stress is derived. Local time derivatives 
are solved by backward finite difference, allowing a consistent tangent viscoelastic constitutive tensor. The 
virtual work principle is used to write the weak equilibrium equation and its position-based finite element 
counterpart. Dynamic time integration is carried out by the Newmark β  method and the Newton-Raphson 
procedure is used to solve time steps. The formulation is validated against experimental and numerical 
literature results revealing good precision. Additional examples are shown in order to demonstrate the 
applicability and future possibilities of the technique. 
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1 INTRODUCTION 

Regarding solid applications, the development of the finite element method (FEM) is quite old and, among others, 
pioneers works should be mentioned and briefly commented: Courant (1942) introduced the idea of the minimization of 
a functional using linear approximation over sub-regions, Argyris (1954) developed the matrix theory of structures for 
the discrete elements leading to concepts as stiffness and flexibility, Turner et al. (1956) started discussing global stiffness 
of truss elements and introduced triangular plate elements, Clough (1960) introduced the name Finite Element Method 
in an important work on dynamics, Clough (1989), and Zienkiewicz and Cheung (1965) extended the FEM for no-structural 
applications and torsion. Originally, the solution of linear structural problems, with small displacements and simple 
constitutive relations, has been the focus of FEM researches. Formulations considering large displacements and small 
strains are part of FEM evolution regarding solids and structures, for a brief description one may consult Bischoff and 
Ramm (2000), Sansour and Bednarczyk (1995), Gruttmann and Wagner (2001) and Benson et al. (2011). These works 
were interested in solving thin plates and shells developing large displacements and rotations. 

More challenging problems, involving nonlinear constitutive laws as plasticity and damage mechanics, have been 
widely studied using FEM, even though considering small displacements and strains (Havner (1966), Miehe et al. (2013)). 
However, considering small strains avoids modeling hyperelastic materials as polymers and problems related to 
manufacturing and general structural collapse as, for example, cold forming and crashworthiness. 

Problems involving large strains, large displacements and hyperelastic nonlinear constitutive relations, also solved by 
FEM, bring important contributions to the understanding of highly deformable solids and general applications as one can 
see, for example, in Holzapfel and Simo (1996) for isotropic finite strain elasticity, Gasser and Holzapfel GA (2002) for 
orthotropic and biological elastic applications, Vergori et al. (2013) and Latorre and Montans (2015) for anisotropic finite 
elasticity. As the constitutive equations of hyperelastic materials will be the focus of our derivations, it is important to 
mention that its constitutive models can be classified mainly in 3 groups: (i) phenomenological, which are based on 
experimental observations as the Mooney-Rivlin model (Mooney (1940), Rivlin (1948a) and Rivlin (1948b)) and the models 
proposed by Yeoh (1990) and Ogden (1972); (ii) mechanistic, which considers the structure of the mater as the Arruda and 
Boyce  (1993) model and the Neo-Hookean model (Treloar (1943)); and (iii) hybrids, that mix both groups, see Gent (2001) 
for details. One can mention viscoelastic model, where strain rates are also considered (Argyris et al. (1991), Chen et al. 
(1993), Holzapfel (1996), Shutov et al. (2013) and Pascon and Coda (2017)). When large strains and nonlinear constitutive 
laws (plasticity or viscoplasticity) are considered, the idea of near incompressibility and flux laws appear. 

In general, formulations that consider finite strain plasticity use local plastic potentials to define flux direction and 
the Kröner-Lee (Kröner (1959) and Lee (1969)) multiplicative decomposition to split elastic and plastic strain. This strategy 
results in difficult expressions and in an intermediary plastic space (Simo (1992), Reese and Wriggers (1997), Jiao and 
Fish (2018) and Hudobivnik et al. (2019)). Some interesting FEM applications using plastic potentials, as metal forming 
and stamping, can be seen for example in Chung et al. (1998) and Schwarze et al. (2011). The same Kröner-Lee 
multiplicative decomposition is also used to describe finite viscoelasticity or viscoplasticity (Pascon and Coda (2015) and 
Pascon and Coda (2017)). Although considering large strain viscoplasticity, none of the above mentioned works extended 
their formulation to model fluids, as it will be done originally here. At the same time the evolution of FEM modeling of 
fluids, briefly described in what follows, does not goes in the direction of a unification with solids modeling. 

Regarding fluid applications, a general overview of several computational frameworks can be found in textbooks as 
Anderson (1995), Chung (2002), Zienkiewicz et al. (2005) and Reddy and Gartling (2010). Due to some aspects, such as 
the facility to use arbitrarily unstructured meshes and, particularly, due to the simplicity of boundary conditions 
enforcement over complex boundaries, the FEM has been conquering more space in fluid mechanics. However, fluid 
dynamics analyses under Eulerian description may present dominant convection, so the direct application of standard 
Galerkin method, as the FEM, to solve the governing equations leads to nonsymmetrical matrices with spurious behavior 
in solutions (Brooks and Hughes (1982) and Elias et al. (2006)). Many researchers have developed techniques to increase 
FEM stability and robustness for fluid dynamics, such as Tezduyar (1992), Tezduyar and Senga (2006), Akkerman et al. 
(2008), among others. 

For free surface flow problems it is not possible to apply a pure Eulerian description, as the fluid domain is 
dynamically deformed, denoting a moving-boundary problem. In this context, Arbitrary Lagrangian Eulerian (ALE) 
stabilized formulations have been developed by Donea et al. (1982), Franci et al. (2016) and Duarte et al. (2004); and the 
stabilized space-time formulation by Tezduyar et al. (1992). Such methods allow deforming the fluid domain 
discretization by mesh updating. However, this mesh updating respects the fluid movement only at the boundary and 
fluid flow is allowed between general internal elements, eliminating any possibility of solid modeling. 

As an alternative to ALE, the updated Lagrangian description has been applied together with particle methods 
concepts to develop the Particle Finite Element Method (PFEM) (Idelsohn et al. (2004), Idelsohn et al. (2006) and 
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Idelsohn et al. (2008)), providing a good solution for free surface flows with topological changes in the fluid domain. This 
strategy also demands remeshing and needs special attention in defining physical properties. The PFEM is dedicated to 
model fluids, the remeshing is specialized for linear triangle elements and - during this process - elements are eliminated 
and/or created, i.e., the mass balance is not preserved. 

In this study we propose an original link between solid mechanics and free surface flow fluid mechanics. We take 
advantage of the finite strain solid mechanics for hyperelastic materials and its tensor algebra, Flory’s decomposition 
(Flory (1961)), to propose a total Lagrangian formulation covering both Kelvin-Voigt-like viscoelastic solids and viscous 
fluids. When simulating fluids, the proposed formulation is limited to isothermal-compressible-viscous free-surface flows 
with finite distortions and free of topological changes (no surface break and no fluid-fluid surface contact). The resulting 
constitutive law is implemented in a total Lagrangian positional FEM code integrally developed in the Structural 
Engineering Department of the University of São Paulo. As it is a solid-based computational code, it is important to 
mention that the local viscous time derivatives are solved by backward finite difference, making possible to write a 
consistent tangent viscoelastic constitutive tensor. Time integration is carried out by the Newmark β  method and the 
Newton-Raphson procedure is used to implicitly solve time steps. It is important to mention that the positional FEM has 
been developed and published originally in Coda (2003) and applied in various structural subjects as: flexible multi-body 
dynamics in Coda and Greco (2006), geometrical non linear analysis of shells in Coda and Paccola (2008), inflatable 
structures in Coda (2009), 3D frames in Coda and Paccola (2011), inverse problems in Coda (2015), in aero space 
structures in Siqueira and Coda (2019) and finite elastoplasticity in Coda (2021). There are three main advantages of 
using positional FEM, in order of importance: (i) the use of unconstrained vectors to substitute finite rotations in 3D 
frame and shell analyses, (ii) the natural presence of a numerical chain rule that facilitates the mapping of geometrical 
nonlinearities and (iii) as the resulting formulation is total Lagrangian the mass matrix is constant and the time integration 
can be done in the same way of geometrical linear dynamic analysis. 

This work is organized as follows: Item 2.1 describes the weak form of the equilibrium equations, valid for both solid 
and fluids, detaching the total stress that will be considered for both solid and fluid constitutive models. In item 2.2 we 
describe the adopted hyperelastic constitutive equations emphasizing the uncoupled strain directions. In item 2.3 the 
dissipative viscous virtual work is written regarding the time rate of isochoric invariants and both the viscous stress and 
the tangent viscoelastic constitutive tensor are derived. Section 3 describes the steps to implement the positional FEM 
computational code. In section 4 low-compressible flows and Kelvin-Voigt-like visco-hyperelastic examples are used to 
validate the proposed model and to illustrate its possibilities. Acknowledgements and conclusions are given in sections 
5 and 6, respectively. 

2 DEVELOPMENTS – CONSTITUTIVE MODEL CONCEPTUALIZATION 

This section introduces the original Lagrangian finite strain viscous model to be employed in solids and fluids 
applications. In order to do so, we divide the developments into 3 topics, the first introduces the Lagrangian weak 
equilibrium (movement) equations detaching its continuum mechanics characteristics, the second introduces the 
meaning of uncoupled (volumetric and isochorics) Lagrangian strain directions and the third topic presents the viscous 
constitutive model we seek. 

2.1 Equilibrium equations – Strong and weak forms 

Starting from the Eulerian local (strong) equilibrium equations, we write the weak form of the equilibrium equations 
in its Lagrangian version and in a suitable shape for modeling continuum problems by the positional FEM. 

The movement equations in the Eulerian description, see for instance Ogden (1984), are written using the Cauchy 
stress tensor as: 

T b yρ∇⋅ + =




σ  (1) 

and 

T=σ σ  (2) 
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in which iy  is a position of a particle inside the continuum, ijσ  is the Cauchy stress component acting on plane i  in the 

direction j , ρ  is the mass density, iy  is the particle acceleration following direction i  (material derivative of velocity) 

and ib  is the i th−  body force component. Eq. (2) corresponds to the 3 equilibrium equations in moment that are 
satisfied for static and dynamic problems by the symmetry of the stress tensor (Ogden(1984)). Eq. (1) contains the 3 
translation equilibrium equations in its strong (local) form. 

There are many ways to achieve the weak form of Eq. (1), preparing it to FEM implementation. Here, we apply the 
virtual work concept by the following scalar product, 

( )T 0w b y yδ ρ δ= ∇ ⋅ + − ⋅ =






σ
 (3) 

in which iyδ  is a variation of positions iy . 
Integrating Eq. (3) over the spatial domain, the virtual work is written as: 

( )T d 0
V

W b y y Vδ ρ δ= ∇ ⋅ + − ⋅ =∫






σ
 (4) 

and, by distributing the integral, one gets: 

( )Td d d 0
V V V

y y V b y V y Vρ δ δ δ⋅ − ⋅ − ∇ ⋅ ⋅ =∫ ∫ ∫




  

 σ
 (5) 

In order to deal with the last term of Eq. (5), we use the following property: 

( ) ( ) ( )T T T :y y yδ δ δ∇ ⋅ ⋅ = ∇ ⋅ − ∇
  

σ σ σ
 (6) 

Replacing Eq. (6) in the last term of Eq. (5), and applying the divergence theorem, one writes: 

T Td d : ( )d 0
V V S V

W y y dV b y V y n S y Vδ ρ δ δ δ δ= ⋅ − ⋅ − ⋅ ⋅ + ∇ =∫ ∫ ∫ ∫




    

 σ σ
 (7) 

where jn  is the j th−  component of the normal unity vector to the current surface S  of the analyzed continuum. 

Recalling the Cauchy formula, i ji jh nσ=  (in which ih  is the distributed force over the Neumann boundary), and taking 

into account the stress tensor symmetry, we write: 

d d : d 0
V V S V

W y y dV b y V h y S Vδ ρ δ δ δ δε= ⋅ − ⋅ − ⋅ + =∫ ∫ ∫ ∫
 



  

 σ
 (8) 

with , ,( ) / 2ij i j j iy yδε δ δ= +  being a variation of real strain (measured in Eulerian reference), which is mostly known 

in its rate version , ,( ) / 2ij i j j iy yε = +    (Ogden(1984) ).Grouping terms of Eq. (8) one has: 

W K Pδ δ δ δΨ= + +  (9) 

in which K  is the kinetic energy, P  is the external force potential and Ψ  is the Helmholtz free energy (Ogden(1984)) 
for isothermal states that includes, in this study, the specific strain energy and viscous dissipation. Moreover, Eq. (8) is 
the weak form of the equilibrium equation for the continuum media in the Eulerian reference. 
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To obtain the Lagrangian description of Equation (8), the continuity theorem is applied to the first term of Eq. (8), 

0
0 0. d d

V V
y y V y y Vρ δ ρ δ= ⋅∫ ∫
 

 

 

 (10) 

and volume forces are considered proportional to density, 

0
0 0d d d

V V V
b y V g y V g y Vδ ρ δ ρ δ⋅ = ⋅ = ⋅∫ ∫ ∫


    

 (11) 

In equations (10) and (11) we use the well known property 0 / Jρ ρ=  in which 0d / dJ V V=  is the determinant 
of the deformation gradient defined in what follows. In this work, we consider that tractions over Neumann boundary 
are conservative forces. Cauchy stress tensor σ , second Piola-Kirchhoff stress tensor S , real strain variation δε  and 
Green strain variation Eδ  (energetically conjugate to the second Piola-Kirchhoff stress), are related by (Ogden(1984) 
and Bonet and Wood (1997)): 

T1
J

= ASAσ  and : :Sδ δ= Eσ ε  (12) 

in which ijA  is the deformation gradient as usually given in finite strain elasticity, J  is its determinant and the Green 

strain is defined as ( ) / 2 ( ) / 2t= − = −E A A I C I  with T=C A A  being the Cauchy-Green stretch. 
From Equations (11) and (12), the week form of the equilibrium equation in the Lagrangian description is written 

as: 

0 0 0 0

0
0 0 0 0 0d d : d 0

V V S V
W y y dV b y V h y S Vδ ρ δ δ δ δ= ⋅ − ⋅ − ⋅ + =∫ ∫ ∫ ∫ S E

 


  



 (13) 

Eq. (13) will be recalled in section 3 to define the FEM formulation, in this study using positions as parameters. It is 
interesting to advance that the proposed viscous modeling will compose the total stress S  together with the 
hyperelastic stress. 

2.2 Hyperelastic constitutive law and Lagrangian uncoupled strain directions 

In this topic we describe the multiplicative decomposition of the deformation gradient due to Flory (1961) and, from 
its result; we introduce the Lagrangian uncoupled strain directions that allows the definition of the proposed viscous 
model. We also state the adopted hyperelastic part of the complete model. 

Cauchy-Green stretch decomposition 

Adopting the Green strain as reference, one writes the variation of the Helmholtz free energy of Eq. (9) as: 

:ψδψ δ∂
=
∂

E
E

 with ψ∂
=

∂
S

E
 (14) 

In hyperasticity it is a current procedure to split the Helmholtz free energy (strain energy in this topic) in two parts, 
volumetric and isochoric, as follows: 

( ) ( )1 1 2 2ˆ( ) ( ) ( )vol iso isoI Iψ ψ ψ ψ= + +C C C  (15) 



Large strain Flory’s decomposition for Lagrangian modeling of viscoleastic solids and compressive fluids Renato Takeo Kishino et al. 

Latin American Journal of Solids and Structures, 2022, 19(4), e449 6/37 

whose parameters are the volumetric Ĉ  and isochoric C  parts of the Cauchy-Green stretch tensor C . It is worth 

noting that 
1isoψ  and 

2isoψ  are written, respectively, as a function of the first and second invariants of the isochoric part 
of the Cauchy-Green stretch tensor. The volumetric Ĉ  and isochoric C  parts of the Cauchy-Green stretch tensor are 
achieved applying the Flory’s decomposition over the deformation gradient A  (see Eq. (12)), as follows: 

ˆ=A AA  (16) 

with 

( )1/3ˆ ˆdetJ J= ⇒ =A I A  (17) 

( )1/3 det 1J −= ⇒ =A A A  (18) 

Using the shape of Eq. (16) and taking advantage of the definitions given by Eqs. (17) and (18), we calculate the 
Cauchy-Green stretch as: 

T 2/3 T 2/3J J= = =C A A A A C  or inversely 2/3J −=A C  (19) 

resulting ( ) 1Det =C , constant. 
Defining 

T 2/3ˆ ˆ ˆ J= =C A A I , (20) 

results in the desired multiplicative decomposition applied to the Cauchy-Green stretch tensor as: 

ˆ ˆ= ⋅ = ⋅C C C C C  (21) 

One may observe that 
2ˆdet( ) det( )J= =C C . From C  and Ĉ  one writes and improves various hyperelastic 

constitutive models, see for instance Rivlin and Saunders (1951), Bonet and Wood (1997), Düster et al. (2003), Hartmann 
and Neff (2003). 

Lagrangian finite strain directions definition 

The definition and understanding of the Lagrangian finite strain directions (volumetric and isochorics) start by the 
analysis of the derivative of parts of the hyperelastic Helmholtz free energy (Eq. (15)) regarding the Green-Lagrange 
strain. 

Observing Equation (20) and comments after Equation (21), the volumetric elastic part of the Helmholtz free energy 
potential (Eq. (15) is written as an exclusive function of the Jacobian of the deformation function, as: 

( ) ( )ˆdet( )vol vol vol
elas elas elasJψ ψ ψ= = C  (22) 

from which one calculates the corresponding second Piola-Kirchhoff stress as: 

vol vol
vol volelas elas
elas

JS
J

ψ ψ
α

∂ ∂ ∂
= = =

∂ ∂ ∂E E
E  (23) 
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with /vol
elas Jα ψ= ∂ ∂  being a scalar and volE  a symmetric tensor of the same order of the Green strain. It is simple to 

show that: 

1vol J J −∂
= =
∂

C
E

E  (24) 

Applying the first part of Eq. (12) over the second Piola-Kirchhoff stress of Eq. (23) (pulling forward) results in: 

T 1 T1 1vol vol
elas elas hydJ

J J
α α−= = = =AS A AC A Iσ σ , (25) 

which means that volE  is the Lagrangian strain direction corresponding to the hydrostatic stress in the Cauchy space 

and /vol
elas Jα ψ= ∂ ∂  corresponds to the hydrostatic second Piola-Kirchhoff stress intensity. The identification of the 

Lagrangian hydrostatic stress 
vol
elasS  and the corresponding strain direction volE  is important to define the proposed 

viscous model. 
The first isochoric elastic part of the Helmholtz free energy potential is written as an exclusive function of the first 

invariant ( 1I ) of the isochoric part of the Cauchy-Green stretch tensor C  as: 

( )1 1
1

iso iso
elas elas Iψ ψ= , (26) 

from which one calculates the corresponding second Piola-Kirchhoff stress as: 

1
1 11

1

iso
iso isoelas
elas

IS
I

ψ β∂ ∂
= =

∂ ∂E
E  (27) 

where β  is a scalar and 1isoE  is a symmetric tensor of the same order of the Green strain. Opening 1I  one writes: 

( ) ( )( )2/3
1 1

trtriso
JI −∂∂∂

= = =
∂ ∂ ∂

CC
E E E

E  (28) 

from which one finds: 

1 2/3 1 2/32 tr( ) 2
3

iso J J I− − −= − +C CE  (29) 

Considering Eq. (29) and applying the transformation (12) over Eq. (27) one finds: 

( )T
5/3

1

tr
2

3
t

iso Jβ −
    = −     

A A
AA Iσ  (30) 

As ( )T T T Ttr : : tr( )= = =A A A A A A AA , one concludes that isoσ  is a deviatory devσ  stress, i.e.: 
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( )T
5/3 T

1

tr
2

3iso devJβ σ−
    = − =     

AA
AA Iσ  (31) 

which means that 1 1 1/ :iso iso isoE E E  is the first isochoric Lagrangian strain direction corresponding to a deviatory 

strain, and ( )1 1 1
1/ :iso iso iso

elas Iβ ψ= ∂ ∂ E E  is the associated second Piola-Kirchhoff stress intensity. 

The second isochoric elastic part of the Helmholtz free energy potential is written as an exclusive function of the 

second invariant of the isochoric Cauchy-Green stretch tensor 2I  as: 

( )2 2
2

iso iso
elas elas Iψ ψ=  (32) 

from which we calculate the corresponding second Piola-Kirchhoff stress as: 

2
2 22

2

iso
iso isoelas
elas

IS
I

ψ γ∂ ∂
= =

∂ ∂E
E  (33) 

with γ  and 2isoE being respectively a scalar and a symmetric tensor of the same order as the Green-Lagrange strain 
tensor. It is interesting to write: 

( ) ( ) ( ){ }4/3 4/3
2 2 11 22 12 21 11 33 13 31 22 33 23 32I J I J C C C C C C C C C C C C− −= = − + − + −  (34) 

in which 2I  is the second invariant of the Cauchy stretch. With some algebraic effort over Eq. (34), results: 

{ }2 4/3 1 T2
2

22 tr( )
3

iso I J I− −∂  = = − + − ∂  
C C I C

E
E  (35) 

Using Eq. (12) over Eq. (33) and considering Eq. (35), one writes: 

( ) ( )( )( )7/3 T T T
2 2

22 tr( )
3iso J Iγ −   = − −     

C AA AA AA Iσ  (36) 

Again, as ( ) ( ) ( )T Ttr trtr = =C A A AA , results: 

T T T T
2tr( ) tr( ) tr(( )( )) 2I− =AA AA AA AA  (37) 

From Equation (36), using Eq. (37), one calculates, 

( ) ( )7/3
2 2 2tr 2 2 2 0iso J I Iγ −= − =σ  (38) 

thus: 

2iso dev=σ σ  (39) 
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In equation (39) one concludes that 2isoσ  is deviatory and, thus 2 2 2/ :iso iso isoE E E  is the second isochoric 

Lagrangian strain direction, and ( )2 2 2
2/ :iso iso iso

elas Iγ ψ= ∂ ∂ E E  is the intensity of the second deviatory Piola-

Kirchhoff stress. Thus, volE , 1 1 1/ :iso iso isoE E E  and 2 2 2/ :iso iso isoE E E  are the Lagrangian version of 
hydrostatic, deviatory 1 and deviatory 2 uncoupled finite strain directions. 

The adopted Hyperelastic part of the model 

We chose a Rivlin-Saunders-Düster-Hartmann type hyperelastic constitutive model, Rivlin and Saunders (1951) and 
Düster et al. (2003), i.e.: 

( )2 2
2 2

8
n n

vol
K J J
n

ψ −= + −  (40) 

and 

( ) ( )1 2 1 23 3
4 4iso iso
G GI Iψ ψ+ = − + −  (41) 

In which K  is the bulk modulus, G  is the transversal elastic modulus and 0n ≠  is an integer. Other hyperelastic 
potentials that respect the volumetric and isochoric split can also be chosen. 

Differentiating equations (40) and (41) with respect to Green strain, using information and results of equations (15), 
(23), (27) and (33), we find the second Piola-Kirchhoff elastic stress as: 

( )3 1 2

4 4 4
vol iso iso

elas
K G GS J J − = − + + 

 
E E E  (42) 

in which 1n =  is adopted here. 

2.3 Proposed simple Kelvin-Voigt-like solids constitutive model including viscous fluids Lagrangian modeling 

Let us consider the Helmholtz free energy (scalar) written as the sum of two parts, one hyperelastic (Equation(42)) 
and another viscous. This sum can only be represented in its differential form (Lánczos (1970) and Sanches and Coda HB 
(2013)), as there is not an explicit representation for dissipation, i.e.: 

1 2 1 2: : : : : :vol iso iso vol iso iso
elas vis elas elas elas vis vis visδψ δψ δψ δ δ δ δ δ δ= + = + + + + +S E S E S E S E S E S E  (43) 

or, splitting 

( )
1 2

1 2: : : : :
vol iso iso

vol iso isoelas elas elas
elas vis vis vis vis

ψ ψ ψδ δ δ δ δ
 ∂ ∂ ∂

= + = + + + + + ∂ ∂ ∂ 
S E S E S E E S S S E

E E E
 (44) 

in which the elastic stress components are given by Eq. (42) from the definition given in the second of Eqs. (14) and the 
steps described by Eqs. (23), (27) and (33). 

The primary idea to write the viscous stress is to make an analogous of the hyperelastic relation (Eq. (42)) to 
incorporate viscosity assuming that the time rate of the split strain directions would suite a constitutive relation, i.e.: 

* 1 2: :
4 4 4

vol iso iso
vis vis

K G GSδψ δ δ
 

= = + + 
 

E E  E E E  (45) 
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However, contrary to small strains (Mesquita and Coda (2007a) and Mesquita and Coda (2007b)), the time 

derivatives of volumetric and isochoric finite strain directions do not preserve direction. Thus, 
*
visS  serves only as an 

inspiration to the following developments. 
Inspired in Eqs. (40,41,42,45)))))))) in order to keep isotropy, the viscous virtual work should be written regarding 

the proper scalar variables with their variations expanded to comprise strains, i.e., / :J J E Eδ δ= ∂ ∂  and 

/ :i iI Iδ δ= ∂ ∂E E . This is done by: 

1 2

( )

( ) ( )

1 11 1 1 2 2
1 1 1 2 2 21 1 2 2

4 : 4 :

:
4 : 4 : 4 :

i i
ivol vol iso i iso i

vol vol iso iso iso iso

G dIK dJ J I
dt dt

G I G IK JJ J I I I I

γα

γ γα

δψ δ δ

α γ γ δ− −−

= + =

 ∂ ∂∂
= + + ∂ ∂ ∂ 

E
E E E

 



E E E E

E E E E E E

 (46) 

From Eq. (46) and Eqs. (24), (29) and (35) the following expression for the second Piola-Kirchhoff viscous stress is 
written, 

1 21 11 21
1 1 1 1 2 2 2 2

1 1 2 24 4 4: : :

iso isovol

vis vol vol iso iso iso iso

G I I G I IK J JS
γ γα γ γα − −−

= + +
 

 E EE

E E E E E E
 (47) 

in which K  is the fluid volumetric viscosity Holmes et al. (2011) and iG  are shear (isochoric directions 1 and 2) 

viscosities and volE , 1isoE  and 2isoE  are strain directions. In order to be coherent with the elasticity understanding we 

assume 1 2G G G= = . Adopting the viscous parameters 1 2 1/ 2γ γ= =  and 0K =  one reproduces Newtonian fluids 
and a simple Kelvin-Voigt visco-hyperelasticity. Notice that, as time strain rates are written as function of dimensionless 

scalars (strain invariants), the values of α  and iγ  can be investigated for different viscous behavior. When these 
parameters are null, logarithm viscosity is assumed. The investigation of the fluid behavior regarding different choices of 

α  and iγ  is out of this study objectives; however some inspections are made in example 4.5. 
In short, Eq. (44) becomes: 

( ): :elas visδ δ= +S E S S E  or elas vis= +S S S  (48) 

For fluids, when calculating elasS  only the volumetric part of Eq. (42) is considered, i.e. 0G = . When modeling 

elastic solids 0G ≠  and 0K ≠  but 0G K= = . For viscoelastic solids all elastic and viscous constants are taken into 
account. Moreover, it is important to note that the volumetric viscosity is disregarded 0K =  unless for specific cases 
Holmes et al. (2011). 

To define the numerical solution procedure (in the next item) it is necessary to know the viscoelastic tangent 
constitutive tensor, given by: 

elas vis
elas vis

∂ ∂∂
= = + = +
∂ ∂ ∂

S SS
E E E

C C N  (49) 

The first term can be calculated as: 

2
1 2vol iso iso elas

elas
Ψ∂

= + + =
∂ ⊗∂E E

C C C C  (50) 
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with 

2 2 2

2
vol vol vol volJ J J

J J
Ψ Ψ Ψ∂ ∂ ∂∂ ∂ ∂

= = ⊗ +
∂ ⊗∂ ∂ ∂ ∂ ∂ ∂ ⊗∂E E E E E E

C  (51) 

( )
2 2 1 1 2

1 1 1 1 1
2

11

iso iso iso isoI I I
II

Ψ Ψ Ψ∂ ∂ ∂∂ ∂ ∂
= = ⊗ +
∂ ⊗∂ ∂ ∂ ∂ ∂ ⊗∂∂E E E E E E

C  (52) 

( )
2 2 2 2 2

2 2 2 2 2
2

22

iso iso iso isoI I I
II

Ψ Ψ Ψ∂ ∂ ∂∂ ∂ ∂
= = ⊗ +
∂ ⊗∂ ∂ ∂ ∂ ∂ ⊗∂∂E E E E E E

C  (53) 

in which /J∂ ∂E  is given by Eq. (24), 1 /I∂ ∂E  is given by Eq. (29), 2 /I∂ ∂E  is given by Eq. (35) and the other terms are 
given, as: 

( )
2

4
2 1 3

4
vol K J

J
Ψ −∂

= +
∂

 (54) 

{ }
2

2
vol
j

j oz jo z
j oz oz

J J D D D D
E E E

γ
γ γ

γ

∂∂
= − =

∂ ∂ ∂

E
 (55) 

{ }
12

2/31
1

4 1 3
3 3

iso
ij

ij k ik j ij k k ij
ij k k

I J D D D D I D D
E E E

δ δ− ∂∂  = + − − = ∂ ∂ ∂ 
   

 

E
 (56) 

and 

( ) 22 2
4/32

2
8 3
3 3

2

isoij k ik j zz ij k k ij
ij

ij k k
ij k k ij ij k jk i

D D D D I C D D
I J

E E E
D C D C

δ δ

δ δ δ δ

−

    + − + +     ∂∂   = = ∂ ∂ ∂  + + + −   

   

 

   

E
 (57) 

in which 1
ij ijD C−= . One may note that in this model ( )22 1

1/ 0iso IΨ∂ ∂ =  and ( )22 2
2/ 0iso IΨ∂ ∂ = . 

As the goal of this study is to give a numerical solution for both fluids and solids, we approximate the strain invariant 
rates in Eq. (47) by backward finite difference (usual in fluid mechanics), instead of using backward-Euler stress 
integration (usual in solid mechanics) so that: 

( ) ( ) ( ) ( )
1 2

1 1 2 21 11 1 21 1 11 2
1 1 1( 1) 2 2( 1)4 4 4

vol iso isos s s s s s
vis s s s

I I I IJ J G GK J I I
t t t

γ γαα γ γ
∆ ∆ ∆

− −− + + +
+ + +

   − −−     = + +          
S E E E  (58) 

Differentiating Eq. (58) regarding current strain (implicit method), it results the following numeric tangent 
constitutive tensor at the current time ( 1s + ): 
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1 1

2 2

2
2 1

2
12 1 11 1

1 1 1 1

2
12 2 22 2

2 2 2 2

4

4

4

vis vol volvis

iso iso

iso iso

K JJ J
t

G II I
t

G II I
t

α α

γ γ

γ γ

α α
∆

γ γ
∆

γ γ
∆

−

−

−

 ∂ ∂
= = ⊗ + + ∂ ∂ ⊗∂ 
 ∂

+ ⊗ + + ∂ ⊗∂ 
 ∂

+ ⊗ + ∂ ⊗∂ 

S
E E E

E E

E E

N E E

E E

E E

 (59) 

Notice that terms related to the past (of Eq. (58)) do not appear in Eq. (59) as they are constant. Substituting volE , 
1isoE  and 2isoE  by their respective definitions (24), (29) and (35), and using index notation, it results: 

1 1

1 2

2
2 1

2
12 1 1 1

1 1 1 1 1

2
12 2 2 2

2 2 2 2 2

1
4

vis
ijk

ij k ij k

ij k ij k

ij k ij k

J J JK J J
t E E E E

I I IG I I
E E E E

I I IG I I
E E E E

α α

γ γ

γ γ

α α
∆

γ γ

γ γ

−

−

−

  ∂ ∂ ∂ = + +   ∂ ∂ ∂ ∂   
 ∂ ∂ ∂

+ + +  ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ + +  ∂ ∂ ∂ ∂  



 

 

 

N

 (60) 

in which, for simplicity, the current time is not indicated. 

3 BRIEF DESCRIPTION OF THE IMPLEMENTED POSITIONAL FEM 

Position-based FEM has been used by the authors in several applications, see Coda (2015), Coda HB and Paccola 
(2011) and Pascon and Coda (2013) for instance. The difference between this alternative and the classic FEM is the 
adoption of positions as nodal parameters instead of displacements making solid mechanics description more compact 
and direct. This gives to the technique a simple association with geometric nonlinear problems of deformable solids that 
is easily extended here to model low-compressible free-surface flows. 

Firstly, one chooses the nodal positions Y


 as the analysis parameters, thus the continuum position and 
acceleration are represented by: 

y Y= ⋅


 φ  (61) 

y Y= ⋅






 φ  (62) 

in which φ  are usual FEM shape functions. Volume and surface forces, if desired, can be approximated by their nodal 
values, as: 

0 0b B= ⋅




φ  (63) 

and 

h P= ⋅




ϕ  (64) 
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where ϕ  are surface shape functions. 
The strain variation δE  should also be given as a function of position variation Yδ



, as: 

Y
Y

δ δ∂
= ⋅
∂
EE



  (65) 

Introducing such changes and considereing Eq. (48), the weak form of the equilibrium Eq. (13) becomes: 

( )
0 0 0 0

0
0 0 0 0 0d d d : d 0elas visV V S V

V Y V B S P S S V Y
Y

ρ δ∂ ⊗ ⋅ − ⊗ ⋅ − ⊗ ⋅ + + ⋅ = ∂ ∫ ∫ ∫ ∫
E

  



φ φ φ φ ϕ ϕ  (66) 

As the nodal position variation Yδ


 is arbitrary, Eq. (66) turns into the following nonlinear system of equations: 

0ext intY F F⋅ − + =


 

M  (67) 

in which the last term of Eq. (66) has been called internal force and its (nonlinear) calculation is clarified in the definition 
of the finite element kinematics. Concentrated external loads can be applied directly in extF



. 
In this study, the continuum (fluids and solids) is discretized by triangular-base prismatic three-dimensional finite 

elements with linear or cubic approximations in their base directions ( 1 2,ξ ξ ), and any order of approximation along its 

thickness direction ( 3ξ ). Fig. 1 shows a finite element with linear approximation at 3ξ  direction and cubic approximation 

at 1ξ  and 2ξ  directions. 

 
Fig. 1: Deformation function described by prismatic elements 

The position based kinematics description is given in a brief way as more details can be seen in references Sanches 
and Coda (2013), Coda (2015), Coda HB and Paccola (2011) and Pascon and Coda (2013) for instance. In Fig. 1 one 

observes that the initial configuration mapping describes the initial coordinates of continuous points ix  as a function of 

the dimensionless coordinates iξ  and of the initial coordinates iXα  of nodes α . Similarly, current continuum 
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coordinates iy  are written as function of the same dimensionless coordinates and current nodal coordinates (unknown 

of the problem) iYα . These mappings are represented in index notation as: 

( )0
i i if x Xα αφ ξ= =



 and ( )1
i i if y Yα αφ ξ= =



 (68) 

in which the last one is an index version of Eq. (61). The gradients of these mappings are given by: 

0 i
ij

j

xA
ξ
∂

=
∂

 and 1 i
ij

j

yA
ξ
∂

=
∂

 (69) 

Thus, the gradient A  of the deformation function f


 (see Equations (12) and (16)) is given by: 

( )-11 0=A A A  (70) 

Eq. (70) is numerically written at each integration point for a trial position Y


 covering all nodes of the problem. As the 
formulation is total Lagrangian, one may observe that the gradient of the initial configuration mapping 0A  is calculated 
only once in the numerical process. Moreover, it is clear the dependence of A  regarding Y



. 
After calculating the deformation gradient A , one calculates the Cauchy-Green stretch tensor and the Green strain 

as: 

T=C A A  and ( )1 -
2

=E C I  (71) 

Using the equations of the previous sections, all necessary variables, such as volE , 1isoE , 2isoE , J , 1I
  and 2I , 

can be numerically calculated at each integration point of Eq. (66) or Eq. (67) and are function of nodal positions Y


. 
Eq. (67) is valid at any instant and, in the numerical process; the current instant is written as the previous instant 

plus a time step, as: 

1s st t t+ = + ∆  (72) 

in which 1st +  is the current instant. Thus, one writes Eq. (67) as: 

( )1 1 1 1 1 1 0ext vis elas
s s s s s sg Y Y F F F+ + + + + += ⋅ + ⋅ − + + =

 

  



 M C  (73) 

in which, for simplicity, time t  is omitted and the internal force is split in elastic and viscous parts. For completeness, a 
damping matrix C  is also included; following usual solid mechanic works Coda (2015). 

As the formulation is total Lagrangian (constant mass matrix), we adopted the Newmark approximation to perform 
the time marching, written as: 

2
1 1

1
2s s s s sY Y Y t Y Y tβ β+ +

  = + ∆ + − + ∆    

  

 

    (74) 

( )1 11s s s sY Y t Y t Yγ γ+ += + − ∆ + ∆
   

     (75) 



Large strain Flory’s decomposition for Lagrangian modeling of viscoleastic solids and compressive fluids Renato Takeo Kishino et al. 

Latin American Journal of Solids and Structures, 2022, 19(4), e449 15/37 

in which β  and γ  are free parameters, generally adopted as 1/ 4β =  and 1/ 2γ = . 
Isolating the current velocity and the current acceleration from Eqs. (74) and (75), results: 

1
1 2

s
s s

YY Q
tβ
+

+ = −
∆







  (76) 

and 

1 1s s s sY Y R tQ
t

γ γ
β+ += + − ∆
∆

  

  (77) 

with the following auxiliary values: 

2

1 1
2

s s
s s

Y YQ Y
t tβ β β

  
 = + + −  ∆ ∆   

 





  and ( )1s s sR Y t Yγ = + ∆ −  
  

 

 (78) 

Substituting Eqs. (76) and (77) into (73), results: 

( )1 1 1 1 1 12 + ( ) 0elas vis ext
s s s s s s s s sg Y F F Y Q Y R t Q F t

t t
γ γ

β β+ + + + + += + + − ⋅ ⋅ + ⋅ − ∆ ⋅ − =
∆ ∆

        

 M CM C C  (79) 

Eq. (79) is understood simply as ( )1 0sg Y + =


 , revealing the nonlinear behavior of equilibrium equations regarding 

( )1sY +



, solved in this work by the Newton Raphson method. 

Following previous works Coda (2015), Coda HB and Paccola (2011) and Pascon and Coda (2013), using a truncated 
Taylor expansion, we have: 

( ) ( )0 0
1 1 10 s s sg(Y ) g Y g Y Y+ + += ≅ +∇ ∆

    

    (80) 

where 

( )1 2
1 1

elas vis
vis dyn

s
s s

F Fg Y
t tY Y

γ
β β+

+ +

 ∂ ∂
∇ = = + + + = + + ∆ ∆∂ ∂  

 





 

elasM CH H H H  (81) 

with elasH  and dinH  being, respectively, the elastic and dynamic parts of the Hessian matrix. The viscous term visH  is 
an original expression introduced in this study and is a key value in the total Lagrangian isothermal fluid model and simple 
viscoelastic model proposed here, see Eq. (90). 

From Eq. (80), we write the linear system of equation from which the position correction Y∆


 is achieved as: 

( ) ( )0 0
1 1s sg Y Y g Y+ +∇ ⋅∆ = −

  

   or ( )0
1sY g Y +∆ = −⋅

 

H  (82) 

in which 0
1sY +



 is a trial position. In the beginning of a time step 0
1sY +



 is assumed as the result of the previous step, i.e., sY


 

and at the end of the time step 0
1sY +



 becomes the accepted solution 1sY +



. Solving the correction Y∆


 in Eq. (82), a new 

trial for 1sY +



 is calculated as: 
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0 0
1 1s sY Y Y+ += + ∆

  

 (83) 

At the beginning of each iteration, acceleration and velocity should be recalculated as: 

0
1

1 2
s

s S
YY Q

tβ
+

+ = −
∆







  and 0
1 1s s s sY Y R tQ

t
γ γ
β+ += + − ∆
∆

  

  (84) 

As sQ


 and sR


 are values of the past, they remain unaltered during iterations. The stopping test is given by: 

0

ext

g(Y )
TOL

F
≤







 or 
Y

TOL
X

∆
≤



  (85) 

in which TOL  is the prescribed numerical tolerance. 
At the first time step, the initial acceleration is calculated by the dynamic equilibrium equation as: 

1
0 0 0

ext elas visY M F F F Y−  = − − − ⋅  

 

  

 C  (86) 

The elastic and viscous parts of Hessian matrix are derived for each finite element from the derivative of Eq. (73) 
(see Eq. (81)) regarding the current position vector, as: 

0 0

2

0 0: : : :
elas

elas elas elas elas
V V

F dV dV
Y Y Y Y Y Y Y

ψ ψ ψ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ = = = +  ∂ ∂ ⊗∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ⊗∂   
∫ ∫

E E E E
E E E E



      H  (87) 

0 0
0 0: : : :

vis
vis vis

vis visV V

SF S dV dV
Y Y Y Y Y Y Y

∂∂ ∂ ∂ ∂ ∂ ∂  = = = +   ∂∂ ∂ ∂ ∂ ∂ ∂ ⊗∂   ∫ ∫
E E E ES

E



      H  (88) 

or 

0

2

0: : :elas
elasV

dV
Y Y Y Y

 ∂ ∂ ∂
= + ∂ ∂ ∂ ⊗∂ 
∫

E E ES   CH  (89) 

0

2

0: : :vis
visV

dV
Y Y Y Y

 ∂ ∂ ∂
= + ∂ ∂ ∂ ⊗∂ 
∫

E E ES   NH  (90) 

in which elasS  and C  are given by Eqs. (42) and (50), and visS  and N  are given by Eqs. (58) and (59). 
As mentioned after equation (48), the difference between solid and fluids is defined by the assumed elastic and 

viscous constants, i.e.: with the proposed formulation one is able to model (in an isothermal way) both elastic solids, 
viscoelastic Kelvin-like solids, and compressive viscous fluids. 

4 NUMERICAL EXAMPLES 

In this section, we present some selected examples to verify the proposed formulation and to explore some of its 
possibilities. As fluid results are more easily compared with literature 2D solutions, only one 3D qualitative fluid example 
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is presented. After validating the finite strain viscous behavior in 2D fluid analysis, for solid applications, we use three 
simple 3D examples. 

In most cases we adopt 1 2 1/ 2γ γ= =  for shear viscosity. , In order to measure iγ  qualitative influence, other 

parameters are also tested in the 3D fluid example. In all fluid examples 71x10TOL −=  is adopted together with a t∆  
sufficiently small to limit the number of iterations to 3. As expected, in fluid applications, limiting the number of iterations 
proved to produce faster processing time than adopting large time steps. For solid examples the same tolerance is 
adopted, but the number of iterations is not controlled. 

4.1 Dam rupture - fluid 

This problem is considered a benchmark to test free surface fluid flow solutions and is used to validate the numerical 
and physical results of the proposed formulation. It is based on the experimental work of Martin and Motce (1958), 
reproduced numerically by Nithiarasu (2005) using an ALE fluid formulation. The analyzed problem is a dam initially with 
width W  and height H , filled with fluid initially at rest. The dam suffers a subtle disrupt at the right wall (Gate), see Fig. 2. 
The geometric and physical dimensionles properties are taken as presented by Nithiarasu (2005): 0.35W = , 

0.70H = , 1g = , 1ρ = , 
310G µ −= = . As Nithiarasu (2005) treats the fluid as incompressible we adopted a high 

value for the bulk modulus ( 92.15x10K = ) to check the formulation overall behavior. 

 
Fig. 2 - Scheme of dam-rupture of Martin and Motce test (1958): (a) initial position; and (b) flow under open gate 

Fig. 3 shows the adopted meshes, with number of nodes and element order. The elements are 3D prismatic with 
unitary thickness and linear approximation in this direction. Both, vertical and horizontal walls are slip walls and the 
adopted time step is 42.5x10− , no dimensions are given by reference. The analysis is carried out using 6700 time steps 
with the maximum of 3 iterations at each step. 

 
Fig. 3 - FE meshes for dam-rupture model: (a) 38 cubic elements; (b) 324 cubic elements; (c) 392 cubic elements; and (d) 3004 linear 

elements. 
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In a first analysis stage, with the intact reservoir, the water is allowed to conform to meet the initial hydrostatic 
stress distribution. In the second stage, the right side wall (gate) is instantly removed and the fluid is free to flow. We 
compare the obtained results to the experimental values of Martin and Motce (1958), since the numerical results of 
Nithiarasu (2005) are practically coincident with ours, see Fig. 4. The dimensionless time used by the reference to make 

graphics is obtained by the conversion * 2 /t t g W= . 

 
Fig. 4 – Relative enlargement of the fluid base along time. 

As one can observe, the unstructured cubic approximation meshes present excellent results and practically coincide 
with the results presented by Nithiarasu (2005). The structured cubic approximation mesh also shows very good results, 
with a small reduction in total displacement noticed only for the poorest mesh. The unstructured mesh with linear 
approximation presents an excessive displacement due to element’s distortions. These distortions occur to ensure the 
nearly incompressible behavior, see Fig. 5. No regularization strategies are used for any of the presented results. 

 
Fig. 5 – Detail of FE mesh for dam-rupture using 3004 linear elements: (a) Initial position, (b) Final position 

Fig. 6, presents some snapshots for discretization 324-Cubic, with colors representing displacements, from 0 (red) 
to the maximum displacement at present instant (blue). 

 
Fig. 6 – Displacement fields of dam-rupture model using 392 cubic elements at different times: (a) * 0.896t = , (b) * 2.391t = , 

(c) * 4.183t = . 
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In Nithiarasu (2006), an erratum of Nithiarasu (2005), the author presents a very smooth pressure profile along time 
that can be reproduced by our formulation if a smaller bulk modulus is employed. Although this study is interested in 
proving the formulation capable of specific applications, the following reasoning is presented for general interest. 

For high bulk modulus our formulation exhibits, at the first time step 4( 2.5x10 )t∆ −= , after the instantaneous 
disrupt, a result (presented in Fig. 7 for discretization 392 – Cubic) that indicates the need of a smaller time step in order 
to verify the pressure wave propagation after a localized instantaneous pressure reduction. This pressure wave is 
volumetric and is also called sound wave. In Fig. 8, using a time step of 77.0x10t∆ −= , the pressure wave is detected by 
exhibiting the first 20 time steps of this analysis, being the first static. Remembering that the pressure wave velocity is 

calculated as 4/ 4.63x10pC K ρ= =  it is necessary approximately 10 time steps to the wave front goes through the 

horizontal distance. As expected, analyzing Fig. 8 the wave arrives at the left wall about the 11th snapshot, after which 
the reflections start. One may note that in Fig. 8 the color scale is different for each frame, that is, the pressure level is 
not the same for each presented time. 

 
Fig. 7 - Stress fields using 392 cubic elements (a) Static result – (b) Dynamic result at first time step ( 42.5x10t∆ −= ) 

 

Fig. 8 - Pressure wave propagation of dam-rupture model using 392 cubic elements for the first 20 time steps ( )77.0x10t∆ −= . 

Using this small time step and this high bulk modulus the numerical result of pressure wave disperses for the total 
time necessary to represent the “slow” dam flow, so we relaxed the bulk modulus value to 215K =  that keeps the low 
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compressibility of the fluid and ensure the stabilized pressure calculation. This procedure is justified by the artificial wave 
speed (directly related to an artificial compressibility) adopted in Nithiarasu (2005) to capture quasi static pressures in 
incompressible fluids. In Fig. 9 the achieved pressure profile is qualitatively compared with the one presented by 
Nithiarasu (2006) as the reference does not presents time or values. The signal of the pressure is negative because it is 
calculated here as in solid mechanics, i.e., the hydrostatic part of the stress tensor. 

 
Fig. 9 - Comparison of pressure profile of dam-rupture models: (a) Nithiarasu (2006); and (b) proposed model 

It should be noted that, since there is no shear wave in the fluid, when the bulk modulus is high, the time intervals 
required for the proper modeling of pressure waves and the overall movement of viscous fluids are very different. It is 
also noteworthy that the discretization with linear approximation did not present precise results in our formulation, see 
the end of example 4.3 for an attempt to a geometrical explanation. 

4.2 Solitary wave - fluid 

This example is used to validate our formulation in situations of difficult moving boundary situations. In this 
example, the propagation of a solitary wave in a water tank is studied. The adopted physical properties are (Nithiarasu 

(2005) and Sung et al. (2000)): 
31000kg / mρ = , 0.001Pa sG µ= =  and 2.15GPaK = . The problem consists of 

water confined between three smooth walls, with free surface in the top, as shown in Fig. 10. The adopted dimensions 
for the numerical analysis are (Nithiarasu (2005) and Sung et al. (2000)): 16.0m= , 0.3mH =  and 1.0md = . 

 
Fig. 10 - Scheme of solitary wave model of Laitone (1960) 

The tank thickness is 1m  and the adopted gravity acceleration is 
29.8m / sg = . Initial conditions are calculated 

based on the analytical solutions given by Laitone (1960) for 0st = , i.e.: 
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And introduced directly in equations (78) for 0s = . 
It is important to mention that the initial shape of the solitary wave is given by: 
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In this work, it is prescribed a volumetric force of yb gρ=  that is responsible to develop the gravity pressure. We 

adopt 0.01t s∆ =  and two FEM meshes with cubic approximation, see Figs. 11a and 11b. 

 
Fig. 11 - FE meshes of solitary wave model: (a) coarse (64 cubic elements), (b) fine (138 cubic elements); and linear (414 linear 

elements). 

Fig. 12 shows the vertical displacement of the upper right and left points for the two discretizations, without 

considering surface tension. Fig. 13 shows the effect of the water surface tension ( 0,072 /st N m= ) using the richer 
mesh. 

 
Fig. 12 - Vertical displacements given by our solution (coincident with Nithiarasu (2005) ) 

The solution of the richer discretization, without considering the surface tension, has such a good agreement with 
the solution presented by Nithiarasu (2005) and Sung et al. (2000) that it was not necessary to provide the solution of 
the references in the figures. In addition, it is observed that the solution with poorer discretization is already sufficiently 
precise for this problem. 

 
Fig. 13 - Surface tension (St) influence - richer mesh 
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The application of surface tension is performed in a specific way for two-dimensional simulations, multiplying the 
surface tension by the semi-thickness of the problem (1/ 2 m  in this case) and applying it as forces on the boundary 
nodes in the direction of its neighboring node. As expected, due to the dimensions of the problem, the surface tension 
has little influence, even so, there is a reduction in the peak of the second wave (on the right point) and a slight smoothing 
of the overall response. 

The high-order structured mesh is adopted, because, for the first example, it presents very good results. To stress 
that linear elements are not recommended to be used with our formulation, a structured mesh with linear approximation 
is also tested for the solitary wave problem, see Fig 11c. 

Fig. 14 shows position snapshots for different instants and different discretizations, including the inadequate linear 
approximation. 

The presented maximum displacements (at Fig. 14) correspond to the finer cubic discretization are 

(2.4s) 0.722myu = , (7.0s) 0.671myu = , (11.6 ) 0.675yu s m= . 

 
Fig. 14 - Comparison of displacement fields of solitary wave model using different meshes at three times: (a) t=2.4s; (b) t=7s; and (c) 

t=11.6s. 

Comments about the bad behavior of linear approximation are given at the end of the next example. 

4.3 Formation of a flat bubble – fluid 

This example is used to confirm and explain the bad behavior of the linear element regarding our fluid applications 
(locking). It consists of a 31.0m water volume, initially in the shape of a unit-side cube, released to move in the directions 

1x  and 2x , under the sole action of the considered surface tension 
372 10 N/mst
−= ⋅ . The application of this surface 

tension is made as explained in the previous example and its corresponding nodal force value is 
336 10 Nf −= ⋅ . 

The water properties are: density 
31000kg/mρ = , shear viscosity 

31.02x10 PasG µ −= = , bulk modulus 

2.15GPaK =  and volume viscosity 
32.5x10 Pa sK −=  , see Holmes et al. (2011), for instance. The adopted time 

interval is 10ms . 
Two types of analyses are preformed, without any additional damping (for which the bubble vibrates indefinitely) 

and other introducing an artificial mass proportional damping (
31kg.(ms)/mc = ) in order to find a final static position. 

In addition, a relaxation in the water compressibility is adopted in order to verify its influence in the poorest cubic 
discretization, in the linear discretization in the pressure behavior (eliminating pressure wave effects). In the damped 
analysis, the water volume converges to the circular shape, as shown in Figs. 15 and 16. Two cubic approximations at the 

plane 1 2( , )x x with linear approximation along thickness 3x  are adopted. One with 4x4 elements totalizing 338 nodes 
and other with 8x8 elements and 1250 nodes. 

As one can see in Fig. 15, when the fluid is almost incompressible, a more refined cubic approximation is necessary 
to reproduce the expected behavior. Using the 4x4 cubic discretization, the same problem is solved by increasing the 
compressibility of the fluid, i.e., reducing the bulk modulus to 42.15x10 GPaK −= , see Fig. 16. 

The pressure for the 8x8 cubic approximation and near incompressible bulk modulus ( 2.15GPaK = ) and for the 
4x4 cubic approximation with bulk modulus 42.15x10 GPaK −=  oscillates after the displacement convergence, see 
Fig. 17. This fact occurs because the wave speed of volumetric stresses (sound wave) is high and the time for their 
mitigation (even using the volumetric viscosity) is also high, not reached by our analysis. 
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Fig. 15 – Bubble behavior along time 2.15GPaK =  (cubic approximation) 

Only in the case with large compressibility ( 92.15x10 GPaK −= ), for both, cubic (Fig. 17) and linear (Fig. 18) 
approximations, the stresses distribution is very close to the expected static value, calculated analytically as 

101.44x10 GPap −= − . The signal of the pressure is negative because it is calculated here as in solid mechanics, i.e., the 
hydrostatic part of the stress tensor. 

For the compressible case 92.5x10 GPaK −= , the pressure wave has a very low speed and the corresponding 
behavior is almost static. 

 
Fig. 16 – Position behavior of the analyzed bubble along time using a mesh of 4x4 cubic elements and bulk modulus 

42.15x10 GPaK −=  
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Fig. 17 – Pressure values ( GPa ) at time 120mst = using a mesh of 8x8 cubic element and considering a damping of 

31kg.(ms)/mc = . 

Fig. 18 shows the final artificially damped result obtained for a structured linear mesh with 24x24 elements and 
1250 nodes. As one can see, the linear element locks completely, even for low fluid compressibility 62.15x10 GPaK −= . 
The behavior mimics a molded truss in the hydrostatic stress distribution, making the continuum rigid. Only when 
imposing a very compressive behavior ( 92.15x10 GPa 2.15PaK −= = ) that elements unlock and the results become 
coherent. 
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Fig. 18 – Analysis of the volumetric locking considering various bulk modulus and a mesh of 24x24 linear elements 

It should be noted that volumetric locking is a known phenomenon that is easily established by a constraint equation 
that represents the null volumetric variation 0Jδ = , which for finite element of any order is written simply as: 

: : 0J J Y
Y

δ δ∂ ∂ ∂
= ⋅ =

∂ ∂ ∂
EE

E E


  (a) 

as Yδ


 is arbitrary, results the following nonlinear system of equations written in the finite element degrees of freedom: 

: ( ) 0J Y
Y

∂ ∂
=

∂ ∂
E

E


  (b) 

This system of equations indicates (due to the imposed volumetric restriction) that a degree of freedom is removed 
from the set of degrees of freedom of the finite element. As an attempt to do a geometrical interpretation to this 
phenomenon, the identification of this restriction can be done by leaving only one node of the finite element free and 
studying its movements. In two-dimensional space and high-order elements, this movement is a curve and allows the 
accommodation of nodes for more or less complex problems, as discretization is increased or compressibility is reduced. 

For linear elements, this accommodation is more limited, even when compressibility relaxation is imposed, see Fig. 18. 
For incompressible or low compressible situations the volumetric locking is easily identified by the 2D representation of 
Fig 19. Each triangle (with different colors) represents the same black initial linear finite element and, as its volume does 
not change ( 0Jδ = ), the detached node is enforced to move over a straight line. Thus, a node that should have two 
degrees of freedom has only one due to the linear approximation of finite elements. The same behavior is easily 
represented for 3D situations if the finite element is a linear tetrahedral. 
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Fig. 19 – Using a free node constrained movement to illustrate the volumetric locking in a 2D representation 

Finally, this numerical example demonstrates that, even for a large bulk modulus reduction, linear elements lock. 
Note that we use only one integration point in the plane of the linear element and, thus, there is no way to apply the 
reduced integration technique. From these reasons, in the next examples, the use of linear elements is abandoned. 

4.4 Oil passing through a funnel - fluid: 

After validating the proposed formulation for viscous compressible flow and describing the choice of high order 
elements, we solve this free qualitative example in order to show future possibilities of the proposed model. A high 

viscosity oil 0.2356Pa sG µ= =  with density 
3846.6kg/mρ =  and high compressibility 42.15x10 PaK =  is subject 

to gravity acceleration 
210m/sg =  and is suddenly released to flow through the funnel shown in Fig. 20a. The oil 

touches the horizontal surface and flows without friction until it stops and starts to return (due to the surface tension). 

The adopted surface tension is 0.032N/mst = . 
Surfaces are frictionless without the possibility of detachment, that is, dry to shear and wet to detachment. No 

previous static analysis was performed, that is, the gravity occurs suddenly at the beginning of the analysis. To model the 
fluid only elements with cubic approximation at faces and structured mesh are adopted (see Fig. 20b), since in the first 
two examples this strategy proved to be sufficiently precise. The vertical and inclined surfaces are modeled by direct 
constraints and the horizontal surface is modeled using the penalization strategy. 

 
Fig. 20 – Geometry and discretization used to model the oil passing through a funnel, (a) Dimensions and flow direction; and (b) 

Initial adopted mesh - Cubic - Structured 12x12 

We adopted 0.25mst∆ =  until the fluid reaches the horizontal surface, i.e., 67.5ms , from which 0.125mst∆ =  
is used to increase stability and keep the number of iteration equal to 3, as mentioned in the introduction of this section. 

The evolution of the fluid movement is presented in Fig. 21. Pressure values are presented stressing that this fluid 
has a very high viscosity and not so high bulk modulus, therefore pressure results are stable without using any relaxation. 
The signal of the pressure is negative because it is calculated here as in solid mechanics, i.e., the hydrostatic part of the 
stress tensor. 
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Fig. 21 – Pressure fields at various time (
2g/[(ms) cm] ) for the oil passing through a funnel model 

Fig. 21 shows a smooth response with a large inertial spread of the fluid. In the return response, due to the surface 
tension, a configuration is reached that indicates a tendency of almost rupture of the surface, which would promote the 
separation of a drop of fluid at the end of the flow. To model this rupture is beyond the objectives of this work. 

4.5 Simplified Slump test - fluid 

This example shows the applicability of the proposed formulation in a simple 3D fluid problem, as well as, the 
model's possibilities in representing fluids whose viscosity depends on the evolution of shear strains. It is a simplified 
simulation of a slump test of a cement paste whose physical properties are given by Bouvet et al. (2010): 

1.4Pa sG µ= = , 
32500kg/mρ =  and 

210m/sg = . We adopted a bulk modulus of 215kPaK =  that is sufficient 
to consider near incompressibility. The employed time step is 0.1mst∆ =  with total analysis time of 0.6t s= . The 
test consists of retaining the cement paste in an inverted hollow bucket, with its subsequent instantaneous release on a 

smooth surface. Fig. 22 depicts the initial configuration geometry ( inf 80mmD = , sup 70mmD =  and 40mmH = ) 

and the applied discretizations. Due to the symmetry around the vertical axis, only 1/4 of the geometry is discretized by 
curved elements with cubic approximation in both basis and height. In discretization (a) the base and the top are divided 
into 8 curved triangular elements with 4 divisions in height, totalizing 32 prismatic finite elements of cubic approximation 
(637 nodes). In discretization (b) the base and the top are divided into 16 elements with 4 height divisions, totalizing 64 
prismatic elements of cubic approximation (1183 nodes). Observing Fig. 23, for 0.5γ = , the maximum difference in 
diameter at the end of the analysis is less than 1.5% and the maximum difference in height is less than 0.06%. Thus we 
concluded that using discretization (b) is sufficient to solve the other cases of example. 
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Fig. 22 – Simplified slump test geometry and discretizations 

In this example three different exponents for the viscous law are adopted: 1 2 0.5γ γ= =  (quasi Newtonian), 

0.25iγ =  and 0.75iγ =  (non-Newtonian). Fig. 23 show some top views for selected instants for both discretizations and 
all viscous parameters. In Fig 23 we indicate the diameter of the base for each selected time step. The color in maps 
shows the vertical displacement. 

The experimental final diameter (at 0.2t s= ) informed by Bouvet et al. (2010) is 169mm, that includes a residual 

shear stress of ( 20Pa ). The diameter achieved by the proposed formulation ( 0.75iγ = ) at the same time ( 0.2 )t s=  
is near to the experimental result. However, the proposed formulation solution continues to flow as it does not consider 
residual stresses. For further developments, we think being possible to include residual stresses in the proposed 
formulation, enabling the appropriate modeling of pastes and gels. 

Figure 24 shows the time history of the relation inf (t) /num exp
finalD D  for the three adopted rheological models, i.e., 

0.25iγ = , 0.5iγ =  and 0.75iγ = . 
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Fig. 23 – Vertical displacement fields for different meshes and time, infD  is the diameter of the base 

 
Fig. 24 - Lower diameter behavior along time. 

As one can see, the viscous behaviors are quite different, remembering that the case ( 0.5iγ = ) is the quasi 
Newtonian one. 

4.6 Creep test - solid 

This example is adopted to show the unified characteristic of the formulation, i.e., solving a solid problem instead 
of a fluid problem using the same approach. In this example, a 3D block of unitary dimension is subjected, at its free face, 

to a constant tensile force in 3z x=  direction, see Fig. 25 ( )40kNF =  and its longitudinal strain ( 3 1λ − ) is evaluated 

along time (creep test). Figure 25 presents the test geometry and the discretization of only 1/ 4  of the specimen to take 
advantage of symmetry. We used 4 prismatic elements with linear approximation totalizing 12 nodes. The following 
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physical parameters are adopted for all analyses: 1.5MPaK = , 9KPaG = , 0ρ = , 0g = , 0K =  and 

1 2 1/ 2γ γ= = . We used 3 different values for shear viscosity: 2KPasaG = , 1.1KPasbG =  and 0.2KPascG =  and 

the corresponding time intervals: 0.4sat∆ = , 0.2sbt∆ =  and 0.04sct∆ = . The adopted tolerance is 710Tol −= . 

 
Fig. 25 – Creep tesr schematic representation and adopted discretization (linear elements). 

Figure 26 presents the time response of the stretch in z direction and snapshots of the Cauchy viscous stresses 11
visσ  

and 33
visσ  for case (c). As expected, one can see that both viscous stresses 11

visσ  and 33
visσ  approaches zero at the end of 

the analysis. 

 
Fig. 26 - Time response of stretch and viscous stress snapshots. 

In Fig. 27 one can see the time response of viscous stress 33
visσ  and elastic stress 33

elasσ , both in Cauchy space. It is 

worth noting that the final cross section continues to be a square with sides 0.360m  (full dimension) and corresponds 
to the final achieved Cauchy stress value. As one can see the proposed formulation is capable of modeling the viscoelastic 
behavior of highly deformable bodies that do not present an instantaneous response (Kelvin-like model). It is interesting 
to mention that the strain levels reached by the material are quite high. 

 

Fig. 27 - Viscous and elastic Cauchy stresses along time ( 33σ ). 
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4.7 Indirect relaxation test - solid 

In this example, the specimen of the previous example is made up of two materials, see Fig. 28. The basic boundary 
conditions can be seen in Fig. 25a. Material 1 is viscoelastic with the following properties: 15MPaK = , 9KPaG = , 

1 2 1/ 2γ γ= =  and 200KPasG = . Material 2 is elastic with the following properties 0.15MPaK =  and 9KPaG = . 

In this analysis we adopted 0ρ = , 0g =  and 0K = . Figure 28 also illustrates the adopted discretization, i.e., 4 
prismatic elements with cubic approximation (112 nodes). 

 
Fig. 28 – Indirect relaxation test: (a) Material distribution; and (b) Discretization for a quarter of the problem (Symmetry) 

Initially, material 1 is maintained with all nodes restricted and the free face of material 2 (elastic material) is 
stretched from coordinate 1mz =  through coordinate 3.4mz =  using 120 equally spaced steps. Figure 29 shows the 

achieved configuration with the Cauchy elastic stress distribution 33
elaσ . Note that as all nodes of material 1 are 

constrained in the initial position and no stresses are present, but an average value appears at the interface nodes in Fig. 29a 
due to post processing. Figure 29b presents the viscous and elastic Cauchy stresses at point (0.167;0.167;0.167)m  of 
material 1 and the elastic Cauchy stress at point (0.167;0.167;0.833)m  of material 2. These coordinates correspond 
to the initial configuration. 

As one can see in Fig. 29b, the stress developed in material 2 represents the relaxation behavior of the elastic part 
of the studied specimen. After the total relaxation, the elastic stresses (or total stress, as there is no viscous stress at the 
end of the analysis) in both materials approximate each other. It is important to stress that the cross section of material 
1 varies from 21m  through 20.31m  which explains the large difference between the initial viscous stress and the final 
elastic stress of material 1. The adopted tolerance is 710Tol −=  and the time interval is 0.4st∆ = . 

 
Fig. 29 - Indirect relaxation test: (a) Initial position; and (b) Cauchy stress along time 
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4.8 Viscoelastic sandwich circular plate - solid: 

In this example we show the use of viscoelastic properties of a core to describe the induced damping in structural 
elements. Differently from usual structural analysis the damping is stablyshed directly from reological material 
properties. A simple supported circular plate with radius 1mR =  and thickness 3cmt =  is subjected to a transverse 
uniform loading. Only 1/ 4  of the structure is modeled using 300 prismatic finite elements with cubic approximation 
parallel to the plate surface and linear along thickness, totalizing 3 unitary layers, see Fig. 30. The simple support 
condition is applied at boundary nodes of the bottom face. The load is applied as a volume force on the superior layer of 

the plate. When viscosity is considered we used 1 2 0.5γ γ= = , i.e., Kelvin-Voigt-like viscoelastic model. Three situations 
are considered: 

(i) Only to verify the discretization, the three layers are considered elastic (steel) with properties: 200GPaE =  and 

0.25ν =  that corresponds to 133GPaK =  and 80G GPa= . The adopted transverse load is 
3

3 5000kN/mb =  

on the top lamina, corresponding to a surface force of 
2

3 50kN/mh = . For this case the achieved central 

transverse displacement is 0.7043cmw = , 2.9%  larger than the Kirchhoff kinematics analytical solution that is 

0.684cmkw =  see Timoshenko and Woinowsky-Krieger, S. (1959) for instance. 

This result is expected as the adopted solid element is more flexible than the Kirchhoff kinematics. It is important 
to mention that this element has ben validated for solid analysis in Carrazedo et al. (2020) and Carrazedo and Coda 
(2018). 

 

Fig. 30 – Elastic case: Boundary conditions and transverse displacement max( 0.7044cm)w =  

(ii) Keeping the loading of case (i), the material of the central layer is substituted by Polypropylene with the elastic 
properties 1.088GPaE =  and 0.49ν =  that correspond to 18.13GPaK =  and 0.365GPaG = . The adopted 

shear viscosity property is 6.756GPa×sG = . These values are adapted from Fazekas and Goda (2018). The 
central displacement for the elastic and viscoelastic cases are shown in Fig 31, being the maximum elastic 

displacement max 0.7432cmw = , 5.52%  larger then the steel case (i). We used 100 time steps of 0.01st∆ =  for 
the viscoelastic analysis. 

 
Fig. 31 – Sandwich viscoelastic plate: (a) Final displacement field, (b) Viscoelastic displacement at the plate center. 
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(iii) For the material of case (ii), considering the steel density 
37000kg/msteelρ =  and the Polypropylene density 

3910kg/mpolρ = , we perform a dynamic analysis considering the same load of previous cases suddenly applied. 

The central displacement along time is compared with the elastic result of case (ii) at Fig. 32. We used 500 time 
steps of 0.01st∆ = . 

 
Fig. 32 – Central displacement along time for the sandwich plate viscoelastodynamic analysis 

As one can see by this example, the formulation is capable to simulate viscoelastic (Kelvin-Voigt-like model) 
structural elements including dynamics. 

6 CONCLUSIONS 

This work presents a unified constitutive model for both low compressible isothermal viscous fluids and simple 
Kelvin-Voigt-like viscoelastic solids. Interpreting the Lagrangian strain directions - derived from the Flory’s decomposition 
for hyperelastic materials - we proposed a coherent dissipative virtual work for the internal energy allowing viscous 
analysis. Combining the hyperelastic potential and the dissipative internal energy, both elastic and viscous stresses are 
calculated in a straightforward way. The proposed constitutive model is successfully implemented in the positional finite 
element method, resulting in a total Lagrangian formulation whose nodal parameters are positions. Two-dimensional 
benchmarks from literature are used to verify the proposed constitutive model and the developed numerical formulation 
to represent viscous fluids. A flat bubble example is used to show the locking relief of the proposed numerical formulation 
by adopting high order approximations. A simple slump test is used to show the applicability of the model to 3D 
compatible problems. Static and dynamic viscoelastic 3D solid examples are used to demonstrate the unified 
characteristic of the proposed approach. As the formulation is based on scalar quantities (Lagrangian strain invariants), 
the proposed constitutive model opens the possibility of furthers developments to include residual stresses to model 
pastes, clay and gels. 
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