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Abstract 
As the consideration of soil-structure interaction is increasingly being incorporated into design practice, there is a need 
for solutions that consider the most relevant aspects of the behaviour of both the concrete and the soil, some of which 
are time-dependent. The present work introduces a model that suits both the structure and the foundation – including 
the supporting soil – allowing the coupled analysis of hardening on cure, creep, shrinkage and cracking of concrete, and 
consolidation of soil. Both the structure and the foundation are modeled as one-dimensional finite elements. The time-
dependent behaviour of the concrete and soil is modeled using Kelvin chains. For the structural elements, a mixed finite 
element formulation is used. Validation tests were conducted in the proposed modeling, comparing its results with 
available experimental and analytical data. The study of a reinforced concrete continuous beam supported by 
foundations on consolidating clay considering the time-dependent behaviour of the materials showed considerable 
changes in the effects of the soil-structure interaction. 
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Notation 

𝐴𝐴𝑠𝑠  cross-sectional area 
𝐚𝐚  element nodal displacement vector 
𝐚𝐚𝒓𝒓  rotation matrix 
𝐵𝐵  foundation width 
𝐵𝐵𝑠𝑠  first moment of the cross-sectional area 
𝐛𝐛  internal forces interpolation function 
𝐛𝐛𝑝𝑝  particular internal forces interpolation function 
𝐶𝐶𝑐𝑐   compression index 
𝑐𝑐𝑣𝑣  coefficient of consolidation 
𝐃𝐃  displacement vector 
𝐷𝐷𝜇𝜇  parameter of μth aging Kelvin unit 
𝐷𝐷𝜇𝜇,𝑘𝑘+1/2mid-step stiffness modulus 
𝐸𝐸𝑐𝑐  elastic modulus of consolidating soil 
𝐸𝐸𝑖𝑖  asymptotic modulus (age-independent) 
𝐸𝐸�𝑘𝑘  incremental modulus in step number 𝑘𝑘 
𝐸𝐸0  initial value of the elastic modulus 
𝐸𝐸∞  final value of the elastic modulus 
𝐸𝐸𝑠𝑠  elastic modulus of steel 
𝐞𝐞  cross-sectional strain vector 
𝐞𝐞′′  creep and shrinkage cross-sectional strain vector 
𝑒𝑒𝑟𝑟𝜇𝜇  dimensionless strain rate in unit μ 
𝑒𝑒𝑜𝑜  initial void ratio 
𝐞𝐞1  non-cracked cross-sectional strain vector 
𝐞𝐞2  cracked cross-sectional strain vector 
𝐹𝐹𝑥𝑥  nodal force in x direction 
𝐹𝐹𝑦𝑦  nodal force in y direction 
𝐅𝐅  applied nodal force vector 
𝐅𝐅𝑅𝑅  resisting nodal force vector 
𝐟𝐟  element loading vector 
𝑓𝑓𝑐𝑐𝑐𝑐  mean concrete compressive strength 
𝐻𝐻  Heaviside step function 
𝐇𝐇  transformation matrix for eliminating rigid body movements 
ℎ  thickness of the compressible layer 
ℎ𝑑𝑑  drainage distance in consolidation 
𝐼𝐼𝑠𝑠  second moment of the cross-sectional area 
𝑖𝑖  index for the iterative counter 
𝑗𝑗  creep function 
𝐊𝐊  structural tangent stiffness matrix 
𝑘𝑘  index representing the time step 
𝐤𝐤𝑒𝑒𝑒𝑒  element tangent stiffness matrix without rigid-body modes 
�̅�𝐤𝑠𝑠  transformed cross-sectional stiffness matrix 
�̅�𝐤1,𝑠𝑠  non-cracked transformed cross-sectional stiffness matrix 
�̅�𝐤2,𝑠𝑠  cracked transformed cross-sectional stiffness matrix 
𝐿𝐿  length of foundation element 
𝑙𝑙  length of beam element 
𝑚𝑚  number of Kelvin units in a chain 
𝑀𝑀  bending moment, moment 
𝑀𝑀�   bending moment due to strain 
𝑀𝑀𝑝𝑝  bending moment particular solution for non-zero 𝑝𝑝𝑦𝑦 
𝑀𝑀𝑟𝑟  cracking moment 
𝑀𝑀𝑧𝑧  nodal moment in z direction 
𝑁𝑁  normal force, axial force 
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𝑁𝑁�  normal force due to strain 
𝑁𝑁𝑝𝑝  normal force particular solution for non-zero 𝑛𝑛𝑥𝑥 
𝑛𝑛𝑥𝑥  loading per unit length of beam in x direction 
𝑝𝑝  excess pore-pressure 
𝑝𝑝𝑦𝑦  loading per unit length of beam in y direction 
𝑞𝑞  applied pressure 
𝐪𝐪  element nodal internal forces vector 
𝐑𝐑  residual force vector 
𝐬𝐬�  cross-sectional internal forces vector due to strain 
𝐬𝐬�′′  constrained cross-sectional internal force vector due to creep and shrinkage 
𝐬𝐬𝐩𝐩  cross-sectional internal forces vector due to loading 
𝑇𝑇  consolidation time factor 
𝑡𝑡  time, current age of concrete 
𝑡𝑡′  age at loading in a creep test 
𝑡𝑡𝑘𝑘  time of kth stress jump or kth time in a numerical solution 
𝑈𝑈  average degree of consolidation 
𝑢𝑢  axial displacement 
𝑣𝑣  vertical displacement 
𝑊𝑊  quadrature weight and length 
𝐰𝐰  nodal displacements without rigid body movement/element deformation vector 
𝑤𝑤𝑐𝑐   consolidation settlement 
𝑥𝑥𝑟𝑟   position of the cracked moment 
𝑦𝑦  vertical distance from the fiber to the cross-sectional reference axis 
𝛽𝛽  coefficient for the influence of loading time on mean strain 
𝛽𝛽𝜇𝜇  μth auxiliary constant used by exponential algorithm 
𝛾𝛾  slope of stress diagram 
𝛾𝛾𝑠𝑠  unit weight of the soil 
Δ𝜀𝜀𝑘𝑘′′  strain increment due to creep in step number 𝑘𝑘 
Δ𝜎𝜎𝑣𝑣0′   average stress increase in a soil layer 
𝜀𝜀  strain 
𝜀𝜀𝑜𝑜  strain at the cross-sectional reference point 
𝜀𝜀𝑐𝑐𝑟𝑟  creep strain 
𝜀𝜀𝑖𝑖  instantaneous strain 
𝜀𝜀𝑠𝑠  steel strain 
𝜀𝜀𝑠𝑠ℎ  shrinkage strain 
𝜀𝜀𝑇𝑇  thermal strain 
𝜁𝜁  interpolation coefficient 
𝜂𝜂  index referring to the value of the variable at the quadrature point 
𝜆𝜆𝜇𝜇  μth auxiliary constant used by exponential algorithm 
𝜇𝜇  index referring to the Kelvin unit in a chain 
𝜎𝜎  normal stress 
𝜎𝜎𝑣𝑣0′   initial effective vertical stress 
𝜏𝜏  retardation time 
𝜓𝜓  cross-sectional curvature 

1 INTRODUCTION 

The interaction between the structure and its foundation is increasingly being considered and incorporated into 
design practice. Structural projects based on rigid supports are still made for small buildings or in cases where the 
foundations are certainly rigid (not settling). In structures founded on footings or rafts, or even on groups of piles that 
interact with each other (i.e. subject to group effect), the analysis including soil-structure interaction leads to different 
and more realistic results. In addition to changing the pattern of settlements, making them more uniform, it is possible 
to assess the redistribution of forces in the structure. 
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Foundation and structural standards around the world are beginning to include recommendations for interaction 
analyses both in working conditions and at failure, although the former is more usual. For the analysis, adequate models 
must be used, ideally in a coupled solution. Although being recognized as important factors in the behaviour of reinforced 
concrete structures, concrete shrinkage, hardening (aging of the elastic modulus), cracking and creep, as well as the 
presence of reinforcement are hardly included in soil-structure interaction analyses. 

The main parameter to assess the implications of an interaction analysis is the relative stiffness between the 
structure and the foundation (Lee and Brown, 1972; Gusmão, 1990). Several studies were carried out to analyze the 
influence of different factors affecting this stiffness, such as three-dimensional effect (Majid and Cunnell, 1976), number 
of floors (Goschy, 1978; Lopes and Gusmão, 1991), construction sequence (Brown and Yu, 1986), soil nonlinearity 
(Jardine et al., 1986), soil constitutive model (Noorzaei et al., 1995), interface elements (Dalili et al., 2014), and even the 
presence of wall columns (Dalili et al., 2011) and brick panels (Hora, 2014). 

Various studies considered the time-dependent soil behaviour (Viladkar et al., 1993), the viscoelastic behaviour of 
the structure (Gonçalves et al., 2016; Rosa et al., 2018) or both (Santa Maria et al., 1999; Fajman and Sejnoha, 2007). 
Nevertheless, no study could be found that also considered the effects of concrete hardening, cracking and tension-
stiffening (increase in stiffness of a concrete section due to the transmission of stresses from rebars to the concrete 
between adjacent cracks) and the presence of reinforcement, all of which considerably influence the response of the 
structure (Espion and Halleux, 1990). 

The present work presents a model that can be applied to both the structure and the foundation – including the soil 
– allowing a coupled analysis. The model allows the consideration, for the concrete, of hardening, shrinkage, creep, 
reinforcement, cracking and tension-stiffening. As for the soil, it enables the consideration of consolidation (optionally 
also secondary consolidation). The modeling uses, for both the structure and the foundation, one-dimensional finite 
elements (truss or beam elements). Kelvin chains are used to model the time-dependent behaviour of the materials, 
namely creep and consolidation. A mixed finite element formulation is used for the structural elements. 

Validation tests were carried out after the models were programmed in a code referenced here by the aceonym 
SoilStruc, comparing its results with available experimental and analytical data. Then, a hypothetical case is studied. The 
case consists of a continuous beam supported by foundations on consolidating clay. Although simple, this case allows 
the examination the effects of the various phenomena on the behaviour of structure, alone and in combination. 

This study shows that, although concrete hardening and reinforcement increase the stiffness of the structure, creep 
and cracking reduce it more significantly, causing both the uniformity of settlements and the redistribution of forces – 
expected in a soil-structure interaction analysis – to be less significant. 

2 PROPOSED MODELING FOR TIME-DEPENDET BEHAVIOUR OF REINFORCED CONCRETE BEAMS 

In buildings, continuous (hyperstatic) beams are the main elements responsible for the redistribution of forces 
between columns when differential settlements occur. Therefore, it is crucial that its behaviour be adequately modeled 
for a correct force-displacement relationship of the structure. 

Although many studies on soil-structure interaction consider the behaviour of structural elements as linear elastic 
(e.g. Brown and Yu, 1986; Masih, 1993; Viladkar et al., 1993; Arapakou and Papadopoulos, 2020), it is known that 
reinforced concrete beams tend to crack and develop a non-linear response (Cosenza and Greco, 1990). In addition, due 
to shrinkage on cure and creep of the concrete, the force-displacement relationship varies over time (Ghali, 1986), 
increasing the complexity of the analysis. 

Building structures are usually modeled using one-dimensional elements. Due to the slenderness of these elements, 
the strains due to shear can be neglected and the Euler-Bernoulli hypothesis can be assumed. In this way, all strains are 
null, except the axial strain which is given by: 

𝜀𝜀 = 𝑢𝑢′ − 𝑦𝑦𝑣𝑣′′ = 𝜀𝜀𝑜𝑜 + 𝑦𝑦𝜓𝜓 = 𝐚𝐚𝑠𝑠𝐞𝐞 (1) 

where 𝜀𝜀𝑜𝑜 is the strain at the cross-sectional reference point, 𝑦𝑦 is the vertical distance from the fiber to the cross-sectional 
reference axis, 𝜓𝜓 is the cross-sectional curvature, 𝐚𝐚𝑠𝑠 and 𝐞𝐞 are defined as: 

𝐚𝐚𝑠𝑠 = {1 𝑦𝑦} (2) 

𝐞𝐞 = {𝜀𝜀𝑜𝑜 𝜓𝜓}T (3) 
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Besides the classical parameters, such as the elastic modulus of the material, geometric properties of the cross-
section and element length, the phenomena that most affect beam strain are concrete shrinkage, hardening, creep and 
tension-stiffening (Espion and Halleux, 1990). Such phenomena can be modeled at different levels. While the first three 
can be modeled at the material level, the latter has to be modeled at the cross-section level. With the relationship 
between internal forces and cross-sectional strains, it is sufficient to integrate the strains to obtain displacements at the 
extremities of the element, disregarding rigid body movements. 

2.1 Constitutive laws of the materials 

(a) Concrete 
For a uniaxial condition, under constant stresses 𝜎𝜎(𝑡𝑡0) applied at 𝑡𝑡0, the total strain of the concrete 𝜀𝜀(𝑡𝑡) at time 𝑡𝑡 

can be given by the sum of four parts: 

𝜀𝜀(𝑡𝑡) = 𝜀𝜀𝑖𝑖(𝑡𝑡0) + 𝜀𝜀𝑐𝑐𝑟𝑟(𝑡𝑡) + 𝜀𝜀𝑠𝑠ℎ(𝑡𝑡) + 𝜀𝜀𝑇𝑇(𝑡𝑡) (4) 

where 𝜀𝜀𝑖𝑖(𝑡𝑡0) is the instantaneous strain due to loading, 𝜀𝜀𝑐𝑐𝑟𝑟(𝑡𝑡) is the creep strain, 𝜀𝜀𝑠𝑠ℎ(𝑡𝑡) is the shrinkage strain, and 𝜀𝜀𝑇𝑇(𝑡𝑡) 
is the thermal strain. 

For the in-service behaviour, the relation 𝜎𝜎(𝑡𝑡0) x 𝜀𝜀𝑐𝑐𝑟𝑟(𝑡𝑡) can be considered linear. Furthermore, assuming there is 
no temperature variation, (Eq. 4) can be written as: 

𝜀𝜀(𝑡𝑡) − 𝜀𝜀𝑠𝑠ℎ(𝑡𝑡) = 𝜎𝜎(𝑡𝑡0)𝐽𝐽(𝑡𝑡, 𝑡𝑡0) (5) 

where 𝐽𝐽(𝑡𝑡, 𝑡𝑡0) is the creep function. 
For a continuous loading function, the strain generated by the stress history is given by: 

𝜀𝜀(𝑡𝑡) − 𝜀𝜀𝑠𝑠ℎ(𝑡𝑡) = ∫ 𝐽𝐽(𝑡𝑡, 𝑡𝑡′)d𝜎𝜎(𝑡𝑡′)𝑡𝑡
𝑡𝑡0

 (6) 

The step-by-step method was selected to model creep as it is applicable for evaluating any stress history. In this 
method, creep can be represented either in integral or in differential form. The second representation was adopted 
because it is computationally more efficient as it is not necessary to store the entire stress history, but only a fixed 
number of variables that are updated at each step (Bazant and Jirásek, 2018). 

The creep function can either be obtained in tests or taken from standards and recommendations. However, for the 
differential formulation, the creep function needs to be properly represented. For the case of hardening viscoelastic 
materials, Bazant and Jirásek (2018) suggest approximating the function by the following Dirichlet series: 

𝐽𝐽(𝑡𝑡, 𝑡𝑡′) = � 1
𝐸𝐸i

+ ∑ 1−𝑒𝑒
−(𝑡𝑡−𝑡𝑡′)

𝜏𝜏𝜇𝜇

𝐷𝐷𝜇𝜇(𝑡𝑡′)
𝑐𝑐
𝜇𝜇=1 �𝐻𝐻(𝑡𝑡 − 𝑡𝑡′) (7) 

where 𝐸𝐸𝑖𝑖 is the age-independent modulus, m is the number of Kelvin units in a chain, 𝜇𝜇 is the index referring to the Kelvin 
unit in a chain, 𝐷𝐷𝜇𝜇 is the parameter of μth hardening Kelvin unit, 𝜏𝜏𝜇𝜇 is the μth retardation time and 𝐻𝐻 is the Heaviside 
step function. 

The least squares method can be applied to obtain the values of the 𝐷𝐷𝜇𝜇 functions. To this end, the values of the 
retardation time 𝜏𝜏𝜇𝜇, the age at loading 𝑡𝑡′ and the time increment 𝑡𝑡 − 𝑡𝑡′ must be chosen properly to ensure both that the 
system is not ill-conditioned, and that the solution has good accuracy (Bazant and Wu, 1973). The value of 𝑚𝑚 is a function 
of the time interval for which the viscoelastic response is desired. The longer the range, the greater the number of Kelvin 
chains needed. 

In the numerical solution, the problem is treated incrementally, and time is divided into intervals of size ∆𝑡𝑡𝑘𝑘. 
Integration algorithms lose numerical stability or accuracy when such an interval is greater than the shortest retardation 
time of the Kelvin chain. Using the exponential algorithm for hardening materials proposed by Bazant (1971), this 
limitation is overcome, allowing greater flexibility in defining time intervals. 

The incremental constitutive relation using the second order exponential algorithm in the time interval ∆𝑡𝑡𝑘𝑘 =
𝑡𝑡𝑘𝑘+1 − 𝑡𝑡𝑘𝑘 can be written as: 
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Δ𝜎𝜎𝑘𝑘 = 𝐸𝐸�𝑘𝑘(Δ𝜀𝜀𝑘𝑘 − Δ𝜀𝜀𝑘𝑘′′ − Δ𝜀𝜀𝑠𝑠ℎ,𝑘𝑘) (8) 

where the incremental modulus 𝐸𝐸�𝑘𝑘, the incremental creep strain at constant stress Δ𝜀𝜀𝑘𝑘′′ and the incremental shrinkage 
strain Δ𝜀𝜀𝑠𝑠ℎ,𝑘𝑘 are given by: 

𝐸𝐸�𝑘𝑘 = � 1
𝐸𝐸i

+ ∑ 1−𝜆𝜆𝜇𝜇,𝑘𝑘

𝐷𝐷𝜇𝜇,𝑘𝑘+1/2

𝑐𝑐
𝜇𝜇=1 �

−1
 (9) 

Δ𝜀𝜀𝑘𝑘′′ = ∑ (1 − 𝛽𝛽𝜇𝜇𝑘𝑘)𝑒𝑒𝑟𝑟𝜇𝜇,𝑘𝑘
𝑐𝑐
𝜇𝜇=1  (10) 

Δ𝜀𝜀𝑠𝑠ℎ,𝑘𝑘 = 𝜀𝜀𝑠𝑠ℎ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑠𝑠) − 𝜀𝜀𝑠𝑠ℎ(𝑡𝑡𝑘𝑘 , 𝑡𝑡𝑠𝑠) (11) 

where 𝐷𝐷𝜇𝜇,𝑘𝑘+1/2 is the mid-step stiffness modulus, and the factors 𝛽𝛽𝜇𝜇,𝑘𝑘, 𝜆𝜆𝜇𝜇,𝑘𝑘 and 𝑒𝑒𝑟𝑟𝜇𝜇,𝑘𝑘 are given by: 

𝛽𝛽𝜇𝜇,𝑘𝑘 = 𝑒𝑒−Δ𝑡𝑡𝑘𝑘/𝜏𝜏𝜇𝜇  (12) 

𝜆𝜆𝜇𝜇,𝑘𝑘 = (1 − 𝛽𝛽𝜇𝜇,𝑘𝑘) 𝜏𝜏𝜇𝜇
Δ𝑡𝑡𝑘𝑘

 (13) 

where 𝑒𝑒𝑟𝑟𝜇𝜇,𝑘𝑘 is an internal variable representing the dimensionless strain rate, whose initial value is null and whose 
updated value at the end of each step is given by: 

𝑒𝑒𝑟𝑟𝜇𝜇,𝑘𝑘+1 = 𝜆𝜆𝜇𝜇,𝑘𝑘

𝐷𝐷𝜇𝜇,𝑘𝑘+1/2
Δ𝜎𝜎𝑘𝑘 + 𝛽𝛽𝜇𝜇,𝑘𝑘𝑒𝑒𝑟𝑟𝜇𝜇,𝑘𝑘 (14) 

The functions proposed by Comite Euro-International du Beton (CEB-FIP) in Model Code 1990 (1993) were used to 
model the increase in the elastic modulus (hardening), creep, and shrinkage. 

(b) Steel 
The behaviour of steel was considered as linear elastic for both compression and tension, as it is assumed that for 

working conditions, the yield stress is not reached. Therefore, the increase in stress in the steel Δ𝜎𝜎𝑠𝑠 is given by: 

Δ𝜎𝜎𝑠𝑠 = 𝐸𝐸𝑠𝑠Δ𝜀𝜀𝑠𝑠 (15) 

where 𝐸𝐸𝑠𝑠 is the elastic modulus of the steel and Δ𝜀𝜀𝑠𝑠 is the steel strain increment. 

2.2 Constitutive law of the cross-section 

For reinforced concrete elements in working conditions, the tension region can either be cracked or not. So, the 
section response is divided into non-cracked and cracked. In the first one, it is assumed that concrete withstands up to 
the tensile strength. In the second one, it is assumed that the tensile strength is null. Furthermore, it is well known that 
the concrete in tension between cracks has a significant contribution to the stiffness of the element (Beeby et al., 2005). 
This phenomenon is known as tension-stiffening. To consider such phenomenon, the proposal by Fédération 
Internationale du Béton (fib) in Fib Model Code for Concrete Structures 2010 (2013) was adopted. In the proposed 
formulation, the strain of the section at instant k is given by: 

𝐞𝐞𝑘𝑘 = (1 − 𝜁𝜁)𝐞𝐞1,𝑘𝑘 + 𝜁𝜁𝐞𝐞2,𝑘𝑘 (16) 

where 𝐞𝐞1,𝑘𝑘 is the non-cracked cross-sectional strain vector, 𝐞𝐞2,𝑘𝑘 is the cracked cross-sectional strain vector, and 𝜁𝜁 is an 
interpolation coefficient given by: 

𝜁𝜁 = �
0 𝑠𝑠𝑒𝑒 𝑀𝑀 ≤ 𝑀𝑀𝑟𝑟

1 − 𝛽𝛽 �𝑀𝑀𝑟𝑟
𝑀𝑀
�
2

𝑠𝑠𝑒𝑒 𝑀𝑀 ≥ 𝑀𝑀𝑟𝑟
 (17) 
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where 𝛽𝛽 is a coefficient that considers the influence of the loading time on the mean strain, 𝑀𝑀𝑟𝑟 is the cracking moment 
and 𝑀𝑀 represents the bending moment. 

According to Beeby et al. (2005), the value of 0.5 for 𝛽𝛽 can be used in the calculation of creep strain, since the loss 
of tension-stiffening occurs in a shorter period of time when compared to creep. To perform the analysis over time, Eq. 
(16) must be written in incremental form. Using the Taylor series expansion and removing the higher order terms, it 
follows: 

Δ𝐞𝐞𝑘𝑘 = 𝐞𝐞𝑘𝑘+1 − 𝐞𝐞𝑘𝑘 ≅ (1 − 𝜁𝜁)Δ𝐞𝐞1,𝑘𝑘 + 𝜁𝜁Δ𝐞𝐞2,𝑘𝑘 + 𝜁𝜁′(𝐞𝐞2,𝑘𝑘 − 𝐞𝐞1,𝑘𝑘)Δ𝑀𝑀 (18) 

where 

𝜁𝜁′ = 2𝛽𝛽𝑀𝑀𝑟𝑟
2 𝑀𝑀3⁄  (19) 

Using the Euler-Bernoulli hypothesis, it is possible to define an expression relating the increase in internal forces 
with the increase in the strain of the section. In the case of viscoelastic materials, such expression is: 

Δ𝐬𝐬�𝑘𝑘 + Δ𝐬𝐬�𝑘𝑘′′ = �̅�𝐤𝑠𝑠,𝑘𝑘Δ𝐞𝐞𝑘𝑘 (20) 

where Δ𝐬𝐬�𝑘𝑘 is the increment of cross-sectional internal forces vector, Δ𝐬𝐬�𝑘𝑘′′ is the increment of constrained cross-sectional 
internal forces vector due to creep and shrinkage and �̅�𝐤𝑠𝑠,𝑘𝑘 is the stiffness matrix of the transformed cross-section. For 
the case of a section with n materials, the values of Δ𝐬𝐬�𝑘𝑘′′ and �̅�𝐤𝑠𝑠,𝑘𝑘 are given by: 

Δ𝐬𝐬�𝑘𝑘′′ = ∑ �∫ 𝐚𝐚𝑠𝑠T𝐸𝐸�𝑘𝑘,𝑐𝑐𝐚𝐚𝑠𝑠𝑑𝑑𝐴𝐴
 
𝐴𝐴𝑚𝑚

�𝑛𝑛
𝑐𝑐=1 Δ𝐞𝐞𝑘𝑘,𝑐𝑐

′′   (21) 

�̅�𝐤𝑠𝑠,𝑘𝑘 = ∑ �∫ 𝐚𝐚𝑠𝑠T𝐸𝐸�𝑘𝑘,𝑐𝑐𝐚𝐚𝑠𝑠𝑑𝑑𝐴𝐴
 
𝐴𝐴𝑚𝑚

�𝑛𝑛
𝑐𝑐=1 = ∑ 𝐸𝐸�𝑘𝑘,𝑐𝑐 �

𝐴𝐴𝑠𝑠,𝑐𝑐 𝐵𝐵𝑠𝑠,𝑐𝑐
𝐵𝐵𝑠𝑠,𝑐𝑐 𝐼𝐼𝑠𝑠,𝑐𝑐

�𝑛𝑛
𝑐𝑐=1  (22) 

where Δ𝐞𝐞𝑘𝑘,𝑐𝑐
′′  is the increment of cross-sectional strain due to creep and shrinkage, 𝐴𝐴𝑠𝑠,𝑐𝑐 is the cross-sectional area, 𝐵𝐵𝑠𝑠,𝑐𝑐 

is the section first moment of area and 𝐼𝐼𝑠𝑠,𝑐𝑐 is the section second moment of area. 
Considering the same stress increment Δ𝐬𝐬�𝑘𝑘, the strain of the non-cracked section Δ𝐞𝐞1,𝑘𝑘 will be different from the 

strain of the cracked section Δ𝐞𝐞2,𝑘𝑘, since the consideration or not of the concrete tensile strength affects the properties 
of area 𝐴𝐴𝑠𝑠,𝑐𝑐, 𝐵𝐵𝑠𝑠,𝑐𝑐 and 𝐼𝐼𝑠𝑠,𝑐𝑐 of the cross-section. Thus, the response of the non-cracked and cracked section can be given, 
respectively, by: 

Δ𝐬𝐬�𝑘𝑘 + Δ𝐬𝐬�1,𝑘𝑘
′′ = �̅�𝐤1,𝑠𝑠,𝑘𝑘Δ𝐞𝐞1,𝑘𝑘 (23) 

Δ𝐬𝐬�𝑘𝑘 + Δ𝐬𝐬�2,𝑘𝑘
′′ = �̅�𝐤2,𝑠𝑠,𝑘𝑘Δ𝐞𝐞2,𝑘𝑘 (24) 

In the cracked section, it is necessary to define the height of the neutral line to calculate the properties of area. Such 
analysis can be done using an iterative process (Kawakami and Ghali, 1996). Furthermore, because of both creep and 
concrete shrinkage, the neutral line position tends to change over time. However, if this height is supposed constant over 
time, the analysis is simplified and errors resulting from this hypothesis are not significant (Ghali, 1986). In a comparison 
carried out by Torres (2001), the difference in section curvature was only 2%. 

2.3 Beam element formulation 

The set of equations that must be solved for a beam element are related to the strain-displacement relationship 
(Eq. 1), constitutive cross-section relationship (Eqs. 16, 23, 24) and equilibrium equations given by: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝑛𝑛𝑥𝑥 = 0 (25) 

𝜕𝜕2𝑀𝑀
𝜕𝜕𝑧𝑧2

+ 𝑝𝑝𝑦𝑦 = 0 (26) 
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where 𝑛𝑛𝑥𝑥 and 𝑝𝑝𝑦𝑦 are the loadings per unit length of the beam in the x and y directions, respectively. 
As can be seen in Eq. (16), due to tension-stiffening, the response of the cross-section is non-linear when the 

cracking moment is exceeded. To model such behaviour with finite elements based on the displacement field, it is 
necessary to subdivide the element so that the nonlinear behaviour of the material is satisfactorily approximated. When 
using elements based on the force field, such refinement is not necessary and, thus, elements with less degrees of 
freedom can be used, leading to greater computational efficiency. 

In the present work, the mixed finite element formulation proposed by Taylor et al. (2003) was used. After 
discretizing the fields and calculating the integrals along the element, the equations obtained correspond to the balance 
of forces, to the displacement at the ends of the element, and to the balance of the internal forces along the element. 
Putting the three equations in matrix incremental form, follows: 

�
𝟎𝟎 𝐇𝐇𝐓𝐓 𝟎𝟎
𝐇𝐇 𝟎𝟎 −𝐛𝐛𝛈𝛈𝐓𝐓

𝟎𝟎 −𝐛𝐛𝛈𝛈 �̅�𝐤𝒔𝒔,𝜂𝜂

� �
∆𝐚𝐚
∆𝐪𝐪
∆𝐞𝐞𝜼𝜼

� = �
𝐅𝐅 − 𝐇𝐇𝐓𝐓𝐪𝐪
𝐛𝐛𝜂𝜂 
𝐓𝐓 𝐞𝐞𝜼𝜼 − 𝐇𝐇𝐚𝐚

𝐛𝐛𝛈𝛈𝐓𝐓𝐪𝐪 + 𝐬𝐬𝛈𝛈
𝐩𝐩 − 𝐬𝐬�𝛈𝛈(𝐞𝐞𝜼𝜼)

� (27) 

where index 𝜂𝜂 indicates the value of the variable at a point of the quadrature, 𝐚𝐚 is the vector of nodal displacements, 𝐪𝐪 
is the vector of nodal internal forces, 𝐇𝐇 is the transformation matrix for eliminating rigid body movements, 𝐛𝐛 is the 
interpolation function of the nodal internal forces, 𝐅𝐅 is the nodal forces vector, 𝐬𝐬𝐩𝐩 are the internal forces due to loading, 
and 𝐬𝐬� are the internal forces due to cross-sectional strain. These variables are given by: 

𝐚𝐚 = {𝑢𝑢1 𝑣𝑣1 𝜃𝜃1 𝑢𝑢2 𝑣𝑣2 𝜃𝜃2}𝑇𝑇 (28) 

𝐪𝐪 = {𝑁𝑁 𝑀𝑀1 𝑀𝑀2}𝑇𝑇 (29) 

𝐇𝐇 = �

−1 0 0
0 −1

𝑒𝑒
−1

0 1
𝑒𝑒

0

1 0 0
0 1

𝑒𝑒
0

0 −1
𝑒𝑒

1
� (30) 

𝐛𝐛𝛈𝛈 = �
1 0 0
0 1−𝜉𝜉𝜂𝜂

2
1+𝜉𝜉𝜂𝜂
2
�𝑊𝑊𝜂𝜂 (31) 

𝐅𝐅 = �𝐹𝐹𝑥𝑥1 𝐹𝐹𝑦𝑦1 𝑀𝑀𝑧𝑧
1 𝐹𝐹𝑥𝑥2 𝐹𝐹𝑦𝑦2 𝑀𝑀𝑧𝑧

2�𝑇𝑇 − �−𝑁𝑁𝑝𝑝1 𝑀𝑀𝑝𝑝
′1 −𝑀𝑀𝑝𝑝

1 −𝑁𝑁𝑝𝑝2 −𝑀𝑀𝑝𝑝
′2 𝑀𝑀𝑝𝑝

2�𝑇𝑇 (32) 

𝐬𝐬𝛈𝛈
𝐩𝐩 = �

𝑁𝑁𝑝𝑝
𝜂𝜂𝑊𝑊𝜂𝜂

𝑀𝑀𝑝𝑝
𝜂𝜂𝑊𝑊𝜂𝜂

� (33) 

𝐬𝐬�𝛈𝛈 = �
𝑁𝑁�𝜂𝜂𝑊𝑊𝜂𝜂

𝑀𝑀�𝜂𝜂𝑊𝑊𝜂𝜂
� (34) 

where 𝑙𝑙 is the element length, 𝑊𝑊𝜂𝜂 is the quadrature weight and length, and −1 ≤ 𝜉𝜉 ≤ 1. 
Substituting Equations (18), (23) and (24) in Equation (27), the incremental formulation for a viscoelastic material 

considering the contribution of the concrete between cracks is: 

⎣
⎢
⎢
⎢
⎡
 

𝟎𝟎
𝐇𝐇
𝟎𝟎
𝟎𝟎

     

𝐇𝐇𝐓𝐓

𝜻𝜻′(𝐞𝐞𝟐𝟐
𝛈𝛈 − 𝐞𝐞𝟏𝟏

𝛈𝛈)𝐛𝐛𝛈𝛈
−𝐛𝐛𝛈𝛈
−𝐛𝐛𝛈𝛈

     

𝟎𝟎
−(𝟏𝟏 − 𝜻𝜻)𝐛𝐛𝛈𝛈𝐓𝐓

�̅�𝐤𝟏𝟏,𝒔𝒔,𝜼𝜼
𝟎𝟎

     

𝟎𝟎
−𝜻𝜻𝐛𝐛𝛈𝛈𝐓𝐓

𝟎𝟎
�̅�𝐤𝟐𝟐,𝒔𝒔,𝜼𝜼

 

⎦
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧ ∆𝐚𝐚
∆𝐪𝐪
Δ𝐞𝐞𝟏𝟏

𝛈𝛈

Δ𝐞𝐞𝟐𝟐
𝜼𝜼
⎭
⎪
⎬

⎪
⎫

=

⎩
⎪
⎨

⎪
⎧ 𝐅𝐅 − 𝐇𝐇𝐓𝐓𝐪𝐪

(𝟏𝟏 − 𝛇𝛇)𝐛𝐛𝛈𝛈𝐓𝐓𝐞𝐞𝟏𝟏
𝛈𝛈 + 𝛇𝛇𝐛𝐛𝛈𝛈𝐓𝐓𝐞𝐞𝟐𝟐

𝛈𝛈 − 𝐇𝐇𝐚𝐚
𝐛𝐛𝛈𝛈𝐓𝐓𝐪𝐪 + 𝐬𝐬𝛈𝛈

𝐩𝐩 − 𝐬𝐬�𝛈𝛈(𝐞𝐞𝜼𝜼) + Δ𝐬𝐬�𝟏𝟏,𝒌𝒌,𝜼𝜼
′′

𝐛𝐛𝛈𝛈𝐓𝐓𝐪𝐪 + 𝐬𝐬𝛈𝛈
𝐩𝐩 − 𝐬𝐬�𝛈𝛈(𝐞𝐞𝜼𝜼) + Δ𝐬𝐬�𝟐𝟐,𝒌𝒌,𝜼𝜼

′′ ⎭
⎪
⎬

⎪
⎫

  (35) 
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Note that, as the constitutive relationship is linear and the force field along the element is known, for both non-
cracked and cracked sections it is possible to calculate the respective strain fields along the element and, therefore, the 
fields related to every element of the Kelvin chain. 

The position of the cracked region changes depending on the load level and, thus, the positions of the integration 
points will also be modified, making it necessary to determine the values of the internal variables at the new points. Since 
the strain field is known, it is possible to calculate strains at any point. The solution algorithm used is given in appendix. 

2.4 Solution algorithm 

The solution of the structural system is obtained by iterations. The implemented algorithm follows the steps: 
1. It is assumed that the process starts after the convergence of the previous step, which is represented by index k. 
Increment time according to 𝑡𝑡𝑘𝑘+1 = 𝑡𝑡𝑘𝑘 + ∆𝑡𝑡𝑘𝑘, nodal forces to 𝐅𝐅𝑘𝑘+1 = 𝐅𝐅𝑘𝑘 + ∆𝐅𝐅𝑘𝑘 and loads along the element to 
𝐟𝐟𝑘𝑘+1 = 𝐟𝐟𝑘𝑘 + ∆𝐟𝐟𝑘𝑘; 
2. For each material with viscoelastic behaviour, calculate: 𝐷𝐷𝜇𝜇,𝑘𝑘+1/2 , 𝛽𝛽𝜇𝜇,𝑘𝑘+1 , 𝜆𝜆𝜇𝜇,𝑘𝑘+1 , 𝐸𝐸�𝑘𝑘+1 , ∆𝐞𝐞𝑘𝑘+1′′ ; 
3. For each cross-section, calculate: �̅�𝐤𝑠𝑠,𝑘𝑘+1 ,∆𝐬𝐬�𝑘𝑘+1′′  ,𝑀𝑀𝑟𝑟,𝑘𝑘+1; 
4. In order to determine the state of the structure subject to the force vectors 𝐅𝐅𝑘𝑘+1 and 𝐟𝐟𝑘𝑘+1, an iterative solution 
strategy is started aiming at reaching the global equilibrium with an iterative counter 𝑖𝑖 = 0; the structure state in k 
is used as initial guess; 
5. For each element, assuming that all nodal displacements increments are null, calculate: 
𝑥𝑥𝑟𝑟,𝑖𝑖 ,𝐤𝐤𝑒𝑒𝑒𝑒,𝑖𝑖 ,∆𝐪𝐪𝑖𝑖 ,𝐊𝐊𝑒𝑒𝑒𝑒,𝑖𝑖 ,𝐅𝐅𝑅𝑅,𝑒𝑒𝑒𝑒,𝑖𝑖 ; 
6. Create the stiffness matrix and the resisting nodal force vector and calculate the nodal displacements: ∆𝐃𝐃𝑖𝑖+1 =
[𝐊𝐊𝑖𝑖]−1�𝐅𝐅𝑘𝑘+1 − 𝐅𝐅𝑅𝑅,𝑖𝑖�; 
7. Using the displacement increment in each element Δ𝐃𝐃𝑒𝑒𝑒𝑒,𝑖𝑖+1, determine the displacements in local coordinates 
without rigid body movement: 𝐰𝐰𝑖𝑖+1 = 𝐰𝐰𝑖𝑖 + 𝐇𝐇𝐚𝐚𝑟𝑟Δ𝐃𝐃𝑒𝑒𝑒𝑒,𝑖𝑖+1; 
8. Using the displacement increment in each element ∆𝐰𝐰𝑖𝑖, calculate the force vector increment: ∆𝐪𝐪𝑖𝑖 =
𝐤𝐤𝑒𝑒𝑒𝑒,𝑖𝑖 �∆𝐰𝐰𝑖𝑖 − 𝐛𝐛𝑇𝑇��̅�𝐤𝑠𝑠,𝑘𝑘+1�

−1
�𝐛𝐛𝑝𝑝Δ𝐟𝐟𝑒𝑒𝑒𝑒,𝑘𝑘+1 + Δ𝐬𝐬𝑘𝑘+1′′ ��; 

9. Start iteration counter 𝑗𝑗 = 0 and use system state at 𝑖𝑖 as initial attempt; 
10. Update the values of the nodal forces applied to the elements: 𝐪𝐪𝑗𝑗 = 𝐪𝐪𝑖𝑖 + ∆𝐪𝐪𝑗𝑗; 
11. For each force field 𝐪𝐪𝑗𝑗, calculate: 𝑥𝑥𝑟𝑟,𝑗𝑗+1 ,𝐰𝐰𝑗𝑗+1 ,𝐤𝐤𝑒𝑒𝑒𝑒,𝑗𝑗+1; 
12. Calculate the nodal force increment using line search to determine the value of α that minimizes the norm 
�𝐰𝐰𝑖𝑖+1 − 𝐰𝐰𝑗𝑗+1�: ∆𝐪𝐪𝑗𝑗+1 = 𝐤𝐤𝑒𝑒𝑒𝑒,𝑗𝑗+1�𝐰𝐰𝑖𝑖+1 − 𝐰𝐰𝑗𝑗+1� e ∆𝐪𝐪𝑒𝑒𝑠𝑠,𝑗𝑗+1 = 𝛼𝛼∆𝐪𝐪𝑗𝑗+1. 
If the residual strain norm is less than the specified tolerance or the number of iterations is greater than the 
established maximum limit, use the states in 𝑗𝑗 + 1 for the states in 𝑖𝑖 + 1 and proceed to the next step; otherwise, 
increment 𝑗𝑗 and return to step 10; 
13. Considering the displacement increment ∆𝐃𝐃𝑖𝑖+1, calculate the stiffness matrix of the structure 𝐊𝐊𝑖𝑖+1 and the 
resisting nodal force vector 𝐅𝐅𝑅𝑅,𝑖𝑖+1; 
14. Calculate the residual of forces 𝐑𝐑𝑖𝑖+1 = 𝐅𝐅𝑘𝑘+1 − 𝐅𝐅𝑅𝑅,𝑖𝑖+1. if the residual norm is less than the established tolerance 
or the number of iterations is greater than the maximum limit, update the state variables in 𝑘𝑘 + 1 with the values 
of the variables in 𝑖𝑖 + 1 and proceed to step 15; otherwise, increment in 𝑖𝑖 and return to step 6; 
15. Calculate the strain increment Δ𝐞𝐞𝑘𝑘 and the total strain 𝐞𝐞𝑘𝑘+1 = 𝐞𝐞𝑘𝑘 + Δ𝐞𝐞𝑘𝑘; 
16. For each viscoelastic material of the cross-section of each element, calculate: ∆𝜎𝜎𝑘𝑘 ,∆𝛾𝛾𝑘𝑘 , 𝜀𝜀𝑜𝑜,𝜇𝜇,𝑘𝑘+1 ,𝜓𝜓𝜇𝜇,𝑘𝑘+1 , 𝜀𝜀𝑜𝑜,𝑘𝑘+1 
e 𝜓𝜓𝑘𝑘+1; 
17. Increment the value of k and go back to step 1. 

3 MODELING FOUNDATION SETTLEMENTS BY CONSOLIDATION 

The magnitude of foundation settlements is fundamental for the analysis of the soil-structure interaction. In the 
proposed modeling, settlement development over time of a foundation derives from soil consolidation and a foundation 
element will be represented by a truss element (vertical) whose response over time is equivalent to that of the 
foundation. In this manner, the implementation of such analysis in frame-structure programs, which are used in most 
design offices, is simplified. 
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3.1 Long-term settlement calculation 

The final settlement of a normally consolidated clay under 1D conditions can be obtained with Terzaghi’s 
formulation: 

𝑤𝑤𝑐𝑐 = 𝐶𝐶𝑐𝑐
1+𝑒𝑒0

𝑙𝑙𝑙𝑙𝑙𝑙 �𝜎𝜎𝑣𝑣0
′ +Δ𝜎𝜎𝑣𝑣0′

𝜎𝜎𝑣𝑣0′
� ℎ (36) 

where 𝐶𝐶𝑐𝑐  is the compression index, 𝑒𝑒0 is the initial void ratio, 𝜎𝜎𝑣𝑣0′  is the initial effective vertical stress, Δ𝜎𝜎𝑣𝑣0′  is the stress 
increase (average in the layer) and ℎ is the layer thickness. 

If the stress increment is small in relation to the initial stress, the following approximation can be made so as to 
linearize the function: 

𝑤𝑤𝑐𝑐 = 𝐶𝐶𝑐𝑐
1+𝑒𝑒0

ℎ
ln (10)

Δ𝜎𝜎𝑣𝑣0′

𝜎𝜎𝑣𝑣0′
 (37) 

In order to use a truss element to represent a consolidating clay, it is necessary to define its area 𝐴𝐴, its length l, and 
the elastic modulus of the material. The length can be adopted as the clay layer thickness. The area can be defined as a 
function of the average stress increase in the layer, Δ𝜎𝜎𝑣𝑣0′ , of the mean applied pressure 𝑞𝑞, and of the dimensions 𝐵𝐵 and 
𝐿𝐿 of the foundation with: 

𝐴𝐴 = 𝑞𝑞𝑞𝑞𝑞𝑞
Δ𝜎𝜎𝑣𝑣0′

 (38) 

The average stress increase in the consolidating layer can be calculated by the Theory of Elasticity. The average 
stress increase can be calculated from the profile of stress increases obtained with Boussinesq’s equation. 

Based on Eq. (37), the elastic modulus 𝐸𝐸𝑐𝑐 relative to consolidation can be defined as: 

𝐸𝐸𝑐𝑐 = (1+𝑒𝑒0)ln (10)𝜎𝜎𝑣𝑣0′

𝐶𝐶𝑐𝑐
 (39) 

3.2 Settlement development over time 

The development of settlement by consolidation can be modelled as a viscoelastic behaviour (Fajman and Sejnoha, 
2007). For the 1D case, the consolidation equation is: 

𝜕𝜕𝑝𝑝
𝜕𝜕𝑡𝑡

= 𝑐𝑐𝑣𝑣
𝜕𝜕2𝑝𝑝
𝜕𝜕𝑧𝑧2

 (40) 

where 𝑝𝑝 is the excess pore-pressure and 𝑐𝑐𝑣𝑣 is the coefficient of consolidation. Assuming that both upper and lower 
boundaries are draining and 2ℎ𝑑𝑑 apart, and that the load application is instantaneous, the settlement 𝑤𝑤𝑐𝑐  can be 
calculated by: 

𝑤𝑤𝑐𝑐(𝑡𝑡) = 𝑤𝑤𝑐𝑐(∞)∑ 8
𝑛𝑛2𝜋𝜋2

∞
𝑛𝑛=1,3,5,… �1 − 𝑒𝑒

−𝑛𝑛
2𝜋𝜋2

4ℎ𝑑𝑑
2 𝑐𝑐𝑣𝑣𝑡𝑡� (41) 

Comparing Eq. (41) with the Dirichlet series (Eq. 7), it can be observed that the term 𝐸𝐸𝑖𝑖 tends to infinity, that is, the 
material does not present instantaneous responses to loading. The terms 𝐸𝐸𝜇𝜇 and 𝜏𝜏𝜇𝜇 can be written as: 

𝐸𝐸𝜇𝜇 = 8
𝑛𝑛2𝜋𝜋2

 (42) 

𝜏𝜏𝜇𝜇 = 4ℎ2

𝑛𝑛2𝜋𝜋2𝑐𝑐𝑣𝑣
 (43) 
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The analogy described above allows the rational determination of the number of elements in the Kelvin chain and 
their respective parameters to accurately represent soil consolidation. It is interesting to note that the delay time value 
𝜏𝜏𝜇𝜇 decreases with 𝑛𝑛, and that it is the smallest value of 𝜏𝜏𝜇𝜇 that indicates the capacity of the model to accurately represent 
the shortest time interval under analysis. Thus, considering that a finite number 𝑚𝑚 of elements in the Kelvin chain will 
be used in the simulation, it is necessary to introduce the term 𝐸𝐸𝑖𝑖, which is given by: 

𝐸𝐸i = �1 − ∑ 8
𝜋𝜋2𝑛𝑛2

2𝑐𝑐−1
𝑛𝑛=1 �

−1
 (44) 

As the viscous model used for the soil is the same as that used for the concrete, it is possible to compare the values 
of the delay time of each model to define how many Kelvin elements should be used and which minimum time step 
should be initially adopted in the analysis. 

4 VALIDATION TESTS 

4.1 Experimental validation of concrete creep 

For the experimental validation of creep, Benchmark no. 1 was used, with tests of one span reinforced concrete 
beams conducted by Subcommittee 3 of the Technical Committee TC 114 of RILEM (Espion, 1993). 

The characteristics of the beams and loading can be seen in Figure 1 and Table 1. A total of 7 beams were tested 
with 5 load levels, 2 of them repeated in order to assess the consistency of the results. The main objective of the tests 
was to determine the development of the displacement at the middle of the span over time. 

 
Figure 1 Loading and beam cross-section (dimensions in mm). 

Table 1 Applied loads and average compressive strength of concrete in each test. 

Beam C11 C12 C22 C13 C14 C24 C15 

P (kN) 5.77 12.19 12.19 18.61 25.04 25.04 31.45 
fcm (MPA) 28.8 29.4 32.9 30.9 29.4 32.0 29.3 

The beams were cured under constant moisture and temperature, thus, allowing to disregard thermal variation. 
The loading was applied instantly at 28 days and kept constant until the test was concluded. 

Some parameters required for modeling had to be estimated, based on standards and recommendations, as creep 
tests of the concrete were not available. Thus, a perfect match between the experimental results and the numerical 
predictions should not expect, but rather the latter should reproduce the response of the structure with acceptable 
accuracy. 

The experimental and numerical results can be compared in Figure 2. For the non-cracked case (C11) or the case 
with higher loading (C15), there is a better agreement with test results than for the other cases, in which the size of the 
crack formation region is larger. Overall, it can be concluded that the model provides satisfactory results. 

4.2 Validation of soil consolidation modeling 

In order to verify the accuracy of the method presented in item 3.2, the analytical solution was compared with 
results using 1, 2, 5 and 7 elements in the Kelvin chain. Figure 3 presents the percentage of settlement as a function of 
the time factor, T, for the analytical solution (U) and for different numbers of elements in the Kelvin chain (U1, U2, U5 
and U7). The parameters were adjusted using Eq. (44) as to obtain 100% of settlement at the end of the analysis. Note 
that for 𝑇𝑇 > 0.1, there is no difference between the models used, whereas for smaller values of T, a significant difference 
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between U1 and U can be observed. The difference between U5 and U7 is very small and both models were able to 
produce the expected response with good accuracy. 

 
Figure 2 Comparison of experimental results with numerical predictions. 

 
Figure 3 Percentage of settlement as a function of time factor for exact solution (U) and for solutions using Kelvin chains. 

5 STUDY OF A CONTINUOUS BEAM ON SETTLING FOOTINGS DUE TO SOIL CONSOLIDATION 

To assess time-dependent effects on soil-structure interaction, a continuous beam with 3 supports on footings was 
analyzed. This case was chosen as the beams of a structure are the main elements responsible for load redistribution, 
and for keeping the problem simple in order to evaluate how each of the intervening phenomena influences the problem. 

5.1 The problem in study 

The structure in study is shown in Figure 4a. Circular footings had dimensions defined by for an allowable stress of 
50 kN/m2, with the loads obtained with rigid supports: 112.5 kN and 375 kN. The ground profile is shown in Figure 4b. 
The water table is at the base of the sand, and the unit weights of the soils are 𝛾𝛾𝑠𝑠𝑠𝑠𝑛𝑛𝑑𝑑 = 19 kN/m³ and 𝛾𝛾𝑐𝑐𝑒𝑒𝑠𝑠𝑦𝑦 =
14.7 kN/m³. The initial vertical effective stress in the middle of the clay layer is 𝜎𝜎𝑣𝑣𝑜𝑜′ = 113 kN/ m². The stress increase 
profile in the soft clay layer – obtained with Boussinesq’s Equation – is shown in Figure 4b. 

To predict settlements due to the consolidation of the clay, the vertical stress increases along its thickness were 
considered. Performing numerical integration, the average stress increases are 1.91 kN/m2 and 5.76 kN/m2 under the 
side and center footings, respectively. Considering a normally consolidated clay and with 𝐶𝐶𝑐𝑐 = 1.0 and 𝑒𝑒0 = 2.5, the final 
settlements are 1.24 cm and 3.70 cm, respectively. The contribution of the dense sand to the settlements of the footings 
can be neglected and the clay consolidation settlements will be the (long term) footing settlements. 
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Figure 4 (a) Analyzed structure and (b) ground profile with the vertical stress increases. 

The structural model is shown in Figure 5, where the horizontal element represents the beam and the vertical 
elements represent the footings (more specifically, the soil behaviour under the footing). The characteristics of the 
material and cross-section of the beam are shown in Table 2. 

Table 2 Material and cross-section characteristics of the beam. 

E (GPa) b (mm) h (mm) A (mm2) I (mm4) 

25 300 600 180,000 5.4x109 

The cross-sectional area of the side vertical element is 65.1 m2 and of the center element is 58.9 m2, and correspond 
to the average stress increase in the soft clay layer, i.e., the area of the elements was adopted so that the stresses remain 
equal to those indicated above (1.91 kN/m2 and 5.76 kN/m2). 

5.2 Influence of the viscoelastic behaviour of materials 

To assess the effect of the viscoelastic behaviour of materials − namely concrete creep and soil consolidation − 6 
cases were analyzed, as indicated in Table 3. E0 represents the elastic modulus of the material at the initial moment, E∞ 
represents the modulus at infinite time, and the viscoelastic material presents a transition from E0 to E∞ over time. In 
relation to concrete, the instantaneous elastic behaviour is represented by cases 1, 2 and 4. Creep is considered in cases 
3 and 5; and the elastic behaviour after material creep is considered in case 6. For the soil, the elastic behaviour after 
consolidation is considered in cases 2, 3 and 6; and consolidation is considered in cases 4 and 5. 
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Figure 5 Structural model. 

Table 3 Behaviour of the material for the different cases analyzed. 

Case 1 2 3 4 5 6 

Concrete 𝐸𝐸0 𝐸𝐸0 𝐸𝐸0 → 𝐸𝐸∞ 𝐸𝐸0 𝐸𝐸0 → 𝐸𝐸∞ 𝐸𝐸∞ 
Soil 𝑅𝑅𝑖𝑖𝑙𝑙𝑖𝑖𝑑𝑑 𝐸𝐸∞ 𝐸𝐸∞ 𝐸𝐸0 → 𝐸𝐸∞ 𝐸𝐸0 → 𝐸𝐸∞ 𝐸𝐸∞ 

Figure 6 shows (a) the differential settlement, (b) the reaction force at the central support (normal force in the 
element representing the foundation), and (c) the bending moment in the beam at the central support. 

 
Figure 6 Result for the central support, over time, for the 6 cases analyzed. 

At the beginning of the analysis, case 3 is equal to 2, and cases 4 and 5 are both equal to 1. It is also noted that there 
is a smooth transition over time. Hence, at the end of the analysis, case 4 is equal to case 2, and cases 3 and 5 are both 
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equal to case 6. Cases 4 and 2 present the same result at the end of the analysis because in both cases the material of 
the beam is elastic, and that the only difference is the development of the supports’ settlement over time. The equality 
of cases 3, 5 and 6 indicates that the viscoelastic material presents a smooth transition from instantaneous behaviour to 
the behaviour at infinity time. Therefore, both the behaviour at the beginning and at the end of the analysis can be 
obtained using the respective elastic modulus, rendering unnecessary an analysis over time. 

Knowing that the differential settlement calculated with rigid supports (case 1) is 24.6mm, it can be noted that the 
consideration of flexible supports (case 2) causes three different reductions: in differential settlement (36%), in the 
reaction of support (16%) and in the negative (tension in upper fiber) bending moment (81%). Those results were 
expected since the soil-structure interaction tends to cause more uniform settlements and to transfer loads from central 
to the external columns. However, when considering the elastic modulus of the concrete in infinite time together with 
the flexible support (case 6), it can be seen that the reductions in differential settlement (11%), in support reaction (6%), 
and in bending moment (30%) are much less when compared to case 2. Thus, it can be stated that creep tends to reduce 
the effects of the soil-structure interaction, since it reduces the elastic modulus of the structure, making it more flexible. 

It is interesting to note that the redistribution of internal forces is quite significant and that these forces are used 
for the design of the beams. Therefore, not considering the interaction can lead to results on the unsafe side. 

5.3 Influence of the coefficient of consolidation 

To evaluate the influence of settlement rate on internal forces, analyzes were performed by varying the value of 
the soil coefficient of consolidation, 𝑐𝑐𝑣𝑣, and comparing them to the cases of elastic and rigid supports. Evaluating the 
results for the central support (Figure 7), it can be noted that at 𝑡𝑡 = 0, all analyzes indicate the same response as that of 
rigid supports, as expected. Over time, there is a smooth transition so that by the end of the analysis all results coincide 
with that of the elastic supports. It can be concluded that the 𝑐𝑐𝑣𝑣 of the soil does not influence neither the initial nor final 
response, but rather the way in which the transition between these two states occurs. Furthermore, it seems that the 
cases of rigid and elastic supports act as an envelope for all other cases. 

 
Figure 7 Result for the central support, over time, for different values of 𝑐𝑐𝑣𝑣. 



Soil-structure interaction with time-dependent behaviour of both concrete and soil Leonardo de Jesus Alexandre et al. 

Latin American Journal of Solids and Structures, 2022, 19(5), e453 16/21 

5.4 Influence of concrete hardening 

Analyzing the cases considering concrete hardening on cure (Figure 8), it can be observed that when 𝑐𝑐𝑣𝑣 is high (𝑐𝑐𝑣𝑣 =
1,7 ∙ 107 and 𝑐𝑐𝑣𝑣 = 1,7 ∙ 106 𝑚𝑚2/𝑑𝑑𝑑𝑑𝑦𝑦), consolidation occurs in such a short time interval that hardening does not make 
a difference, the result remaining equal to those of the elastic supports. For the other cases, it can be observed that the 
smaller the coefficient of consolidation 𝑐𝑐𝑣𝑣, the longer the differential settlement take to occur. Hence, the structure will 
be more rigid, causing both a reduction in the final differential settlement, and an increase in the internal forces 
redistribution. Therefore, it can be concluded that the rate of consolidation affects the differential settlements and the 
internal forces. Furthermore, it is interesting to note that the cases of elastic and rigid supports cease to function as an 
envelope for possible results. 

 
Figure 8 Result for the central support, over time, for different values of cv, considering concrete hardening. 

5.5 Influence of cracking with tension-stiffening 

The reinforcement adopted for the analysis of the cracked structure was obtained by designing the cross-section 
with the usual safety factors (e.g., from Brazilian standard NBR 6118:2014). As the beam is subjected to positive and 
negative bending moments, it was divided into three sections with two different cross-sections as indicated in Table 4. 

Table 4 Reinforcement of the beam (Section 1 along the span and Section 2 at the center). 

Bending Moment Reinforcement (cm2) 
Section 1 Section 2 

Negative 0.00 14.73 
Positive 8.59 8.59 

The 6 cases shown in Figure 6 are also presented in Figure 9, this time considering cracking and tension-stiffening. 
Comparing both figures, it is notable that there is a reduction of approximately 50% in the difference in support reaction 
and bending moment for cases 1 and 2, leaving the two analyzes with close results. This reduction in the redistribution 
of forces is due to the increased flexibility of the elements when considering concrete cracking. 
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Figure 9 Results for the central support, over time, for the 5 cases considering tension-stiffening 

Analyzing cases 2 and 6, it is observed that both the difference in support reaction and in bending moment were 
reduced by approximately 70%. As such cases represent the initial and the final behaviour of the structure, and the creep 
of the concrete defines the transition between them, it can be concluded that in the cracked structure creep has a smaller 
effect on the redistribution of internal forces. This stems from the fact that, due to cracking, the area of concrete that is 
mechanically contributing is smaller. 

The results of cases 2 and 5 are compared in Figure 10 for the central support of the non-cracked (nc) and cracked 
(c) beams. Note that, without cracking, the difference in the support reaction varies from 15.8% at the initial time to 
10.8% at the final time. Considering cracking, the variation goes from 7.6% to 2.8% over time. The same behaviour is 
observed for the bending moment. Such reductions indicate that there is less force redistribution in the structure. 
Furthermore, it is observed that both creep and cracking have a tendency to reduce the redistribution of forces. 

Observing the influence of the 𝑐𝑐𝑣𝑣 value on the results for the central support (Figure 11), it can be noticed that the 
behaviour of the cracked beam is similar to that of the non-cracked one, as the values tend to remain the same as the 
results of the elastic support when time goes to infinity, with the exception of rigid support. In this case, such a difference 
is due to the redistribution of forces between the concrete and the reinforcement caused by creep, which ends up 
inducing a change in the internal forces. However, the magnitude of the redistribution of forces in the cracked beam is 
much lower than in the non-cracked one. 

Including the concrete hardening effect (Figure 12), it is possible to observe that this phenomenon influences the 
response of the structure for cases where the 𝑐𝑐𝑣𝑣 is smaller, similar to the observation made from Figure 8. However, it is 
noted that the contribution of such an effect is smaller in the cracked structure, where the variation of the support 
reaction and of the bending moment were 0.2% and 5.9%, respectively. As for the non-cracked structure, the values were 
4.1% and 25.4%, in the same order. 
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Figure 10 Comparison of results for the central support of cracked and non-cracked structure. 

 
Figure 11 Result for the central support of the cracked structure, over time, for different values of 𝑐𝑐𝑣𝑣. 
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Figure 12 Result for the central support, over time, for different values of 𝑐𝑐𝑣𝑣 considering both concrete hardening and cracking. 

6 CONCLUSIONS 

The incorporation of hardening on cure, shrinkage, creep, cracking and tension-stiffening of the concrete, and the 
consolidation of the soil in the soil-structure interaction allowed an assessment of these phenomena not found in 
previous publications. The modelling proposed to consider all those phenomena in a coupled analysis also contains some 
novelties. 

The results obtained in the present study enabled the following conclusions: 
(1) When considering the creep of concrete, the structure tends to become more flexible, reducing the uniformity 
of settlements and the redistribution of internal forces. The results observed for bending moment and support 
reactions are found between the results obtained in the analyses with elastic support and with rigid support. 
(2) The value of the coefficient of consolidation influences the rate of transition between the behaviour with rigid 
supports and the behaviour with elastic supports. For high values of the coefficient of consolidation, settlement 
occurs so quickly that the effects of concrete hardening are not noticeable. However, for smaller values, there is a 
gain in the structure's stiffness and, consequently, a change in differential settlements and internal forces. 
(3) Cracking has a relevant contribution in reducing the stiffness of the structure, significantly reducing the 
redistribution of forces. Creep effects tend to be attenuated by cracking, as the concrete area that is mechanically 
stressed is reduced. 
(4) Considering both cracking and creep, the reduction in the stiffness of the structure can be considerable, so that 
settlements and internal forces can be considerably different from those obtained in the more usual elastic soil-
structure analysis. 
From the above results, it can be said that the consideration of both creep and cracking of the concrete significantly 

reduces the stiffness of the structure, attenuating the effects of soil-structure interaction. Thus, it is recommended that 
such phenomena be considered in analyses, for more realistic results. 
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