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Abstract 
To study the complex mechanism of the high-dimensional nonlinear cable systems, a 3 degree-of-freedom 
model reduced from the tower-cable-beam structure is proposed and investigated in this paper. Based on the 
D’Alembert Principle, the dynamic equations of in-plane and out-of-plane vibration are established and 
simulated by the 4th-order Runge-Kutta method. The results exhibit the phenomenon of coupling internal 
resonance under the systematical conditions revealed by the analytical analysis on the dynamic equations. 
The smaller mass ratio of the cable-beam would lead to a greater vibration intensity while the tensile stiffness 
and initial force of the cable have no significant effect. The in-plane and out-plane cable vibrations are 
independent, and the internal resonance would not be excited by the harmonic excitation in the cable axis. 
Additionally, applying damping on any component of the system is verified to be an effective approach to 
vibration reduction. Compared with ordinary cables, cables with less-weight and high-strength materials 
would be exited to less vibration intensity under the same external excitation. 
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1 INTRODUCTION 

Cable coupled systems are widely used for loading-carrying structures, such as stayed bridges, suspended 
roofs, and the construction process of arch bridges. The characteristics of high flexibility and low damping 
promote the system to obtain more favored by engineering applications. However, the non-linear behaviors of 
the system are easily subjected to potentially damaging amplitude motion or fatigue failure of the cable and 
provide a high risk of safe operation (Ming H W, Yi Q X, Hai T L, et al., 2014). It has been widely observed in 
engineering practice that severe oscillations of the cables are excited under no wind or low load of the vehicles 
(Main, J. A., and Jones, N. P., 1999) (Tabatabai, Habib, and Armin B. Mehrabi, 1999). 

To further study the phenomena of the internal resonance in cable-stayed bridges, Benedettini studied the 
dynamics of finite forced structures with quadratic and cubic nonlinearities in the dynamic equations of cable-
stayed bridges (Benedettini F, Rega G, 1987). Fujino established a simple model reduced from a cable-beam 
composite structure by combining experiments and theoretical analysis and observed the resonance 
phenomenon of ‘1:2’ cable-beam parametric resonance motion (Fujino Y, Warnitchai P, and Pacheco B M, 1993). 
Virlogeux M (1998) first reduced the components to concentrated masses and study the mechanism of the 
resonance. In line with this, Zhan and Zhong (1998) and Zhang, Wang and Yang  (2010) derived the dynamic equations 
of the cable-beam system based on the D’Alembert principle and explained the relationship between the natural 
frequency of each component and the global frequency of the dynamic system. In line with this solution method, 
the researchers derived the ordinary differential equations (ODEs) of variable cable structure models through 
the non-linear boundary conditions of the structure and systematically analyzed the influence factors (Yu Yanlei, 
Gao WeiCheng, and Sun Yi, 2010) (S. S. Chen and B. N. Sun, 2003) ( Zhang L N, Li F C, Wang X Y, et al., 2017). 
Moreover, Georgakis et al. (2013) (2005) studied the extensive vibration behavior caused by the plane structure 
vibration of cable-stayed bridge systems and investigated the vibrations control methods from the perspective 
of material properties. Wang, Zhang, et al. (2018) proposed a parameterized vibration model of stayed cable under 
the combination of gradient temperature field and bridge deck stimulation to study the ultra-long cable-stayed 
in a non-uniform temperature field and bridge. 

These research results all revealed that the ratios between the natural frequency with other different 
components (RNF) take an important role in the excitation of internal resonance. And the resonance is excited 
by the high-order polynomial coefficients of the dynamic equations, which require thousands of finite elements 
to simulate the complex vibration mechanism of the cable structures (G. Ricciardi and F. Saitta, 2008). To address 
this problem and analyze the mechanism of global-resonance motion, a few researchers developed new finite 
elements of cable or other components and analyzed the sensitives of the influence factors through the Variables 
Separation Method (Gattulli V, Lepidi M, 2003) (Wu Z, Wei J, 2019). Additionally, Caetano (E. Caetano and A. 
Cunha, 2008), Ouni (M. H. El Ouni and N. Ben Kahla, 2012) and Sun (C. Sun and Y. Zhao, 2018) et.al studied the 
mutual coupling process of each mode through segmental analysis and phase-free filtering through the field test 
or experiments. It was found that forced vibration, local-mixed mode coupled vibration, and the simultaneous 
occurrence of combined internal resonance was the root cause that the single-frequency external stimulation 
could stimulate the stay cable. 

However, it is known that the use of 3D FE modeling in these cases is not practical and that conventional 
beam models do not solve properly the problem. Additionally, due to the lack of high-effectiveness of the solving 
methods for high-dimensional nonlinear systems, the nonlinear dynamic behavior of the integral cable-stayed 
bridge is quite complicated, and in-depth research is facing great difficulties (H. J. Kang, T. D. Guo, and Y. Y. Zhao, 
2016). Studies on the vibration characteristics of multi-degree-of-freedom parametric resonance systems are 
more in line with the engineering practice, and the research results can lay a foundation for further expanding 
the research in this field or guiding the construction. 

Laying on the foundation of literature (Virlogeux M, 1998) (Kefan Chen and Shuanhai He, 2021) (K. Zhan and 
W. X. Zhong, 1998) (Y. Zhang and H. Wang, 2010), this paper systematically investigates and discusses the 
characteristics and influencing factors of the 3DOF freedom coupling resonance system of the tower-cable-beam. 
The simulation results through the 4th-order Runge-Kutta method, which is further illustrated the effectiveness 
through the verification of comparison with the finite element method (FEM), are helpful in the related discussion 
of the coupled characteristic and influence factor sensitives. Through the model and method proposed in this 
study, the possibility of parametric resonance in the dynamic system can be easily and quickly estimated 
compared to other models coupling nonlinear cables and the 3D finite element model of the bridge having 
thousands of elements. 
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2 THE REDUCED DYNAMIC MODEL AND THE ANALYTICAL ANALYSIS 

2.1 The reduced dynamic model and the mathematical expression 

Along with the reduced idea proposed in the literature (Virlogeux M, 1998), the tower, cable, and beam are reduced 
into the lumper mass blocks, respectively, as shown in Figure 1(a). It is assumed that the effect of the gravity of the cable 
or the tower on the transverse direction is ignorable. Additionally, the subscripted 1, 2, 3 represent the tower, the cable, 
and the beam, respectively; the subscripted ‘u’ and ‘w’ represents the in-plane vibration and out-of-plane vibration, 
respectively. The tower, assumed to vibrate only in the transverse direction due to the tension of the cable, is reduced 
into a lumped mass block 𝑚𝑚1 with the air damping 𝑐𝑐𝑢𝑢1 and 𝑐𝑐𝑤𝑤1. The springs 𝑘𝑘𝑢𝑢1 and 𝑘𝑘𝑤𝑤1 are set to simulate the in-plane 
and out-of-plane bending stiffness of the tower. The cable is assumed to vibrate only in the transverse direction due to 
the instantaneous tension of both sides (𝑇𝑇1 and 𝑇𝑇2, while 𝑇𝑇0 is the tension at the initial state of equilibrium), is reduced 
into a lumped mass block 𝑚𝑚2 with the air damping 𝑐𝑐𝑢𝑢2 and 𝑐𝑐𝑤𝑤2. The Euler-Bernoulli beam, assumed to vibrate only in 
the axial direction of the cable, is reduced into a lumped mass block 𝑚𝑚3 with the air damping 𝑐𝑐𝑢𝑢3 and 𝑐𝑐𝑤𝑤3. The transverse 
springs 𝑘𝑘3 and 𝑘𝑘𝑤𝑤3 are set to simulate the in-plane and out-of-plane bending stiffness of the beam, respectively. It is also 
assumed that the initial state of the system is in equilibrium, while two massless strings of the same length 𝑙𝑙  are 
connected with cable to tower and cable to beam. When the resonance is occurring, the angle between the ends of the 
cable to beam or that of cable to tower of in-plane vibration are set as 𝛼𝛼1 and 𝛼𝛼2 while 𝛽𝛽1 and 𝛽𝛽2 are set for the out-of-
plane vibration, respectively. The vibration displacement of the tower relative to the equilibrium position in these two 
planes are 𝑢𝑢1 and 𝑤𝑤1; the vibration displacement of the cable relative to the equilibrium position in these two planes are 
𝑢𝑢2 and 𝑤𝑤2; the vibration displacement of the beam relative to the equilibrium position in these two planes are 𝑢𝑢3 and 
𝑤𝑤3. The dynamic state line of the dynamic system is shown in Figure 1(b). 

 
Figure 1 The three-degree-of-freedom model reduced from the tower-cable-beam dynamic system: (a) in-plane vibration; (b) out-

of-plane vibration. 

According to the D’Alembert Principle, the vibration equations of the model in Figure 1 can be obtained as follows. 

−𝑚𝑚1�̈�𝑢1 = 𝑘𝑘𝑢𝑢1𝑢𝑢1 + 𝑐𝑐𝑢𝑢1�̇�𝑢1 − 𝑇𝑇1 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽1 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼1 − 𝜓𝜓𝑢𝑢1 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔𝑢𝑢1 𝑡𝑡 (1) 

−𝑚𝑚1�̈�𝑤1 = 𝑘𝑘𝑤𝑤1𝑤𝑤1 + 𝑐𝑐𝑤𝑤1�̇�𝑤1 − 𝑇𝑇1 𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽1 − 𝜓𝜓𝑤𝑤1 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔𝑤𝑤1 𝑡𝑡 (2) 

−𝑚𝑚2�̈�𝑢2 = 𝑐𝑐𝑤𝑤2�̇�𝑢2 + 𝑇𝑇1 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽1 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼1 + 𝑇𝑇2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽2 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼2 − 𝜓𝜓𝑢𝑢2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔𝑢𝑢2 𝑡𝑡 (3) 

−𝑚𝑚2�̈�𝑤2 = 𝑐𝑐𝑤𝑤2�̇�𝑤2 + 𝑇𝑇1 𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽1 + 𝑇𝑇2 𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽2 − 𝜓𝜓𝑤𝑤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔𝑤𝑤2 𝑡𝑡 (4) 
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−𝑚𝑚3�̈�𝑢3 = 𝑘𝑘𝑢𝑢3𝑢𝑢3 + 𝑐𝑐𝑤𝑤3�̇�𝑢3 + 𝑇𝑇2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼2 − 𝑚𝑚3𝑔𝑔 − 𝜓𝜓𝑢𝑢3 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔𝑢𝑢3 𝑡𝑡 (5) 

−𝑚𝑚3�̈�𝑤3 = 𝑘𝑘𝑤𝑤3𝑤𝑤3 + 𝑐𝑐𝑤𝑤3�̇�𝑤3 + 𝑇𝑇2 𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽2 − 𝜓𝜓𝑤𝑤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔𝑤𝑤3 𝑡𝑡 (6) 

where 𝑔𝑔 represents the acceleration of gravity; 𝜓𝜓 is the amplitude of the external excitation on the component; 𝜔𝜔 is the 
frequency of the external excitation on the component. As seen in Figure 1, the boundary conditions of the dynamic 
system can be obtained: 

𝑙𝑙1
2 = 𝑙𝑙2 + (𝑢𝑢2 − 𝑢𝑢1)2 + (𝑤𝑤2 − 𝑤𝑤1)2 = (𝑙𝑙 + 𝛥𝛥𝑙𝑙1)2 (7) 

𝑙𝑙2
2 = (𝑢𝑢3 + 𝑙𝑙)2 + 𝑢𝑢22 + (𝑤𝑤3 − 𝑤𝑤1)2 = (𝑙𝑙 + 𝛥𝛥𝑙𝑙2)2 (8) 

After ignoring higher-order epsilons, the dynamic tensile force of the cable can be obtained: 

𝛥𝛥𝑇𝑇1 = 𝐸𝐸𝐸𝐸 ⋅ (𝑢𝑢2−𝑢𝑢1)2+(𝑤𝑤2−𝑤𝑤1)2

2𝑙𝑙2
 (9) 

𝛥𝛥𝑇𝑇2 = 𝐸𝐸𝐸𝐸 ⋅ 𝑢𝑢2
2+𝑢𝑢32+2𝑢𝑢3𝑙𝑙+(𝑤𝑤3−𝑤𝑤2)2

2𝑙𝑙2
 (10) 

Additionally, it is assumed by the theory of large displacement, the simplifications can be obtained: 

𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼1 = 𝑢𝑢2−𝑢𝑢1
�𝑙𝑙2+(𝑢𝑢2−𝑢𝑢1)2

≈ 𝑢𝑢2−𝑢𝑢1
𝑙𝑙

, 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼1 = 𝑙𝑙
�𝑙𝑙2+(𝑢𝑢2−𝑢𝑢1)2

≈ 1 (11) 

𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼2 = 𝑢𝑢2
�(𝑙𝑙+𝑢𝑢3)2+𝑢𝑢22

≈ 𝑢𝑢2
𝑙𝑙

, 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼2 = 𝑙𝑙
�(𝑙𝑙+𝑢𝑢3)2+𝑢𝑢22

≈ 1 (12) 

𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽1 = 𝑤𝑤2−𝑤𝑤1
𝑙𝑙1

≈ 𝑤𝑤2−𝑤𝑤1
𝑙𝑙

, 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽1 =
�𝑙𝑙12−(𝑤𝑤2−𝑤𝑤1)2

𝑙𝑙1
≈ 1 (13) 

𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽2 = −𝑤𝑤3+𝑤𝑤2
𝑙𝑙2

≈ −𝑤𝑤3+𝑤𝑤2
𝑙𝑙

, 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽2 =
�𝑙𝑙22−(𝑤𝑤3−𝑤𝑤2)2

𝑙𝑙2
≈ 1 (14) 

By subsisting Eq. (11) ~ Eq. (14) into Eq. (1) ~ Eq. (6), the in-plane and out-of-plane dynamic equations of the three-
degree-of-freedom system can be derived and reduced as follows (Virlogeux M, 1998): 

�̈�𝑢1 + 𝜅𝜅𝑢𝑢12 ⋅ 𝑢𝑢1 + �̇�𝑐𝑢𝑢1 ⋅ �̇�𝑢1 + 𝛤𝛤1,1 ⋅ 𝑢𝑢13 + 𝛤𝛤1,2 ⋅ 𝑢𝑢2 + 𝛤𝛤1,3 ⋅ 𝑢𝑢12𝑢𝑢2 + 𝛤𝛤1,4 ⋅ 𝑢𝑢1𝑢𝑢22 + 𝛤𝛤1,5 ⋅ 𝑢𝑢23 + 𝛤𝛤1,6 ⋅ 𝑢𝑢1𝑤𝑤12 + 𝛤𝛤1,7 ⋅ 𝑢𝑢2𝑤𝑤12 +
𝛤𝛤1,8 ⋅ 𝑢𝑢1𝑤𝑤1𝑤𝑤2 + 𝛤𝛤1,9 ⋅ 𝑢𝑢2𝑤𝑤1𝑤𝑤2 + 𝛤𝛤1,10 ⋅ 𝑢𝑢1𝑤𝑤22 + 𝛤𝛤1,11 ⋅ 𝑢𝑢2𝑤𝑤22 = 𝛹𝛹𝑢𝑢1 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔𝑢𝑢1 𝑡𝑡 (15) 

�̈�𝑤1 + 𝜅𝜅𝑤𝑤12 ⋅ 𝑤𝑤1 + �̇�𝑐𝑤𝑤1 ⋅ �̇�𝑤1 + 𝛱𝛱1,1 ⋅ 𝑢𝑢12𝑤𝑤1 + 𝛱𝛱1,2 ⋅ 𝑢𝑢1𝑢𝑢2𝑤𝑤1 + 𝛱𝛱1,3 ⋅ 𝑢𝑢22𝑤𝑤1 + 𝛱𝛱1,4 ⋅ 𝑤𝑤13 + 𝛱𝛱1,5 ⋅ 𝑤𝑤2 + 𝛱𝛱1,6 ⋅ 𝑢𝑢12𝑤𝑤2 +
𝛱𝛱1,7 ⋅ 𝑢𝑢1𝑢𝑢2𝑤𝑤2 + 𝛱𝛱1,8 ⋅ 𝑢𝑢22𝑤𝑤2 + 𝛱𝛱1,9 ⋅ 𝑤𝑤12𝑤𝑤2 + 𝛱𝛱1,10 ⋅ 𝑤𝑤1𝑤𝑤22 + 𝛱𝛱1,11 ⋅ 𝑤𝑤23 = 𝛹𝛹𝑤𝑤1 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔𝑤𝑤1 𝑡𝑡 (16) 

�̈�𝑢2 + 𝜅𝜅𝑢𝑢22 ⋅ 𝑢𝑢2 + �̇�𝑐𝑢𝑢2 ⋅ �̇�𝑥2 + 𝛤𝛤2,1 ⋅ 𝑢𝑢1 + 𝛤𝛤2,2 ⋅ 𝑢𝑢13 + 𝛤𝛤2,3 ⋅ 𝑢𝑢12𝑢𝑢2 + 𝛤𝛤2,4 ⋅ 𝑢𝑢1𝑢𝑢22 + 𝛤𝛤2,5 ⋅ 𝑢𝑢23 + 𝛤𝛤2,6 ⋅ 𝑢𝑢2𝑢𝑢3 + 𝛤𝛤2,7 ⋅ 𝑢𝑢2𝑢𝑢32 +
𝛤𝛤2,8 ⋅ 𝑢𝑢1𝑤𝑤12 + 𝛤𝛤2,9 ⋅ 𝑢𝑢2𝑤𝑤12 + 𝛤𝛤2,10 ⋅ 𝑢𝑢1𝑤𝑤1𝑤𝑤2 + 𝛤𝛤2,11 ⋅ 𝑢𝑢2𝑤𝑤1𝑤𝑤2 + 𝛤𝛤2,12 ⋅ 𝑢𝑢1𝑤𝑤22 + 𝛤𝛤2,13 ⋅ 𝑢𝑢2𝑤𝑤22 + 𝛤𝛤2,14 ⋅ 𝑢𝑢2𝑤𝑤2𝑤𝑤3 + 𝛤𝛤2,15 ⋅
𝑢𝑢2𝑤𝑤32 = 𝛹𝛹𝑢𝑢2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔𝑢𝑢2 𝑡𝑡 (17) 

�̈�𝑤2 + 𝜅𝜅𝑤𝑤22 ⋅ 𝑤𝑤2 + �̇�𝑐𝑤𝑤2 ⋅ �̇�𝑤2 + 𝛱𝛱2,1 ⋅ 𝑤𝑤1 + 𝛱𝛱2,2 ⋅ 𝑢𝑢12𝑤𝑤1 + 𝛱𝛱2,3 ⋅ 𝑢𝑢1𝑢𝑢2𝑤𝑤1 + 𝛱𝛱2,4 ⋅ 𝑢𝑢22𝑤𝑤1 + 𝛱𝛱2,5 ⋅ 𝑤𝑤13 + 𝛱𝛱2,6 ⋅ 𝑢𝑢12𝑤𝑤2 +
𝛱𝛱2,7 ⋅ 𝑢𝑢1𝑢𝑢2𝑤𝑤2 + 𝛱𝛱2,8 ⋅ 𝑢𝑢22𝑤𝑤2 + 𝛱𝛱2,9 ⋅ 𝑢𝑢3𝑤𝑤2 + 𝛱𝛱2,10 ⋅ 𝑢𝑢32𝑤𝑤2 + 𝛱𝛱2,11 ⋅ 𝑤𝑤12𝑤𝑤2 + 𝛱𝛱2,12 ⋅ 𝑤𝑤1𝑤𝑤22 + 𝛱𝛱2,13 ⋅ 𝑤𝑤23 + 𝛱𝛱2,14 ⋅
𝑤𝑤3 + 𝛱𝛱2,15 ⋅ 𝑢𝑢32𝑤𝑤3 + 𝛱𝛱2,16 ⋅ 𝑢𝑢3𝑤𝑤3 + 𝛱𝛱2,17 ⋅ 𝑢𝑢32𝑤𝑤3 + 𝛱𝛱2,18 ⋅ 𝑤𝑤22𝑤𝑤3 + 𝛱𝛱2,19 ⋅ 𝑤𝑤2𝑤𝑤32 + 𝛱𝛱2,20 ⋅ 𝑤𝑤33 = 𝛹𝛹𝑤𝑤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔𝑤𝑤3 𝑡𝑡 
  (18) 

�̈�𝑢3 + 𝜅𝜅𝑢𝑢32 ⋅ 𝑢𝑢3 + �̇�𝑐𝑢𝑢3�̇�𝑢3 + 𝛤𝛤3,1 ⋅ 𝑢𝑢22 + 𝛤𝛤3,2 ⋅ 𝑢𝑢32 + 𝛤𝛤3,3 ⋅ 𝑤𝑤22 + 𝛤𝛤3,4 ⋅ 𝑤𝑤2𝑤𝑤3 + 𝛤𝛤3,5 ⋅ 𝑤𝑤32 = 𝛹𝛹𝑢𝑢3 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔𝑢𝑢3 𝑡𝑡 (19) 
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�̈�𝑤3 + 𝜅𝜅𝑤𝑤32 ⋅ 𝑤𝑤3 + �̇�𝑐𝑤𝑤3 ⋅ �̇�𝑤3 + 𝛱𝛱3,1 ⋅ 𝑤𝑤2 + 𝛱𝛱3,2 ⋅ 𝑢𝑢22𝑤𝑤2 + 𝛱𝛱3,3 ⋅ 𝑢𝑢3𝑤𝑤2 + 𝛱𝛱3,4 ⋅ 𝑢𝑢32𝑤𝑤2 + 𝛱𝛱3,5 ⋅ 𝑤𝑤23 + 𝛱𝛱3,6 ⋅ 𝑢𝑢22𝑤𝑤3 +
𝛱𝛱3,7 ⋅ 𝑢𝑢3𝑤𝑤3 + 𝛱𝛱3,8 ⋅ 𝑢𝑢32𝑤𝑤3 + 𝛱𝛱3,9 ⋅ 𝑤𝑤22𝑤𝑤3 + 𝛱𝛱3,10 ⋅ 𝑤𝑤2𝑤𝑤32 + 𝛱𝛱3,11𝑤𝑤33 = 𝛹𝛹𝑤𝑤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔𝑤𝑤3 𝑡𝑡 (20) 

It is important that the global vibration of the structure presents the global mode frequency and the corresponding 
mode shape. On this basis, the 𝜅𝜅 does not symbol the global frequency of the structure, resulting in that 𝜅𝜅 is introduced 
as the dynamic parameter of each component here in this paper. The dynamic parameters have a certain relationship 
with the global resonance to local resonance, whose dimensions are equivalent to frequency (Fujino Y, Warnitchai P, and 
Pacheco B M, 1993) (M. H. El Ouni, N. Ben Kahla, and A. Preumont, 2012). As shown in Figure 1(a), if the tower, cable, or 
the beam are regarded as a discrete vibration system excited by the external forces, they all have an independent natural 
frequency and the related mode shape. Thus, 𝜅𝜅 is known as the frequency of the local mode in some publications (Gattulli 
V, Lepidi M, 2003) (K. Zhan and W. X. Zhong, 1998) (Y. Zhang and H. Wang, 2010). The detailed coefficients can be 
obtained in Appendix 1. 

2.2 The analytical analysis 

The Multi-Scale Method is widely applied for the solution of the ODEs (C. Sun and Y. Zhao, 2018) (H. J. Kang, T. D. 
Guo, and Y. Y. Zhao, 2016). To solute the ODEs of the dynamic system, as shown in Eq. (1) ~ Eq. (6), a small bookkeeping 
parameter 𝜀𝜀 is introduced into the solution of each variable, as shown as follows: 

𝜀𝜀𝑛𝑛𝜆𝜆𝑗𝑗𝑛𝑛(𝑡𝑡0, 𝑡𝑡1)，𝑥𝑥𝑗𝑗 = ∑𝑛𝑛=12  (21) 

where𝑡𝑡0, 𝑡𝑡1 represents the multi-scale of the time (𝑡𝑡𝑛𝑛 = 𝜀𝜀𝑛𝑛 ⋅ 𝜏𝜏, 𝑠𝑠 ∈ [0,1]); 𝜆𝜆𝑗𝑗𝑛𝑛represents the function under different 
time scale variables (𝑡𝑡0 and 𝑡𝑡1) (𝜆𝜆 = 𝑢𝑢,𝑤𝑤). Substituting Eq. (21) into Eq. (1) ~ Eq. (6) and equating the coefficient of the 
same power of 𝜀𝜀 to be zero, the differential equations can be obtained: 
𝜀𝜀1: 

𝐷𝐷02𝑢𝑢11 + 𝑘𝑘𝑢𝑢1
2𝑢𝑢11 + 𝛤𝛤1,2𝑢𝑢21 = 0 (22) 

𝐷𝐷02𝑤𝑤11 + 𝑘𝑘𝑤𝑤1
2𝑤𝑤11 + 𝛱𝛱1,5𝑤𝑤21 = 0 (23) 

𝐷𝐷02𝑢𝑢21 + 𝑘𝑘𝑢𝑢2
2𝑢𝑢21 + 𝛤𝛤2,1𝑢𝑢11 = 0 (24) 

𝐷𝐷02𝑤𝑤21 + 𝑘𝑘𝑤𝑤2
2𝑤𝑤21 + 𝛱𝛱2,1𝑤𝑤11 + 𝛱𝛱2,14𝑤𝑤31 = 0 (25) 

𝐷𝐷02𝑢𝑢31 + 𝑘𝑘𝑢𝑢3
2𝑢𝑢31 = 0 (26) 

𝐷𝐷02𝑤𝑤31 + 𝑘𝑘𝑤𝑤3
2𝑤𝑤31 + 𝛱𝛱3,1𝑤𝑤21 = 0 (27) 

𝜀𝜀2: 

𝐷𝐷02𝑢𝑢12 + 𝑘𝑘𝑢𝑢1
2𝑢𝑢12 = −𝛤𝛤1,2𝑢𝑢22 − 2𝐷𝐷0𝐷𝐷1𝑢𝑢11 (28) 

𝐷𝐷02𝑤𝑤12 + 𝑘𝑘𝑤𝑤1
2𝑤𝑤12 = −𝛱𝛱1,5𝑤𝑤22 − 2𝐷𝐷0𝐷𝐷1𝑤𝑤11 (29) 

𝐷𝐷02𝑢𝑢22 + 𝑘𝑘𝑢𝑢2
2𝑢𝑢22 = −𝛤𝛤2,1𝑢𝑢12 − 𝛤𝛤2,6𝑢𝑢21𝑢𝑢31 − 2𝐷𝐷0𝐷𝐷1𝑢𝑢21 (30) 

𝐷𝐷02𝑤𝑤22 + 𝑘𝑘𝑤𝑤2
2𝑤𝑤22 = −𝛱𝛱2,1𝑤𝑤12 − 𝛱𝛱2,9𝑢𝑢31𝑤𝑤21 − 𝛱𝛱2,14𝑤𝑤32 − 𝛱𝛱2,16𝑢𝑢31𝑤𝑤31 − 2𝐷𝐷0𝐷𝐷1𝑤𝑤21 (31) 

𝐷𝐷02𝑢𝑢32 + 𝑘𝑘𝑢𝑢3
2𝑢𝑢32 = −𝛤𝛤3,1𝑢𝑢212 − 𝛤𝛤3,2𝑢𝑢312 − 𝛤𝛤3,3𝑤𝑤212 − 𝛤𝛤3,4𝑤𝑤21𝑤𝑤31 − 𝛤𝛤3,5𝑤𝑤312 − 2𝐷𝐷0𝐷𝐷1𝑢𝑢31 (32) 

𝐷𝐷02𝑤𝑤32 + 𝑘𝑘𝑤𝑤3
2𝑤𝑤32 = −𝛱𝛱3,1𝑤𝑤22 − 𝛱𝛱3,3𝑢𝑢31𝑤𝑤21 − 𝛱𝛱3,7𝑢𝑢31𝑤𝑤31 − 2𝐷𝐷0𝐷𝐷1𝑤𝑤31 (33) 
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where 𝐷𝐷𝑛𝑛 = 𝜕𝜕/𝜕𝜕𝑡𝑡0, 𝑠𝑠 ∈ [0,1]. From Eq. (15) ~ Eq. (20) , the 1st order of 𝜀𝜀 of the cable and the tower exists an extra 
polynomial 𝛤𝛤1,2𝑢𝑢21、𝛱𝛱1,5𝑤𝑤21、𝛤𝛤2,1𝑢𝑢11、𝛱𝛱2,1𝑤𝑤11 + 𝛱𝛱2,14𝑤𝑤31、𝛱𝛱3,1𝑤𝑤21, respectively. It is illustrated that the coupling 
term of the cable exists in the dynamic equation that expresses the tower participating in the resonance process. The 
polynomials are obtained only in the tower-cable coupling system where two resonances of two different components 
in the same direction is occurring. Further, the general solutions of Eq. (22) and Eq. (28) have the following forms: 

𝑢𝑢11 = 𝐸𝐸𝑢𝑢1(𝑡𝑡1, 𝑡𝑡2)𝑒𝑒𝑖𝑖𝑘𝑘𝑢𝑢1𝑡𝑡0 + 𝑐𝑐. 𝑐𝑐. (34) 

𝑢𝑢21 = 𝐸𝐸𝑢𝑢2(𝑡𝑡1, 𝑡𝑡2)𝑒𝑒𝑖𝑖𝑘𝑘𝑢𝑢2𝑡𝑡0 + 𝑐𝑐. 𝑐𝑐. (35) 

𝑢𝑢31 = 𝐸𝐸𝑢𝑢3(𝑡𝑡1, 𝑡𝑡2)𝑒𝑒𝑖𝑖𝑘𝑘𝑢𝑢3𝑡𝑡0 + 𝑐𝑐. 𝑐𝑐. (36) 

𝑤𝑤11 = 𝐸𝐸𝑤𝑤1(𝑡𝑡1, 𝑡𝑡2)𝑒𝑒𝑖𝑖𝑘𝑘𝑤𝑤1𝑡𝑡0 + 𝑐𝑐. 𝑐𝑐. (37) 

𝑤𝑤21 = 𝐸𝐸𝑤𝑤2(𝑡𝑡1, 𝑡𝑡2)𝑒𝑒𝑖𝑖𝑘𝑘𝑤𝑤2𝑡𝑡0 + 𝑐𝑐. 𝑐𝑐. (38) 

𝑤𝑤31 = 𝐸𝐸𝑤𝑤3(𝑡𝑡1, 𝑡𝑡2)𝑒𝑒𝑖𝑖𝑘𝑘𝑤𝑤3𝑡𝑡0 + 𝑐𝑐. 𝑐𝑐. (39) 

where c.c. represents the complex conjugate of the preceding terms; 𝐸𝐸𝑛𝑛 (𝑡𝑡1, 𝑡𝑡2)  represents the unknown complex 
functions of the time scale of 𝑡𝑡1, which is also known with a polar form as: 

𝐸𝐸𝑢𝑢𝑛𝑛(𝑡𝑡1, 𝑡𝑡2) = 1
2
𝜁𝜁𝑢𝑢𝑛𝑛(𝑡𝑡1, 𝑡𝑡2)𝑒𝑒𝑖𝑖𝜃𝜃𝑢𝑢𝑢𝑢(𝑡𝑡1,𝑡𝑡2) (40) 

𝐸𝐸𝑤𝑤𝑛𝑛(𝑡𝑡1, 𝑡𝑡2) = 1
2
𝜁𝜁𝑤𝑤𝑛𝑛(𝑡𝑡1, 𝑡𝑡2)𝑒𝑒𝑖𝑖𝜃𝜃𝑤𝑤𝑢𝑢(𝑡𝑡1,𝑡𝑡2) (41) 

where 𝜁𝜁𝑛𝑛(𝑡𝑡1, 𝑡𝑡2) and 𝜃𝜃𝑛𝑛(𝑡𝑡1, 𝑡𝑡2) represents the amplitude and the phase angle of 𝐸𝐸𝑛𝑛 (𝑡𝑡1, 𝑡𝑡2). Based on the related theory 
of the quadratic constant-coefficient non-homogeneous linear differential equation, through the analysis of the duration 
term, the parametric resonance conditions of the dynamic system can be obtained as follows: 

𝑘𝑘𝑢𝑢1 = 𝑘𝑘𝑢𝑢2 (42) 

𝑘𝑘𝑤𝑤1 = 𝑘𝑘𝑤𝑤2 (43) 

𝑘𝑘𝑢𝑢3 = 2𝑘𝑘𝑢𝑢2 (44) 

𝑘𝑘𝑢𝑢3 = 2𝑘𝑘𝑤𝑤2 (45) 

𝑘𝑘𝑤𝑤2 = 𝑘𝑘𝑤𝑤3 (46) 

𝑘𝑘𝑢𝑢3 = 2𝑘𝑘𝑢𝑢1 (47) 

2𝑘𝑘𝑤𝑤3 = 𝑘𝑘𝑢𝑢2 (48) 

𝑘𝑘𝑢𝑢3 = 2𝑘𝑘𝑤𝑤3 (49) 

𝑘𝑘𝑢𝑢3 = 𝑘𝑘𝑤𝑤2 + 𝑘𝑘𝑤𝑤3 (50) 

𝑘𝑘𝑤𝑤2 = 𝑘𝑘𝑢𝑢3 + 𝑘𝑘𝑤𝑤3 (51) 

𝑘𝑘𝑤𝑤2 = 𝑘𝑘𝑢𝑢3 + 𝑘𝑘𝑤𝑤3 (52) 
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Once the above conditions were satisfied, the coefficient term, such as 𝑡𝑡0𝑒𝑒𝑖𝑖𝜅𝜅𝑢𝑢1𝑡𝑡0, 𝑡𝑡0𝑒𝑒−𝑖𝑖𝜅𝜅𝑢𝑢1𝑡𝑡0 and et.al, would be 
observed in the solutions of Eq. (22) ~ Eq. (27) and Eq. (28) ~ Eq. (33), where the severe internal resonance would be 
observed in the time history of the cable of in-plane or the out-of-plane. Most scholars generally paid more attention to 
the condition of Eq. (42) ~ Eq. (49). In fact, it is ignored that the sum relationship of the in-plane and out-of-plane modes 
are also the critical factors that cause the resonance. Thus, such a phenomenon has also been found in several studies 
of the model test (C. Sun, Y. Zhao, J. Peng, et al., 2018) (SUN C.S., Zhao Y.B., Kang H.J., Zhao Y.Y.,2018b) while no further 
discussions have been made through the model test of a complex internal resonance system. 

3 CASE STUDY 

3.1 Modal analysis 

From Eq. (15) ~ Eq. (20), the eigenfunction can be obtained as follow: 

𝒎𝒎𝑖𝑖 ⋅ �
�̈�𝒖𝑖𝑖

�̈�𝒘𝑖𝑖
� + 𝒌𝒌𝑖𝑖 ⋅ �

𝒖𝒖𝑖𝑖
𝒘𝒘𝑖𝑖
� = 0 (53) 

where i=1,2,3. On this basis, the eigenmatrix G can be obtained as follows: 

𝑮𝑮 = 𝒎𝒎𝑖𝑖
−1 ⋅ 𝒌𝒌𝑖𝑖 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝜅𝜅𝑢𝑢1

2

𝜅𝜅𝑢𝑢22

𝜅𝜅𝑢𝑢32

𝜅𝜅𝑤𝑤12

𝜅𝜅𝑤𝑤22

𝜅𝜅𝑤𝑤32⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (54) 

By solving the Eigen roots of the above matrix, the vibration frequency of the system 𝜔𝜔𝑛𝑛 can be obtained. On this 
basis, after synthesizing the Refs. (Benedettini F, Rega G, 1987) (Fujino Y, Warnitchai P, and Pacheco B M, 1993), the 
fundamental parameters of the components are presented in Table 1, also named CC1 in the following research. 

Table 1. The basic parameters of different components (CC1) 

m1(kg) 𝝁𝝁m2(kg) m3(kg) l(m) T0(N) 

2000 0.5 800 20 100 
EA(N) ku1(N/m) ku3(N/m) kw1(N/m) kw3(N/m) 
16000 2000 2400 4000 4000 

Considering the nonlinear geometry of the system, with the integral method of Newmark-β and the average step of 
0.02s, a finite element model of the system is established to devote a modal analysis. The calculated results of modes 
frequencies and mode shapes are presented in Table 2 and Figure 2, respectively. 

Table 2. The mode properties of the dynamic system 

Natural frequency Mode No. FEM (rad/s) Analytical (rad/s) Error (%) 

In-plane 1 0.9820 1.0000 1.80 
2 1.0174 1.0013 1.60 
3 1.9990 2.0000 0.50 

Out-of-plane 1 0.9980 1.0000 0.20 
2 1.4148 1.4151 0.02 
3 2.2365 2.2347 0.08 
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Figure 2 The in-plane mode shapes of the system 

It is noticeable that the first three orders of the model are similar to the natural frequencies of these three components. 
It illustrates that the natural vibration shapes and frequencies of these three components occupy the lower-order modes 
of the system, respectively. It can be also concluded from the first three mode shapes of the system in Figure 2. 

3.2 Analytical simulation and verification 

The powerful combination of SIMULINK/MATLAB software has always been regarded as an effective simulation tool 
that is used to simplify the methods of solving differential equations (Menwer Attarakih, Mazen Abu-Khader, and Hans-
Jörg Bart, 2013). Based on the 4th Runge-Kutta Method (symboled as SAS in the following investigation), the time 
response analysis of the system is applied and the vibration response of the tower, the cable, and the beam can be 
obtained as follows: 

 
Figure 3 The vibration analysis of the tower, the cable and the beam: (a) the vibration response of the components; (b) the 

spectrograms of the components. 
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From Figure 3, it is illustrated that the coupling internal resonance phenomenon of u1 and w2 can be observed 
when the local frequency ratio of the cable-beam satisfies 1:2, either is that of the cable-tower satisfies 1:1. It is 
consistent with the known conclusion. Moreover, it seems that the coupling vibration of the cable in the out-of-plane 
could be excited by the in-plane motion, which would be further discussed in section 4. To further verify the validity of 
the derivation process and the reduced model, the time response analysis of the system is proposed through two 
different methods. One is to propose a time response analysis on the in-plane motion of the cable through the SIMULINK 
by using the 4th Runge-Kutta Method (SAS-u2); another is analyzed through the finite element method (FEM-u2). And 
the comparison result is presented in Figure 4. 

 
Figure 4 The comparative results of these two methods 

In Figure 4, the varying trends of the curves obtained by these two methods stay almost the same, which can be 
more clearly seen from the integrated figure. It is deeply illustrated that the numerical method of the SIMULINK plays an 
effective role in solving and simulating the equations. 

4 Parametric discussions of the dynamic system 

To further discuss the dynamic behaviors, the resonance intensity, symbolled as 𝜀𝜀𝜆𝜆  (𝜆𝜆 = 𝑢𝑢,𝑤𝑤), is introduced to 
represent the ratio of the maximum response to the initial displacement. To further investigate the ratio condition of the 
internal resonance, the incremented frequency of the cable’s dynamic parameter mode 𝜎𝜎𝜆𝜆2 is also introduced as shown 
in Eq. (55) and Eq. (56). Additionally, the proximity factors 𝜒𝜒𝜆𝜆 and 𝜇𝜇𝜆𝜆 are introduced to measure the degree of closeness 
of the cable’s dynamic parameter to the tower’s local mode and half of the beam’s local mode, respectively, as shown in 
Eq. (57) and Eq. (58). 

𝛺𝛺𝜆𝜆2𝑆𝑆 = 𝜅𝜅𝜆𝜆2 + 𝜎𝜎𝜆𝜆2, (𝜆𝜆 = 𝑢𝑢,𝑤𝑤) (55) 

𝛺𝛺𝜆𝜆2𝐸𝐸 = 𝜔𝜔𝜆𝜆2 + 𝜎𝜎𝜆𝜆2, (𝜆𝜆 = 𝑢𝑢,𝑤𝑤) (56) 

𝜒𝜒𝜆𝜆 = �𝛺𝛺𝜆𝜆2𝑆𝑆−𝜅𝜅𝜆𝜆1�
𝜅𝜅𝜆𝜆1

 (57) 

𝜇𝜇𝜆𝜆 = �𝛺𝛺𝜆𝜆2𝐸𝐸−𝜅𝜅𝜆𝜆2�
𝜅𝜅𝜆𝜆2

 (58) 

By changing the value of 𝜎𝜎𝜆𝜆2, the value of dynamic parameter ratio can thus be changed. 
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4.1 Parametric analysis of the internal resonance 

By applying some simple combinations of the parameters, the conditions presented in Eq. (42) ~ Eq. (52) can be 
verified as shown in Figure 5, with an initial excitation of 0.01m on the component. 

 
Figure 5 The coupling vibration under different conditions 

From Figure 5, the coupling vibration, which also exhibits a significant ‘beat’ character, can be observed on the 
cable’s vibration of in-plane or out-of-plane when the conditions are satisfied. It is interesting that the condition 𝑘𝑘𝑤𝑤3 =
2𝑘𝑘𝑤𝑤2 can not lead to the coupling vibration, which is further illustrated that the cable’s vibration of the out-of-plane can 
not be excited to the non-linear vibration by twice the axial frequency in the cable’s axial direction. In particular, the 
factors of the sum relationship (see Eq. (50) ~ Eq. (52)) only lead to the severe resonance in the out-of-plane, as shown 
in Figure 5(i) ~ Figure 5(k). It is illustrated that the mechanism of the internal resonance becomes more complex when 
the out-of-plane vibration is considered. In conclusion, the phenomena in Figure 5 also accurately reflect the analytical 
results in Eq. (42) ~ Eq. (52) are the main factors of the internal resonance in the dynamic system. 
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As shown in Figure 5, the different characteristics of the cable’s vibration can be observed under different 
conditions. To focus on the investigation of the effect of the basic parameters, such as the ratio of the mass, initial cable 
force, and EA, on the vibration, the case is applied as follows: 

Compared Case 2# (CC2): under the condition of 𝑘𝑘𝑢𝑢1 = 𝑘𝑘𝑢𝑢2, the basic parameters in Table 1 are also applied here 
while the following parameters are changed: ku1=4000 N/m, ku3=8000 N/m, kw1=6000 N/m, kw1=10000 N/m. Thus, 
the ratios of the dynamic parameters are 𝜅𝜅𝑢𝑢1: 𝜅𝜅𝑢𝑢2: 𝜅𝜅𝑢𝑢3 = 1.4: 1: 3.3 and 𝜅𝜅𝑤𝑤1: 𝜅𝜅𝑤𝑤2: 𝜅𝜅𝑤𝑤3 = 3: 1: 12.5. On this basis, there 
is no internal resonance between these two planes. 

The method of separation of variables is also applied to investigate the effect of the coefficients on the cable’s 
vibration. On this basis, the variation trend of 𝜀𝜀𝜆𝜆 under these conditions can be obtained as shown in Figure 6. 

 
Figure 6 𝜀𝜀𝜆𝜆 under different conditions: (a) with different mass ratio; (b) with different initial cable tension; (c) with different EA. 

From Figure 6, when the dynamic system is excited to an initial excitation in the system, the cable would be excited 
to a severe vibration by a 1:1 indirect excitation in the vertical motion. The response of the cable is maximized at 1:1 
while there obviously exists a range of the frequency ratio. Secondly, the variation trends of the in-plane and out-of-
plane generally stay inconsistent. Among them, the mass ratio has the most obvious effect on resonance. The smaller 
the cable mass, the more severe the resonance caused by the same system energy conversion from other components 
at the cable. It appears to be that a lower initial cable force would minimize the vibration response of the cable while it 
has little effect at the peak of the response. 

4.2 The effect of the external excitation 

To further investigate the effect of the excitations from one plane, two conditions which mainly include the in-plane 
works are first applied in this section. 

Compared Case 3-1# (CC3-1): under the condition of 𝑘𝑘𝑢𝑢1 = 𝑘𝑘𝑢𝑢2, the basic parameters in Table 1 are also applied 
here while the following parameters are changed: ku1=6000 N/m, ku3=12000 N/m, kw1=6000 N/m, kw1=10000 N/m, 
𝜅𝜅𝑢𝑢1: 𝜅𝜅𝑢𝑢2: 𝜅𝜅𝑢𝑢3 = 1.7: 1.7: 4. 

Compared Case 3-2# (CC3-2): under the condition of 𝑘𝑘𝑢𝑢3 = 2𝑘𝑘𝑢𝑢2, the basic parameters in Table 1 are also applied 
here while the following parameters are changed: ku1=4500 N/m, ku3=2400 N/m, kw1=6000 N/m, kw1=10000 N/m, 
𝜅𝜅𝑢𝑢1: 𝜅𝜅𝑢𝑢2: 𝜅𝜅𝑢𝑢3 = 1.5: 1: 2. 

On this basis, for clarity and brevity, kmi (i=1,2,3) is introduced to present the correlation coefficients of the effect, 
which reflects the intensity of each component and is illustrated with a case as shown in Figure 7(a). By applying the 
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different values of the 𝜔𝜔𝑢𝑢𝑖𝑖  on the components, the variation of kmi under different initial conditions are selected as 
shown in Figure 7(b). 

 
Figure 7 The variation trend of the parameters with different initial conditions: (a) the trends of 𝜀𝜀𝑢𝑢; (b) the trends of 𝑘𝑘𝑚𝑚𝑖𝑖. 

From Figure 7(a), the correlation coefficients of the fitting R2∈ [0.9722,1] show a significant relationship of linear 
increase. The larger the histogram area, the greater the influence intensity, and also the greater the impact on the cable. 
Under CC3-1, the closer frequency of the external excitation to 𝜅𝜅𝑢𝑢2, the more obvious the influence of the external 
excitation amplitude. It can be also observed in the condition of CC3-2 that the intensity of 𝜔𝜔𝑢𝑢𝑖𝑖 = 1𝑟𝑟𝑟𝑟𝑟𝑟/𝑐𝑐 is obviously 
larger than other values. It can be obtained that the exciting effect of the external excitation is highly consistent with the 
internal resonance conditions, as shown in Eq. (42) ~ Eq. (52). To further discuss the exciting effect from another plane, 
the following cases are applied. 

Compared Case 4-1# (CC4-1): On the basic parameters of CC2 with no initial displacement applied, the external 
excitation only from in-plane is applied in this dynamic system, 𝜔𝜔𝑢𝑢1 = 𝜅𝜅𝑢𝑢1 = 𝜅𝜅𝑢𝑢2 = 1𝑟𝑟𝑟𝑟𝑟𝑟/𝑐𝑐 with variable 𝛹𝛹𝑢𝑢1. 

Compared Case 4-2# (CC4-2): On the basic parameters of CC2 with no initial displacement applied, the external 
excitation only from out-of-plane is applied in this dynamic system, 𝜔𝜔𝑤𝑤1 = 𝜅𝜅𝑢𝑢1 = 𝜅𝜅𝑢𝑢2 = 1𝑟𝑟𝑟𝑟𝑟𝑟/𝑐𝑐 with variable 𝛹𝛹𝑤𝑤1. 

 
Figure 8 The variation trends of the parameters with different initial conditions: (a) under CC4-1; (b) under CC4-2. 

From Figure 8, it is illustrated that the variation trends of the exciting response in these two planes are the same, 
while the external vibration seems to be slightly less excited on the numerical value. The excitations of the two planes 
can not relate to each other and also can not produce the vibration excitation effects on each other. Additionally, the in-
plane vibration response of the beam can be produced by a few combined excitations from in-plane and out-of-plane. 
However, by a number of trial calculations, it can be obtained that the external harmonic excitation in the cable axis 
(from the beam) can not excite to a severe vibration on the cable. The conclusions also can be drawn that only the out-



Analysis of Internal Resonance of a 3DOF Dynamic System Reduced from the Tower-Cable-Beam 
Structure 

Kefan Chen et al. 

Latin American Journal of Solids and Structures, 2022, 19(3), e444 13/18 

of-plane vibration of the cable (w2) can be excited under the conditions of Eq. (50) ~ Eq. (52). The response of the beam 
of the in-plane can be excited under the conditions of Eq. (50) ~ Eq. (52), while the external excitations in the cable axis 
can not further excite the in-plane vibration of the cable. 

4.3 Discussions of the vibration reduction measure 

Vibration control, especially in high-flexibility structures, is always one of the most important goals of the 
investigations. Structural damping is currently one of the most effective methods for controlling component vibration in 
civil engineering. Through substituting the parameters in a consistent investigation (Zhang Yan, Wang Huailei, and Yang 
Jie, 2010), the validity of the method in this paper can be verified by comparing the results in the Ref. (symbolled as RAS) 
with that of the analytical simulation, as shown in Figure 9. 

 
Figure 9 The compared results with the simulation in Ref. 

Figure 9 indicates that the reliability and effectiveness of the proposed method in this paper are well-simulated 
considering the effect of the damping. On this basis, the response of the cable with different damping is selected as 
shown in Figure 10. 

 
Figure 10 The in-plane response of the cable with different damping 

It is clear from Figure 10, that the damping act positively in vibration control of the in-plane response. The larger 
the damping coefficient, the greater the restriction on the cable in-plane vibration. This is a common conclusion in most 
relative Refs (K. Zhan and W. X. Zhong, 1998) (Zhang Yan, Wang Huailei, and Yang Jie, 2010). However, the influence 



Analysis of Internal Resonance of a 3DOF Dynamic System Reduced from the Tower-Cable-Beam 
Structure 

Kefan Chen et al. 

Latin American Journal of Solids and Structures, 2022, 19(3), e444 14/18 

effect in the dynamic system is complicated enough that the resonant cable may be affected by the damping of other 
components through the boundary conditions, as shown in Figure 11. 

 
Figure 11 The in-plane response of the cable with different damping of the tower or the beam 

The damping from other components does affect the in-plane vibration response of the cable through the energy 
conversion in the global system, while the effect of damping is positively correlated with the magnitude of the value. 
Due to the complexity of the cable-stayed bridge structure, the damping effect is actually an intensely complicated 
energy conversion process (X. Su, H. Kang, and T. Guo, 2022) (Z. X. Wang, B. Wang, and X. P. Chai, 2015) (Kang H J, Zhu H 
P, Zhao Y. Y. et al, 2005) (Nielsen S R K, Sichani M T, 2011). 

Additionally, high-performance materials such as CFRP cables can be used instead of ordinary cables in engineering 
to avoid the threshold interval of the internal resonance conditions (K.H. Mei, S.J. Sun, X.Q. Li, G.Q. Jin, 2017). As known 
is that the unit quality of CFRP cable is only one-fourth of that of steel cable with the same rigidity conditions. To further 
discuss the effect of high strength and low weight cable materials on the resonance, the following compared case is 
applied: 

Compared Case 5# (CC5): on the basic parameters of CC2 with no initial displacement applied, the external harmonic 
excitation from in-plane and out-of-plane are repectively applied to this dynamic system: 𝜔𝜔𝑢𝑢1 = 𝜔𝜔𝑢𝑢1 = 𝜅𝜅𝑢𝑢1 = 𝜅𝜅𝑢𝑢2 =
1𝑟𝑟𝑟𝑟𝑟𝑟/𝑐𝑐, 𝛹𝛹𝑢𝑢1 = 𝛹𝛹𝑤𝑤1 = 0.01𝑚𝑚/𝑐𝑐2. It is noticeable that the EA remains the same, which further illustrated that the value 
of Young’s Module increases with the decrease of the mass and cross area. The variable value of damping is applied with 
the different unit mass of the cable. The variation trend is presented in Figure 12. 

 
Figure 12 The trends under CC5 

From Figure 12, it can be obtained that with the increase of the damping of in-plane and out-of-plane, the 𝜀𝜀𝑢𝑢 and 
𝜀𝜀𝑤𝑤 also decrease gradually with almost the same reduction rate. In particular, the less mass of the cable, the smaller 𝜀𝜀𝜆𝜆 
of the vibration is under the same external harmonic excitation. It is illustrated that the increased damping ratio can 
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inhibit the occurrence of internal resonance or effectively reduce the 𝜀𝜀𝜆𝜆 of the load plane when the internal resonance 
occurs. 

5 Conclusion 

Considering the non-linear geometric conditions, the dynamic behavior of in-plane and out-of-plane of a 3DOF 
model reduced from the tower-cable-beam structure is proposed, verified, and analyzed with analytical simulations in 
this paper. The dynamic model proposed in this paper can reduce a lot of the time of simulation compared to other 
models coupling nonlinear cables and the 3D FE model of the bridge has thousands of degrees of freedom. Through the 
systematical investigation and discussion, the following conclusions can be obtained: 

(1)  Through the analysis of the duration term in the dynamic equations, the internal resonance conditions of the 
dynamic system are obtained and verified by analytical simulation. It is worth noticing that the summation 
relationship between the component frequencies of in-plane and out-of-plane vibration is proved to be one of the 
conditions of out-of-plane internal resonance in the dynamic system, which further reveal some hard-explained 
phenomena in experimental investigations. 

(2)  Through the parametric analysis of the in-plane and out-of-plane internal resonance, it can be obtained that the 
mass ratio would affect 𝜀𝜀𝜆𝜆 while the initial cable force and the tensile stiffness of the cable have little effect on the 
resonance strength. The smaller the mass ratio of cable-beam, the greater the cable resonance intensity. 

(3)  There is no mutual interference between the in-plane and out-plane resonances, and the external excitation in the 
axial direction of the cable would not lead to the internal resonance of the system. Thus, only out-of-plane 
resonance would occur under the internal resonance condition of the summation relationship. 

(4)  The effect of damping and high-strength cable on vibration control is relatively discussed in this paper. On one hand, 
the damping or the excitations of other components does affect the response of the cable, limited studies in this 
paper have already verified the effectiveness of the model for simulating the resonance process of the cable 
dynamic structure. On the other hand, under the same external excitation, 𝜀𝜀𝜆𝜆 of the high-strength cable is smaller. 
Thus, the application of high-strength materials in engineering has a certain prospect for the internal vibration 
control of the cable. 

(5)  The non-linear properties of the parametric resonance should be in-depth investigated through the more refined 
model in the next-step investigations. 

Data Availability: The data of this study are available from the corresponding author upon request. 
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Appendix 1 - The relevant coefficients of corresponding polynomials 

𝜅𝜅𝑢𝑢12 = 𝑘𝑘𝑢𝑢1
𝑚𝑚1

+ 𝑇𝑇0
𝑙𝑙𝑚𝑚1

, �̇�𝑐𝑢𝑢1 = 𝑐𝑐𝑢𝑢1
𝑚𝑚1

,𝛤𝛤1,1 = 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚1

,𝛤𝛤1,2 = − 𝑇𝑇0
𝑙𝑙𝑚𝑚1

,𝛤𝛤1,3 = − 3𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚1

,𝛤𝛤1,4 = 3𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚1

,𝛤𝛤1,5 = − 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚1

,𝛤𝛤1,6 = 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚1

,𝛤𝛤1,7 =

− 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚1

,𝛤𝛤1,8 = − 𝐸𝐸𝐸𝐸
𝑙𝑙3𝑚𝑚1

,𝛤𝛤1,9 = 𝐸𝐸𝐸𝐸
𝑙𝑙3𝑚𝑚1

,𝛤𝛤1,10 = 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚1

,𝛤𝛤1,11 = − 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚1

,𝛹𝛹𝑢𝑢1 = 𝜓𝜓𝑢𝑢1
𝑚𝑚1

  (A.1) 

𝜅𝜅𝑤𝑤12 = 𝑘𝑘𝑤𝑤1
𝑚𝑚1

+ 𝑇𝑇0
𝑙𝑙𝑚𝑚1

, �̇�𝑐𝑤𝑤1 = 𝑐𝑐𝑤𝑤1
𝑚𝑚1

,𝛱𝛱1,1 = 𝐸𝐸𝐸𝐸1
2𝑙𝑙3𝑚𝑚1

,𝛱𝛱1,2 = − 𝐸𝐸𝐸𝐸
𝑙𝑙3𝑚𝑚1

,𝛱𝛱1,3 = 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚1

,𝛱𝛱1,4 = 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚1

,𝛱𝛱1,5 = − 𝑇𝑇0
𝑙𝑙𝑚𝑚1

,𝛱𝛱1,6 =

− 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚1

,𝛱𝛱1,7 = 𝐸𝐸𝐸𝐸
𝑙𝑙3𝑚𝑚1

,𝛱𝛱1,8 = − 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚1

,𝛱𝛱1,9 = − 3𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚1

,𝛱𝛱1,10 = 3𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚1

,𝛱𝛱1,11 = − 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚1

,𝛹𝛹𝑤𝑤1 = 𝜓𝜓𝑤𝑤1
𝑚𝑚1

  (A.2) 

𝜅𝜅𝑢𝑢22 = 2𝑇𝑇0
𝑙𝑙𝑚𝑚2

, �̇�𝑐𝑢𝑢2 = 𝑐𝑐𝑢𝑢2
𝑚𝑚2

,𝛤𝛤2,1 = − 𝑇𝑇0
𝑙𝑙𝑚𝑚2

,𝛤𝛤2,2 = − 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚2

,𝛤𝛤2,3 = 3𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚2

,𝛤𝛤2,4 = − 3𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚2

,𝛤𝛤2,5 = 𝐸𝐸𝐸𝐸
𝑙𝑙3𝑚𝑚2

,𝛤𝛤2,6 = 𝐸𝐸𝐸𝐸
𝑙𝑙2𝑚𝑚2

,𝛤𝛤2,7 =
𝐸𝐸𝐸𝐸

2𝑙𝑙3𝑚𝑚2
,𝛤𝛤2,8 = − 𝐸𝐸𝐸𝐸

2𝑙𝑙3𝑚𝑚2
,𝛤𝛤2,9 = 𝐸𝐸𝐸𝐸

2𝑙𝑙3𝑚𝑚2
,𝛤𝛤2,10 = 𝐸𝐸𝐸𝐸

𝑙𝑙3𝑚𝑚2
,𝛤𝛤2,11 = − 𝐸𝐸𝐸𝐸

𝑙𝑙3𝑚𝑚2
,𝛤𝛤2,12 = − 𝐸𝐸𝐸𝐸

2𝑙𝑙3𝑚𝑚2
,𝛤𝛤2,13 = 𝐸𝐸𝐸𝐸

𝑙𝑙3𝑚𝑚2
,𝛤𝛤2,14 = − 𝐸𝐸𝐸𝐸

𝑙𝑙3𝑚𝑚2
,𝛤𝛤2,15 =

𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚2

,𝛹𝛹𝑢𝑢2 = 𝜓𝜓𝑢𝑢2
𝑚𝑚2

  (A.3) 

𝜅𝜅𝑤𝑤22 = 2𝑇𝑇0
𝑙𝑙𝑚𝑚2

, �̇�𝑐𝑤𝑤2 = 𝑐𝑐𝑤𝑤2
𝑚𝑚2

,𝛱𝛱2,1 = − 𝑇𝑇0
𝑙𝑙𝑚𝑚2

,𝛱𝛱2,2 = − 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚2

,𝛱𝛱2,3 = 𝐸𝐸𝐸𝐸
𝑙𝑙3𝑚𝑚2

,𝛱𝛱2,4 = − 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚2

,𝛱𝛱2,5 = − 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚2

,𝛱𝛱2,6 = 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚2

,𝛱𝛱2,7 =

− 𝐸𝐸𝐸𝐸
𝑙𝑙3𝑚𝑚2

,𝛱𝛱2,8 = 𝐸𝐸𝐸𝐸
𝑙𝑙3𝑚𝑚2

,𝛱𝛱2,9 = 𝐸𝐸𝐸𝐸
𝑙𝑙2𝑚𝑚2

,𝛱𝛱2,10 = 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚2

,𝛱𝛱2,11 = 3𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚2

,𝛱𝛱2,12 = − 3𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚2

,𝛱𝛱2,13 = 𝐸𝐸𝐸𝐸
𝑙𝑙3𝑚𝑚2

,𝛱𝛱2,14 = − 𝑇𝑇0
𝑙𝑙𝑚𝑚2

,𝛱𝛱2,15 =

− 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚2

,𝛱𝛱2,16 = − 𝐸𝐸𝐸𝐸
𝑙𝑙2𝑚𝑚2

,𝛱𝛱2,17 = − 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚2

𝛱𝛱2,18 = − 3𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚2

,𝛱𝛱2,19 = 3𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚2

,𝛱𝛱2,20 = − 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚2

,𝛹𝛹𝑤𝑤2 = 𝜓𝜓𝑤𝑤2
𝑚𝑚2

  (A.4) 

𝜅𝜅𝑢𝑢32 = 𝑘𝑘𝑢𝑢3
𝑚𝑚3

+ 𝐸𝐸𝐸𝐸
𝑙𝑙𝑚𝑚3

, �̇�𝑐𝑢𝑢3 = 𝑐𝑐𝑢𝑢3
𝑚𝑚3

,𝛤𝛤3,1 = 𝐸𝐸𝐸𝐸
2𝑙𝑙2𝑚𝑚3

,𝛤𝛤3,2 = 𝐸𝐸𝐸𝐸
2𝑙𝑙2𝑚𝑚3

,𝛤𝛤3,3 = 𝐸𝐸𝐸𝐸
2𝑙𝑙2𝑚𝑚3

,𝛤𝛤3,4 = − 𝐸𝐸𝐸𝐸
𝑙𝑙2𝑚𝑚3

,𝛤𝛤3,5 = 𝐸𝐸𝐸𝐸
2𝑙𝑙2𝑚𝑚3

,𝛹𝛹𝑢𝑢3 = 𝜓𝜓𝑢𝑢3
𝑚𝑚3

 (A.5) 

𝜅𝜅𝑤𝑤32 = 𝑘𝑘𝑤𝑤3
𝑚𝑚3

− 𝑇𝑇0
𝑙𝑙𝑚𝑚3

, �̇�𝑐𝑤𝑤3 = 𝑐𝑐𝑤𝑤3
𝑚𝑚3

,𝛱𝛱3,1 = 𝑇𝑇0
𝑙𝑙𝑚𝑚3

,𝛱𝛱3,2 = 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚3

,𝛱𝛱3,3 = 𝐸𝐸𝐸𝐸
𝑙𝑙2𝑚𝑚3

,𝛱𝛱3,4 = 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚3

,𝛱𝛱3,5 = 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚3

,𝛱𝛱3,6 = − 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚3

,𝛱𝛱3,7 =

− 𝐸𝐸𝐸𝐸
𝑙𝑙2𝑚𝑚3

,𝛱𝛱3,8 = − 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚3

,𝛱𝛱3,9 = − 3𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚3

,𝛱𝛱3,10 = 3𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚3

,𝛱𝛱3,11 = − 𝐸𝐸𝐸𝐸
2𝑙𝑙3𝑚𝑚3

,𝛹𝛹𝑤𝑤3 = 𝜓𝜓𝑤𝑤3
𝑚𝑚3

  (A.6) 




