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Abstract 
In this paper, free vibration characteristics of laminated composite 
plates are investigated. A model is developed for a composite layer 
based on the consideration of non-linear terms in von-Karman’s 
non-linear deformation theory. The governing partial equation of 
motion is reduced to an ordinary non-linear equation and then 
solved using LIM method. The variation of frequency ratio of the 
Isotropic and composite plates is brought out considering parame-
ters such as aspect ratio, fiber arrangements (orientation), number 
of layers, and modal ratios. 
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1 INTRODUCTION 

Laminated composite plates, due to their high specific strength and stiffness have been increasingly 
used in a wide range of aerospace, mechanical, and civil applications. By tailoring the sequence of 
the stacks and the thickness of the layers, composite laminates’ characteristics can be matched to 
the structural requirements with no difficulty. To use composite laminates efficiently, an accurate 
knowledge of vibration characteristics is essential. Vibration not only creates excessive noise and 
wastes energy but also may result in catastrophic failures. These phenomena, when the system op-
erates around its natural frequencies, would be even more disastrous. 

Many publications have dealt with the linear vibrations of laminated composites. In these cases, 
the equation of motion is obtained easily and then by a reduction into a generalized eigenvalue 
problem, frequencies and mode shapes are determined. However, in many working conditions, plates 
are subjected to large amplitudes, so a nonlinear frequency analysis is required as a result. Obtain-
ing an exact solution for the nonlinear free vibration of composite plates is very difficult due to the 
complexity of the equation of motion. The first approximate solution developed by Chu and Her-
man[1] in 1956, was the start point for so many other numerical methods introduced in the follow-
ing years such as the finite element method (FEM)[2], the discrete singular convolution method 
(DSC), the strip element method, and the Ritz methods[3].  
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Singh et al.[4] used direct numerical integration to study non-linear vibration of rectangular lam-
inated composite plates in 1990. Using Kirchhoff hypothesizes and von-Karman strain-stress rela-
tions, they derived governing equations. They also employed harmonic oscillating assumptions and 
investigated large amplitude vibrations for various arrangements. 

Singha and Ganapathi[5], examined thin isotropic composite plates exploiting finite element 
method. They also considered the effects of shear deformation, rotational inertia and in plane iner-
tia, in their formulation. In their study, non-linear matrices derived from Lagrange equations were 
solved using direct iteration technique and also they examined variations of non-linear frequency 
ratio versus various amplitudes considering influencing parameters, such as boundary conditions 
and fiber orientations. 

Malekzadeh and Karami[6], investigated non-linear vibrations of composite plates considering 
first order shear deformation theory employing Quadrature method. Effects of various parameters, 
such as foundations, thickness to length ratio and aspect ratio on frequency ratio were also exam-
ined in their study. 

Although numerical approaches are applicable to a wide range of practical cases, approximate 
analytical methods provide highly accurate solutions and a deep physical insight. One of the main 
approximate analytical approaches on nonlinear vibration analysis is Perturbation Method. This 
method is effective just in solving weakly nonlinear differential equations. Because of the limited 
application of the perturbation methods, newer approaches have been developed during recent years 
which are more powerful. For example, Pirbodaghi et al.[7] used the homotopy analysis method 
(HAM) to obtain an approximate analytical solution for nonlinear  vibrations of thin laminated 
composite plates and showed  effectiveness of this method to obtain an accurate solution with rela-
tively less computational effort. Moreover, the energy balance method (EBM) [8], the max-min 
approach (MMA) [9], the homotopy perturbation method (HPM) [10] and so many others have 
been proved to be strong approximate analytical approaches, obtaining accurate results for nonline-
ar differential equations [11]. 

The LIM method, which was introduced by Rafieipour et al.[12] is a very powerful method in 
solving non-linear differential equations and its effectiveness is proved in studying  non-linear vibra-
tion of  composite beams. It was shown that this is one of the best analytical methods due to the 
rate of convergence and its accuracy. 

In the present paper, LIM method is used to obtain approximate analytical solutions for nonlin-
ear vibrations of a thin laminated composite plate. A variational method is employed to derive the 
governing equations. The nonlinear term added is associated with von-Karman strain displacement 
relation. LIM method is used to achieve nonlinear natural frequency and its excellent accuracy for 
the wide range of amplitude values is satisfied. A comparison with results in other articles has been 
done to validate the answers. The impact of layer arrangements and aspect ratio effects on the free 
vibration are investigated in detail. 
 
2 FORMULATION 

Consider a thin laminated composite plate of length a, width b, and thickness h as shown in figure 1. 
A positive set of coordinate system demonstrated in a way that reference surface is taken as the 
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mid plane and its origin is considered at the corner of the plate. The plate is supposed to be simply 
supported along all its edges. In addition, no slip condition between the layers is assumed. 
 

 
 
 

Figure 1   Schematic of the laminated composite plate 
 

Assume u, v and w are the displacements of an arbitrary point of the plane in x, y and z axis, 
u0 and v0 to be the corresponding displacements of that point in the mid-plane and   0ε  and  κ  to 
be the mid-plain strain and mid-plane curvature respectively; mechanical shear relation can be 
demonstrated as[13]: 
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Following von-Karman’s strain-displacement assumptions the in plane strain, shear strain and 

plane curvatures can be expressed as: 
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According to Classical Theory of Elasticity, the strain-stress relations for each layer can be de-
rived as: 
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Where the numbers 1, 2, 6 referred to principal axis of each layer. Qij( )

k
(i = 1,2, 6)  are the 

coefficients of the reduced stiffness matrix at the kth layer  and are defined as: 
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Below stress-strain relations are obtained from the axis transformation of the each layer stress-

strain equations referred to global axes: 
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And Qij( )

k
(i = 1,2, 6)  are plane stress-reduced stiffness coefficients. 

Constitutive equations which relate force and moment resultants to the strains through an ap-
propriate integration along the thickness can be developed as: 
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Aij, Bij, and Dij are called extensional stiffnesses, bending-extensional coupling stiffnesses and 

bending stiffness, respectively. The equations of motion are derived from Hamilton’s principle as 
follows[14]: 
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Where U, the potential energy of the plate and T, the kinematic energy of the plate are given 

by: 
 

  
U = 1

2
σ xxε xx +σ yyε yy + 2σ xyε xy( )dz dx dy

V
∫                           (11) 

 
 

   
T = 1

2
ρihi∑( ) w2 dx

0

b

∫
0

a

∫ dy                                    (12) 

 
 
 
Substituting Eqs.(11) and (12) into the Hamilton’s equation of motion and with an appropriate 

integration along the thickness and then by equating δu0 , δv0 , and δw0 coefficients to zero, one 
obtains the below relations: 

 



786       H. Rafieipour et al. / Application of Laplace Iteration method to Study of Nonlinear Vibration of laminated composite plates 

 
Latin American Journal of Solids and Structures 10(2013) 781 – 795 

 

  

∂Nx

∂x
+
∂Nxy

∂y
= 0

∂N y

∂y
+
∂Nxy

∂x
= 0

∂2 Mx

∂x2 + 2
∂2 Mxy

∂x∂y
+
∂2 M y

∂y2 + ∂
∂x

Nx

∂w
∂x

⎛
⎝⎜

⎞
⎠⎟
+ ∂
∂x

Nxy

∂w
∂y

⎛
⎝⎜

⎞
⎠⎟
+ ∂
∂y

Nxy

∂w
∂x

⎛
⎝⎜

⎞
⎠⎟

+ ∂
∂y

N y

∂w
∂y

⎛
⎝⎜

⎞
⎠⎟
= ρh

∂2 w
∂t2

          (13) 

 
By assuming simply supported boundary condition, the relations below are considered for dis-

placement equations to satisfy the boundary conditions: 
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And U(t), V(t), and W(t) are the maximum displacements of plate center point along principal 

axes x, y, and z respectively. U(t) and V(t) can be expressed in terms of W(t) using first two equa-
tions of Eq. (13) and then by  employing Galerkin method and substituting  U(t) and V(t) in terms 
of W(t) into Eq. (13), the governing equation can be written as: 
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3
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Supposing Wmax as the maximum vibration amplitude of the plate center, the initial conditions 

of the center of the plate can be expressed as: 
 

W (0) =Wmax , dW (0)
dt

= 0                                      (16) 

 

3 DESCRIPTION OF THE PROPOSED METHOD 

Using the Laplace Transformation method, an analytical approximated technique is proposed to 
present an accurate solution for nonlinear differential equations. To clarify the basic ideas of pro-
posed method consider the following second order differential equation, 
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   u(t)+ N  u(t){ } = 0                                             (17) 

 
with artificial zero initial conditions and N  is a nonlinear operator. Adding and subtracting the 
term 2 ( )u tω , the Eq. (17) can be written in the form 

 

   u(t)+ω 2u(t) = L  u(t){ } = f u(t)( )                                   (18) 

 
where L  is a linear operator and 

 
( ) { }2( ) ( )  ( )f u t u t N u tω= −                                      (19) 

 
Taking Laplace transform of both sides of the Eq. (18) in the usual way and using the homoge-

nous initial conditions gives 
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where s and ℑ  are the Laplace variable and operator, correspondingly. Therefore it is obvious that   

 

  
U (s) = ℑ f u(t)( ){ }  G(s)                                      (21) 

 
where  

2 2

1( )G s
s ω

=
+

                                             (22) 

 
Now, implementing the Laplace inverse transform of Eq. (21) and using the Convolution theo-

rem offer 
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where 
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Substituting Eq. (19) and (24) into (23) gives 
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= − −∫                            (25) 

Now, the actual initial conditions must be imposed. Finally the following iteration formulation 
can be used [15]  
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Knowing the initial approximation 0u , the next approximations , 0nu n >  can be determined 
from previous iterations. Consequently, the exact solution may be obtained by using: 
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The method proposed here can be applied in various non-linear problems. However, there is no 

need for any linearization and neither any small parameter. Also, the obtained approximate solu-
tions converge quickly to the exact one. 

 
 

4 IMPLEMENTATION OF THE PROPOSED METHOD 

Rewriting Eq(15) in the standard form of  Eq. (18) results in the following equation: 
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Applying the proposed method, the following iterative formula is formed as: 
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Eq. (28) will be homogeneous, when   f η(t)( )  has a value of zero. So, its homogeneous. 

Solution 
 

  η0(t) = Acos(ωt)                                                 (31) 
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is considered as the zero approximation for using in iterative Eq.(30). 

 
Expanding   f η0(τ )( )  we have: 
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The coefficient of the term   cos(ωt)  in   f η0(τ )( ) should be vanished in order to avoid secular 

terms in subsequent iterations. 
As a result, the first approximation of the frequency can be expressed as: 
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α3 A2                                                (34) 

 
Substituting Eq. (31) into (30) and eliminating the secular terms which is the coefficient of 

   cos(ωt) in forcing function ( )f η , results in: 

 

( ){
}

2 2 3 2
1 2 3 22

3 2
3 2

1( ) 32 96 3 cos( ) 16 cos(2 )
96

                     3 cos(3 ) 48

t A A A t A t

A t A

η α ω α ω α ω
ω

α ω α

= + − +

+ −
         (35) 

 
This is the first approximation of ( )tη . Replacement of Eq. (35) in Eq. (30) and applying the 

procedure again results in the second approximation of ( )tη as 
 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

0 1 2 3

2 4 5 63

7 8 9

cos cos 2 cos 3
1 1( ) cos 4 cos 5 cos 6

1981808640
cos 7 cos 8 cos 9

t t t

t t t t
A

t t t

ω ω ω
η ω ω ω

ω ω ω

Ι + Ι + Ι + Ι⎛ ⎞
⎜ ⎟

= +Ι + Ι + Ι⎜ ⎟
⎜ ⎟+Ι + Ι + Ι⎝ ⎠

         (36) 
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Where iΙ  are given in Appendix. 
The coefficient of cos( )tω  in forcing function assumed to be zero in order to evade the secular 

terms: 
 

8 6 4 2
6 4 2 0 0ω β ω β ω β ω β+ + + + =                                  (37) 

 
where 
 

2
2

6 3 2 15

2 4 3 2 2
4 3 2 3 1 3 2 1 26 2 5

2
3 6 2 5 3 3 2 2

2 3 2 3 2 2 312 5 2 5

4 8 3 7 2 2 6
0 3 2 3 2 316 12 9 3

5 1
2 3

3 3 1 5 1
2 2 2 2 3 3

3 1 5 79
2 2 2 3 2 3

3 3 3 5 5
2 2 2 2 3

A A

A A A A

A A A A

A A A

β α α α

β α α α α α α α α

β α α α α α α

β α α α α α

⎛ ⎞
= − + −⎜ ⎟
⎝ ⎠
⎛ ⎞⎛ ⎞= − + + −⎜ ⎟⎜ ⎟⋅⎝ ⎠⎝ ⎠
⎛ ⎞

= − + + −⎜ ⎟⋅ ⋅⎝ ⎠
⋅⎛ ⎞= − + −⎜ ⎟⋅⎝ ⎠

               (38) 

 
Solving Eq. (37) estimates the value of ω  for the actual natural frequency of the system. 
 

 
5 RESULTS AND DISCUSSIONS 

In order to verify the precision of the suggested method, current results were compared with other 
articles. 

Table 1 illustrates the frequency ratio of square and rectangular plates. It is observable that our 
results are in excellent agreement with the results provided by other references. 

It can be observed that the second displacement coefficient is zero for square plates.  
 

Table 1   Frequency ratio of isotropic rectangular and square plates using various methods ( 0.3)υ =  
 

)2/( =ba  )1/( =ba  hW /  
Ref [4]   HAM  LIM  Ref [4]   HAM  LIM   
1.0254  1.0285  1.0285  1.0208  1.0252  1.0251  0.2 
1.0982  1.1091  1.1091  1.0809  1.0967  1.0967  0.4 
1.2097  1.2306  1.2307  1.1743  1.2056  1.2056  0.6 
1.3505  1.3818  1.3819  1.2937  1.3422  1.3423  0.8 
1.5124  1.5537  1.5541  1.4327  1.4988  1.4991  1 

---  1.7404  1.741  ---  1.6698  1.6703  1.2 
1.877  1.9376  1.9384  1.7503  1.8512  1.852  1.4 

---  2.1425  2.1435  ---  2.0404  2.0412  1.6 
---  2.353  2.3543  ---  2.2353  2.2364  1.8 

2.4798  2.5679  2.5694  2.2828  2.4347  2.436  2 
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In both cases, the difference between the non-linear frequency and linear frequency increased by 
increasing the amplitude of vibration. This difference increased even more when aspect ratio in-
creased (figure 2). 

 
 

 
 

 
Figure 2   The effect of aspect ratio on the nonlinear to the linear frequency ratio 

 
In table 2, the Variation of frequency ratios versus non-dimensional amplitude ratio for symmet-

rical and non-symmetrical square plate arrangements are shown. The symmetrical arrangement 
plates have the same frequency ratios values.  

 
 

Table 2   Frequency ratio of composite square plate with different arrangements using various methods 
)25.0,5.0/,40/( 1221221 === νEGEE  

 

[90°/0°/0°/90°]  [0°/90°/90°/0°]  [0°/90°/0°/90°]  hW /  
Ref [4]   HAM  LIM  Ref [4]   HAM  LIM  Ref [4]   HAM  LIM   
1.0535  1.0509  1.0509  1.0535  1.0509  1.0509  1.0634  1.0575  1.0575  0.25 
1.2038  1.1891  1.1892  1.2038  1.1891  1.1892  1.2388  1.212  1.2121  0.5 
1.4172  1.3872  1.3874  1.4172  1.3872  1.3874  1.4832  1.4305  1.4308  0.75 
1.6691  1.6227  1.6232  1.6691  1.6227  1.6232  1.7679  1.6881  1.6886  1 

---  1.8819  1.8827  ---  1.8819  1.8827  ---  1.9694  1.9703  1.25 
2.2355  2.1563  2.1574  2.2355  2.1563  2.1574  2.4000  2.2659  2.2671  1.5 

---  2.4408  2.4422  ---  2.4408  2.4422  ---  2.5724  2.5739  1.75 
2.8439  2.7325  2.7342  2.8439  2.7325  2.7342  3.0729  2.8857  2.8876  2 

 
 

The ratio of linear to non-linear frequency for rectangular plates with aspect ratios of 2 and 4 
are presented in tables 3 and 4 for different arrangements. The [90/0/0/90] arrangement shows the 
least frequency ratio. For all arrangements excluding the above-mentioned, the frequency ratio in-
creases when aspect ratio increases. 
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Table 3   Frequency ratio of composite rectangular plate with different arrangements using various methods 
)2/,25.0,5.0/,40/( 1221221 ==== baEGEE ν  

 

[90°/0°/0°/90°]  [0°/90°/90°/0°]  [0°/90°/0°/90°]  hW /  
Ref [4]   HAM  LIM  Ref [4]   HAM  LIM  Ref [4]   HAM  LIM   
1.0340  1.0322  1.0322  1.1327  1.1297  1.1297  1.0645  1.0522  1.0535  0.25 
1.1331  1.1226  1.1226  1.4674  1.4458  1.4461  1.2427  1.2156  1.2261  0.5 
1.2798  1.2576  1.2577  1.8946  1.8531  1.8538  1.4905  1.46  1.4797  0.75 
1.4593  1.4239  1.4242  2.3652  2.304  2.3052  1.7787  1.7463  1.7704  1 

---  1.6119  1.6124  ---  2.7777  2.7795  ---  2.0531  2.0782  1.25 
1.8777  1.8148  1.8155  3.3634  3.2644  3.2666  2.4178  2.3703  2.3955  1.5 

---  2.0283  2.0292  ---  3.7591  3.7619  ---  2.6935  2.7184  1.75 
2.3396  2.2493  2.2505  4.3949  4.2591  4.2622  3.0976  3.0205  3.045  2 

 
Table 4   Frequency ratio of composite rectangular plate with different arrangements using various methods 

)4/,25.0,5.0/,40/( 1221221 ==== baEGEE ν  
 

[90°/0°/0°/90°]  [0°/90°/90°/0°]  [0°/90°/0°/90°]  hW /  
Ref [4]   HAM  LIM  Ref [4]   HAM  LIM  Ref [4]   HAM  LIM   
1.0326  1.0309  1.0309  1.1707  1.1657  1.1657  1.0653  1.0499  1.0516  0.25 
1.1275  1.1178  1.1178  1.5838  1.5544  1.5547  1.2454  1.2129  1.2267  0.5 
1.2688  1.248  1.248  2.0951  2.0403  2.0412  1.4956  1.4607  1.4865  0.75 
1.4423  1.4089  1.4092  2.6489  2.5694  2.5709  1.7863  1.7522  1.7831  1 

---  1.5913  1.5917  ---  3.1202  3.1223  ---  2.0641  2.0962  1.25 
1.8479  1.7885  1.7891  3.8099  3.683  3.6857  2.4303  2.3861  2.4178  1.5 

---  1.9962  1.997  ---  4.2531  4.2562  ---  2.7136  2.7444  1.75 
2.2971  2.2115  2.2127  5.0011  4.8279  4.8316  3.1148  3.0444  3.0745  2 

 
Tables 5 to 7 summarize comparison results for different modulus ratios. 

 
Table 5: Frequency ratio of composite rectangular plate with different arrangements using various methods 

)25.0,5.0/,10/( 1221221 === νEGEE  
 

[90°/0°/0°/90°]  [0°/90°/90°/0°]  [0°/90°/0°/90°]  hW /  
Ref [4]   HAM  LIM  Ref [4]   HAM  LIM  Ref [4]   HAM  LIM   
1.0498  1.0478  1.0478  1.0498  1.0478  1.0478  1.0556  1.0518  1.0518  0.25 
1.1907  1.1783  1.1784  1.1907  1.1783  1.1784  1.2113  1.1924  1.1925  0.5 
1.3922  1.3664  1.3666  1.3922  1.3664  1.3666  1.4315  1.3933  1.3936  0.75 
1.6314  1.5913  1.5918  1.6314  1.5913  1.5918  1.6906  1.6321  1.6326  1 

---  1.8396  1.8403  ---  1.8396  1.8403  ---  1.8944  1.8952  1.25 
2.1722  2.1031  2.1041  2.1722  2.1031  2.1041  2.2715  2.172  2.1731  1.5 

---  2.3769  2.3782  ---  2.3769  2.3782  ---  2.4597  2.4612  1.75 
2.7553  2.6578  2.6595  2.7553  2.6578  2.6595  2.8941  2.7545  2.7562  2 

 
Obviously, there is a greater frequency ratio for higher modulus ratios; however symmetric 

[90/0/0/90] shows an opposite behavior. 
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Table 6   Frequency ratio of composite rectangular plate with different arrangements using various methods 
)2/,25.0,5.0/,10/( 1221221 ==== baEGEE ν  

 
[90°/0°/0°/90°]  [0°/90°/90°/0°]  [0°/90°/0°/90°] 

 
hW /

 
Ref [4]   HAM  LIM  Ref [4]   HAM  LIM  Ref [4]   HAM  LIM   
1.0352  1.0334  1.0334  1.0986  1.0991  1.0991  1.0588  1.0513  1.0521  0.25 
1.1375  1.1271  1.1271  1.3579  1.3498  1.35  1.2222  1.2059  1.2122  0.5 
1.2885  1.2664  1.2665  1.7013  1.6835  1.684  1.4516  1.4345  1.4472  0.75 
1.4729  1.4377  1.438  2.0877  2.0602  2.0611  1.7204  1.7034  1.7194  1 

---  1.6309  1.6313  ---  2.4606  2.462  ---  1.993  2.0104  1.25 
1.6795  1.839  1.8396  2.9210  2.875  2.8769  2.3206  2.294  2.3119  1.5 

---  2.0576  2.0586  ---  3.2981  3.3004  ---  2.6018  2.6198  1.75 
2.3730  2.2839  2.285  3.7908  3.727  3.7298  2.9620  2.914  2.9321  2 

 
 

Table 7   Frequency ratio of composite rectangular plate with different arrangements using various methods 
)4/,25.0,5.0/,10/( 1221221 ==== baEGEE ν  

 
[90°/0°/0°/90°]  [0°/90°/90°/0°]  [0°/90°/0°/90°]  hW /  

Ref [4]   HAM  LIM  Ref [4]   HAM  LIM  Ref [4]   HAM  LIM   
1.0342  1.0326  1.0326  1.1259  1.1236  1.1236  1.0613  1.0512  1.0523  0.25 
1.1337  1.124  1.1241  1.4459  1.427  1.4272  1.2310  1.2099  1.219  0.5 
1.2811  1.2604  1.2605  1.8572  1.8202  1.8209  1.4683  1.447  1.4645  0.75 
1.4613  1.4284  1.4287  2.3117  2.257  2.2582  1.7455  1.7256  1.7472  1 

---  1.6181  1.6185  ---  2.7168  2.7184  ---  2.0248  2.0478  1.25 
1.8811  1.8227  1.8234  3.2788  3.1897  3.1918  2.3624  2.3348  2.3579  1.5 

---  2.0378  2.0388  ---  3.6709  3.6734  ---  2.6511  2.674  1.75 
2.3444  2.2606  2.2618  4.2796  4.1573  4.1604  3.0204  2.9713  2.9941  2 

 
It can be concluded from data given in tables above that frequency ratio increases with an in-

crease in aspect ratio and modulus ratio and decreases when number of layers increases. It should 
be noted that added number of layers will result in a raise of the frequency ratio. 

 
6 CONCLUSION 

In this study, a composite laminated plate model is established to verify the vibrational behaviors of 
composite plate. The von-Karman’s assumption and efficient approximate method (LIM) is em-
ployed to derive the nonlinear governing equation of motion. Analytical expressions are presented 
for nonlinear natural vibration analysis of composite laminated plate. Comparing with other Results, 
it is shown that the approximate analytical solutions are in very good agreement with the corre-
sponding solutions. The effects of different parameters such as layer arrangements, skew angles and 
aspect ratio on the natural frequencies of the composite laminated plates are also studied. Results 
show that for all arrangements but [90/0/0/90], the frequency ratio increases when aspect ratio 
increases. The frequency ratio increases with an increase in aspect ratio and modulus ratio and de-
creases when number of layers increases. Furthermore, the symmetrical arrangement plates have the 
same frequency ratios values. 
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Appendix 

iΙ coefficients in the second approximation of deflection. 
 

2 2 2 2 2 3
0 1 3 4 3 5 4 3 4 5 4 3 4

21 1 49 41 2 13 31 23990904320A + -2 A + - + - + - A+ + -
16 32 512 48 3 4096 72 36
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