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1 INTRODUCTION

Laminated composite plates, due to their high specific strength and stiffness have been increasingly
used in a wide range of aerospace, mechanical, and civil applications. By tailoring the sequence of
the stacks and the thickness of the layers, composite laminates’ characteristics can be matched to
the structural requirements with no difficulty. To use composite laminates efficiently, an accurate
knowledge of vibration characteristics is essential. Vibration not only creates excessive noise and
wastes energy but also may result in catastrophic failures. These phenomena, when the system op-
erates around its natural frequencies, would be even more disastrous.

Many publications have dealt with the linear vibrations of laminated composites. In these cases,
the equation of motion is obtained easily and then by a reduction into a generalized eigenvalue
problem, frequencies and mode shapes are determined. However, in many working conditions, plates
are subjected to large amplitudes, so a nonlinear frequency analysis is required as a result. Obtain-
ing an exact solution for the nonlinear free vibration of composite plates is very difficult due to the
complexity of the equation of motion. The first approximate solution developed by Chu and Her-
man|l] in 1956, was the start point for so many other numerical methods introduced in the follow-
ing years such as the finite element method (FEM)[2], the discrete singular convolution method
(DSC), the strip element method, and the Ritz methods[3].
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Singh et al.[4] used direct numerical integration to study non-linear vibration of rectangular lam-
inated composite plates in 1990. Using Kirchhoff hypothesizes and von-Karman strain-stress rela-
tions, they derived governing equations. They also employed harmonic oscillating assumptions and
investigated large amplitude vibrations for various arrangements.

Singha and Ganapathi[5], examined thin isotropic composite plates exploiting finite element
method. They also considered the effects of shear deformation, rotational inertia and in plane iner-
tia, in their formulation. In their study, non-linear matrices derived from Lagrange equations were
solved using direct iteration technique and also they examined variations of non-linear frequency
ratio versus various amplitudes considering influencing parameters, such as boundary conditions
and fiber orientations.

Malekzadeh and Karami[6], investigated non-linear vibrations of composite plates considering
first order shear deformation theory employing Quadrature method. Effects of various parameters,
such as foundations, thickness to length ratio and aspect ratio on frequency ratio were also exam-
ined in their study.

Although numerical approaches are applicable to a wide range of practical cases, approximate
analytical methods provide highly accurate solutions and a deep physical insight. One of the main
approximate analytical approaches on nonlinear vibration analysis is Perturbation Method. This
method is effective just in solving weakly nonlinear differential equations. Because of the limited
application of the perturbation methods, newer approaches have been developed during recent years
which are more powerful. For example, Pirbodaghi et al.[7] used the homotopy analysis method
(HAM) to obtain an approximate analytical solution for nonlinear vibrations of thin laminated
composite plates and showed effectiveness of this method to obtain an accurate solution with rela-
tively less computational effort. Moreover, the energy balance method (EBM) [8]|, the max-min
approach (MMA) [9], the homotopy perturbation method (HPM) [10] and so many others have
been proved to be strong approximate analytical approaches, obtaining accurate results for nonline-
ar differential equations [11].

The LIM method, which was introduced by Rafieipour et al.[12] is a very powerful method in
solving non-linear differential equations and its effectiveness is proved in studying non-linear vibra-
tion of composite beams. It was shown that this is one of the best analytical methods due to the
rate of convergence and its accuracy.

In the present paper, LIM method is used to obtain approximate analytical solutions for nonlin-
ear vibrations of a thin laminated composite plate. A variational method is employed to derive the
governing equations. The nonlinear term added is associated with von-Karman strain displacement
relation. LIM method is used to achieve nonlinear natural frequency and its excellent accuracy for
the wide range of amplitude values is satisfied. A comparison with results in other articles has been
done to validate the answers. The impact of layer arrangements and aspect ratio effects on the free
vibration are investigated in detail.

2 FORMULATION

Consider a thin laminated composite plate of length a, width b, and thickness h as shown in figure 1.
A positive set of coordinate system demonstrated in a way that reference surface is taken as the
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mid plane and its origin is considered at the corner of the plate. The plate is supposed to be simply
supported along all its edges. In addition, no slip condition between the layers is assumed.

\#

Figure 1  Schematic of the laminated composite plate

Assume u, v and w are the displacements of an arbitrary point of the plane in z, y and z axis,
ug and vy to be the corresponding displacements of that point in the mid-plane and e’ and K to

be the mid-plain strain and mid-plane curvature respectively; mechanical shear relation can be
demonstrated as[13]:
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Following von-Karman’s strain-displacement assumptions the in plane strain, shear strain and
plane curvatures can be expressed as:
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784
According to Classical Theory of Elasticity, the strain-stress relations for each layer can be de-
rived as:
9, Qu Qu 0 &
9y - Q12 Q22 0 & (4)
% | 0 0 @, e

Where the numbers 1, 2, 6 referred to principal axis of each layer. (Ql./, )k (i=1,2,6) are the

coefficients of the reduced stiffness matrix at the kth layer and are defined as:

0, = E11 0, = Vlezz _ VzlEn
1 > 12
1_v12v21 1_‘/12‘/21 1_V12v21
£ (5)
0, =—2 0 =G
271y v > 66 12
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Below stress-strain relations are obtained from the axis transformation of the each layer stress-

strain equations referred to global axes:

Y Y A 0
O-:n Ql 1 Ql 2 Ql 6 81 IL{IT
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ay = Ql? Q?? QZG Ey + z Ky (6)
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And (Ql./, )k (i =1,2,6) are plane stress-reduced stiffness coefficients.
Constitutive equations which relate force and moment resultants to the strains through an ap-

propriate integration along the thickness can be developed as:

0
N, A4, A & B, B, B Rk,

0
No= A A, A &, (1| B Bn By Rk, (7)
N - Ay A A 5; B By By Koy

Latin American Journal of Solids and Structures 10(2013) 781 — 795



H. Rafieipour et al. / Application of Laplace Iteration method to Study of Nonlinear Vibration of laminated composite plates 785

0
M, L By By & D, D, D, Kk,

0
M, |=| B, B, By &, (T| Do Dn Dy Rk, (8)
M - 16 2 66 52y Dy Dy Dy Koy

Where,

Aj;, Byj, and Dj; are called extensional stiffnesses, bending-extensional coupling stiffnesses and
bending stiffness, respectively. The equations of motion are derived from Hamilton’s principle as
follows|14]:

t2
0=5(U-T)di (10)
tl
Where U, the potential energy of the plate and T, the kinematic energy of the plate are given

by:

XX XX

U= ;!(0' g . to, e +20 € )dzdxdy (11)

l\)l»—ﬂ
O e

j( > k)W dxdy (12)

Substituting Eqgs.(11) and (12) into the Hamilton’s equation of motion and with an appropriate
integration along the thickness and then by equating Ou,, 0v,, and 0w, coefficients to zero, one

obtains the below relations:
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By assuming simply supported boundary condition, the relations below are considered for dis-
placement equations to satisfy the boundary conditions:

2
mex o "y

u=U(t)Sin

T 2nrw
MY Gin =1

v=V(t)Sin (14)

MRX . ATy

w=W(t)Sin SinT

And U(t), V(t), and W(t) are the maximum displacements of plate center point along principal
axes 7, y, and z respectively. U(t) and V(t) can be expressed in terms of W(t) using first two equa-
tions of Eq. (13) and then by employing Galerkin method and substituting U(t) and V(%) in terms
of W(t) into Eq. (13), the governing equation can be written as:

d*W(t)

t2

+ o W(t)+ oV (t) + oW (t) =0 (15)

Supposing Wpax as the maximum vibration amplitude of the plate center, the initial conditions
of the center of the plate can be expressed as:

aw(0)
dt

WO)=W., 0 (16)

3 DESCRIPTION OF THE PROPOSED METHOD

Using the Laplace Transformation method, an analytical approximated technique is proposed to
present an accurate solution for nonlinear differential equations. To clarify the basic ideas of pro-
posed method consider the following second order differential equation,
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ii(t)+ N{ u(t)}=0 (17)

with artificial zero initial conditions and N is a nonlinear operator. Adding and subtracting the

term @u(t), the Eq. (17) can be written in the form
i)+ 0’u()=L{ u(t)} = £ (u(0)) (18)
where L is a linear operator and
fu@)=aut)-N{u@) (19)

Taking Laplace transform of both sides of the Eq. (18) in the usual way and using the homoge-

nous initial conditions gives
(s +0”)U()=3{ 1 (u)} (20)
where s and 3 are the Laplace variable and operator, correspondingly. Therefore it is obvious that
U(s)=3{f(u(n)} G(s) (21)

where

G(s)=—t

. (22)
ST+

Now, implementing the Laplace inverse transform of Eq. (21) and using the Convolution theo-

rem offer

u@®)=[f (u(z) gt oMt (23)

where

g)=3"{G(s)}= ésin(a)t) (24)

Substituting Eq. (19) and (24) into (23) gives
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u(t):j(afu(r)—zv{u(r)})ai)sin(w(t—r)yzr (25)

Now, the actual initial conditions must be imposed. Finally the following iteration formulation
can be used [15]

1] .
., =ty +— [(@u, (@) =N { u,(0)})sin(ot —1) {7 (26)
w
0
Knowing the initial approximation #,, the next approximations u, ,n >0 can be determined

from previous iterations. Consequently, the exact solution may be obtained by using:

u=lmu, (27)

n—seo
The method proposed here can be applied in various non-linear problems. However, there is no

need for any linearization and neither any small parameter. Also, the obtained approximate solu-
tions converge quickly to the exact one.

4 IMPLEMENTATION OF THE PROPOSED METHOD

Rewriting Eq(15) in the standard form of Eq. (18) results in the following equation:
d’n()
+a'n@)=f (1)) (28)
dt’
where

f (n@))=a’n@)-N { n@)},

(29)
N {n@®)}=on@)+an’ ) +om’ (1),

Applying the proposed method, the following iterative formula is formed as:

M) =10y (0)+— jf ,(7))sin (ot 7)Y (30)

Eq. (28) will be homogeneous, when f (T](t)) has a value of zero. So, its homogeneous.

Solution

n,(¢) = Acos(wt) (31)

Latin American Journal of Solids and Structures 10(2013) 781 — 795



H. Rafieipour et al. / Application of Laplace Iteration method to Study of Nonlinear Vibration of laminated composite plates 789

is considered as the zero approximation for using in iterative Eq.(30).

Expanding f(no(l')) we have:
2 3 3 1 3 1 P
f(n,(@)=| a4+ A-od cos(a)t)—za3A cos(3a)t)—5a2A (1+cos(2mt)) (32)

Considering the relation:

cos(wt)—cos(mwmt)

1
ij(cos(man))sin(w(r ~ 1))t = 0 (m*=1) " (33)
(O tsin(wt) m=1

20

The coefficient of the term cos(wt) in f (770(1' )) should be vanished in order to avoid secular

terms in subsequent iterations.

As a result, the first approximation of the frequency can be expressed as:

3
® :«/0‘1 +Zoc3A2 (34)

Substituting Eq. (31) into (30) and eliminating the secular terms which is the coefficient of
COS(wt) in forcing function f (7]), results in:

1
n@t)= —2{(32a2A *+96w’4 -3, A’ )cos(at) +160,47 cos(2ax)
96w

+3a,4° cos(3ar ) — 480,47 |

This is the first approximation of 77(¢). Replacement of Eq. (35) in Eq. (30) and applying the

procedure again results in the second approximation of 77(¢ )as

I, +1, cos(ar )+1, cos(2ar )+1, cos (3ax )
1

TosTsoseae 25| e cos(dar )+ cos(Sar ) +1; cos (6ar ) (36)

772(1‘) =
+1, cos(7ar )+, cos (8ar ) +1, cos (9ax )
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Where I, are given in Appendix.
The coefficient of cos(ar) in forcing function assumed to be zero in order to evade the secular

terms:
&+ B.a° + 0 + o’ + B, =0 (37)

where

5 1
B, = —§a3A2+§a2A—al
B, = 23—60532A4—%a2a3143+[%0{1a3+%a§)A2—éala2A] "
38
B, = —23—1220(33A6 +%a2a32A5 + 2‘532 oA’ - 23?3 A’
B, = %aé‘Ag—%azaff+?’2;95a22a32146—235'3)

Solving Eq. (37) estimates the value of @ for the actual natural frequency of the system.

5 RESULTS AND DISCUSSIONS

In order to verify the precision of the suggested method, current results were compared with other
articles.

Table 1 illustrates the frequency ratio of square and rectangular plates. It is observable that our
results are in excellent agreement with the results provided by other references.

It can be observed that the second displacement coefficient is zero for square plates.

Table 1 Frequency ratio of isotropic rectangular and square plates using various methods (p =0.3)

W/h (a/b=1) (a/b=2)
LIM HAM Ref [4] LIM HAM Ref [4]
0.2 1.0251 1.0252 1.0208 1.0285 1.0285 1.0254
0.4 1.0967 1.0967 1.0809 1.1091 1.1091 1.0982
0.6 1.2056 1.2056 1.1743 1.2307 1.2306 1.2097
0.8 1.3423 1.3422 1.2937 1.3819 1.3818 1.3505
1 1.4991 1.4988 1.4327 1.5541 1.5537 1.5124
1.2 1.6703 1.6698 1.741 1.7404
1.4 1.852 1.8512 1.7503 1.9384 1.9376 1.877
1.6 2.0412  2.0404 2.1435  2.1425
1.8 22364 22353 2.3543 2.353

2 2.436 2.4347 2.2828 2.5694 2.5679 2.4798
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In both cases, the difference between the non-linear frequency and linear frequency increased by
increasing the amplitude of vibration. This difference increased even more when aspect ratio in-

creased (figure 2).

A0
i —o—a/b=1 ]
22 - o= ab=2 e’
e a/b=3 Ao o ]
] - - -a/b=4 Yok ]
2.8 4 a/b=5 7 s O 1
] - e ]
= 2.4 "/"O/
g 244 S ]
& .- ] e ]
2.0 4 77 O —
a o 1
<25
1.6 - //O -
] = © ]
p >
1.2 = ]
0.8 4
S —
0.0 0.5 1.0 1.5 2.0 25 3.0
Amplitude (A)

Figure 2 The effect of aspect ratio on the nonlinear to the linear frequency ratio

In table 2, the Variation of frequency ratios versus non-dimensional amplitude ratio for symmet-
rical and non-symmetrical square plate arrangements are shown. The symmetrical arrangement

plates have the same frequency ratios values.

Table 2 Frequency ratio of composite square plate with different arrangements using various methods

(E,/E,=40,G,, | E, =0.5,v,, =0.25)

W/h [0°/90°/0°/90°] [0°/90°/90°/0°] [90°/0°/0°/90°]
LIM HAM Ref[4] LIM HAM Ref[4] LIM  HAM Ref[4]

025 1.0575 1.0575 1.0634 1.0509 1.0509 1.0535 1.0509 1.0509 1.0535

0.5 12121 1212 12388  1.1892 1.1891 12038  1.1892 1.1891 12038

075 14308 14305 14832 13874 13872 14172 13874 13872 14172

1 1.6886 1.6881 1.7679  1.6232 1.6227 1.6691  1.6232 1.6227 1.6691

125 19703 1.9694 1.8827 1.8819 1.8827 1.8819

1.5 22671 22659 24000 2.1574 2.1563 22355  2.1574 2.1563 2.2355

175 2.5739  2.5724 24422 2.4408 24422 2.4408

2 2.8876 2.8857 3.0729 27342 27325 2.8439 27342 27325 2.8439

The ratio of linear to non-linear frequency for rectangular plates with aspect ratios of 2 and 4
are presented in tables 3 and 4 for different arrangements. The [90/0/0/90] arrangement shows the
least frequency ratio. For all arrangements excluding the above-mentioned, the frequency ratio in-

creases when aspect ratio increases.
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Table 3 Frequency ratio of composite rectangular plate with different arrangements using various methods

(E,/E,=40,G,/E,=0.5,v,,=0.25,a/b=2)

W/h [0°/90°/0°/90°] [0°/90°/90°/0°] [90°/0°/0°/90°]
LIM HAM Ref[4] LIM HAM Ref[4] LIM  HAM Ref[4]
025 1.0535 10522 1.0645 1.1297 1.1297 1.1327  1.0322 1.0322 1.0340
0.5 12261 12156 12427 14461 14458 14674  1.1226 1.1226 1.1331
075 14797 146 14905 18538 1.8531 1.8946 12577 12576 12798
1 17704 17463 1.7787 23052 2304 23652 14242 14239 1.4593

1.25  2.0782 2.0531 2.7795  2.7777 1.6124 1.6119
1.5 23955 23703 24178  3.2666 3.2644 3.3634 1.8155 1.8148 1.8777
1.75  2.7184 2.6935 3.7619 3.7591 2.0292  2.0283

2 3.045 3.0205 3.0976  4.2622 4.2591 4.3949 2.2505 2.2493  2.3396

Table 4 Frequency ratio of composite rectangular plate with different arrangements using various methods

(E,/E,=40,G,/E,=05,v,,=025,a/b=4)

W/h [0°/90°/0°/90°] [0°/90°/90°/0°] [90°/0°/0°/90°]
LIM HAM Ref[4] LIM HAM Ref[4] LIM  HAM Ref[4]
025 1.0516 1.0499 1.0653 1.1657 1.1657 1.1707  1.0309 1.0309 1.0326
0.5 12267 12129 12454 15547 1.5544 1.5838  1.1178 1.1178 1.1275
075 1.4865 14607 14956 2.0412 2.0403 2.0951 1248 1248 12688
1 17831 1.7522 17863  2.5709 2.5694 2.6489 14092 1.4089 1.4423

1.25  2.0962 2.0641 3.1223  3.1202 1.5917 1.5913
1.5 24178 23861 2.4303  3.6857 3.683 3.8099 1.7891 1.7885 1.8479
1.75 27444 27136 4.2562 4.2531 1.997  1.9962

2 3.0745 3.0444 3.1148  4.8316 4.8279 5.0011 22127 22115 2.2971

Tables 5 to 7 summarize comparison results for different modulus ratios.

Table 5: Frequency ratio of composite rectangular plate with different arrangements using various methods

(E,/E,=10,G,,/ E, =0.5,v,, =0.25)

W/h [0°/90°/0°/90°] [0°/90°/90°/0°] [90°/0°/0°/90°]
LIM HAM Ref[4] LIM HAM Ref[4] LIM  HAM Ref[4]
025 1.0518 1.0518 1.0556 1.0478 1.0478 1.0498  1.0478 1.0478 1.0498
05 1.1925 1.1924 12113  1.1784 1.1783 1.1907  1.1784 1.1783 1.1907
075 1.3936 1.3933 14315 13666 13664 13922 13666 13664 13922
1 1.6326 1.6321 1.6906 1.5918 15913 1.6314 15918 15913 1.6314

1.25 1.8952 1.8944 1.8403  1.8396 1.8403  1.8396
.5 21731 2172 22715  2.1041 2.1031 2.1722 2.1041 2.1031 2.1722
1.75 24612 2.4597 2.3782 2.3769 23782  2.3769

2 2.7562 2.7545 2.8941 2.6595 2.6578 2.7553 2.6595 2.6578 2.7553

Obviously, there is a greater frequency ratio for higher modulus ratios; however symmetric
[90/0/0/90] shows an opposite behavior.
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Table 6 Frequency ratio of composite rectangular plate with different arrangements using various methods

(E,/E,=10,G,,/E, =0.5,v,, =0.25,a/b=2)

W/h [0°/90°/0°/90°] [0°/90°/90°/0°] [90°/0°/0°/90°]

LIM HAM Ref[4] LIM HAM Ref[4] LIM HAM Ref[4]

025 1.0521 1.0513 1.0588  1.0991 1.0991 1.0986  1.0334 1.0334 1.0352
0.5 12122 12059 1.2222 135 13498 13579  1.1271 11271 1.1375
0.75 14472 14345 1.4516 1.684 1.6835 1.7013  1.2665 12664 1.2885
1 17194 17034 1.7204  2.0611 2.0602 2.0877 1438 14377 1.4729

1.25 2.0104 1.993 2462 24606 1.6313  1.6309
1.5 23119 2294 23206 2.8769 2.875 2.9210 1.8396 1.839 1.6795
1.75 2.6198 2.6018 3.3004 3.2981 2.0586 2.0576

2 2.9321 2914 2.9620 3.7298  3.727  3.7908 2.285  2.2839 2.3730

Table 7 Frequency ratio of composite rectangular plate with different arrangements using various methods

(E,/E,=10,G,,/E, =0.5,v,, =0.25,a/b=4)

W/h [0°/90°/0°/90°] [0°/90°/90°/0°] [90°/0°/0°/90°]
LIM HAM Ref[4] LIM HAM Ref[4] LIM  HAM Ref[4]

025 1.0523 1.0512 1.0613 1.1236 1.1236 1.1259  1.0326 10326 1.0342
0.5 1219 12099 12310 14272 1427 14459  1.1241 1124 1.1337
075 14645 1447 14683  1.8209 1.8202 1.8572  1.2605 12604 12811
1 17472 1.7256 17455 22582 2257 23117 14287 14284 1.4613

1.25 2.0478 2.0248 2.7184 2.7168 1.6185 1.6181
1.5 23579 23348 23624  3.1918 3.1897 3.2788 1.8234 1.8227 1.8811
1.75  2.674 2.6511 3.6734 3.6709 2.0388  2.0378

2 2.9941 2.9713 3.0204  4.1604 4.1573 4.2796 2.2618 2.2606 2.3444

It can be concluded from data given in tables above that frequency ratio increases with an in-
crease in aspect ratio and modulus ratio and decreases when number of layers increases. It should

be noted that added number of layers will result in a raise of the frequency ratio.

6 CONCLUSION

In this study, a composite laminated plate model is established to verify the vibrational behaviors of
composite plate. The von-Karman’s assumption and efficient approximate method (LIM) is em-
ployed to derive the nonlinear governing equation of motion. Analytical expressions are presented
for nonlinear natural vibration analysis of composite laminated plate. Comparing with other Results,
it is shown that the approximate analytical solutions are in very good agreement with the corre-
sponding solutions. The effects of different parameters such as layer arrangements, skew angles and
aspect ratio on the natural frequencies of the composite laminated plates are also studied. Results
show that for all arrangements but [90/0/0/90]|, the frequency ratio increases when aspect ratio
increases. The frequency ratio increases with an increase in aspect ratio and modulus ratio and de-
creases when number of layers increases. Furthermore, the symmetrical arrangement plates have the

same frequency ratios values.
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Appendix

L. coefficients in the second approximation of deflection.

1, 2990904320 [ 11+ 22 omr, A+ - o[- 2 M 2w a3 B
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