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Abstract 

In this paper, a semi-analytical method for solving circular curved beams is proposed to study the free 
vibration of in-plane circular curved beams in both undamaged and damaged configurations. The crack 
damage of the structure is represented by the cross-sectional reduction of the damaged element. Based on 
the discrete circular curved beam model, the coupling stiffness matrices of shear, compression and bending 
are derived. Combined with the lumped mass matrix and the dynamic characteristic equation of the multi-
degree-of-freedom system, the frequencies and modes of the damaged and undamaged structures are 
calculated. The results are compared with the finite element method, and the good consistency between 
them is verified. 
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1 INTRODUCTION 

Curved beam structure is widely used in aerospace, mechanical, civil and other engineering (Zhao et al., 2006). In a 
complex working environment, the strength and stiffness of curved beam structure will decrease, and damage 
characteristics such as cracking and material weakening may occur, resulting in structural damage and safety accidents. 
So how to detect and identify the location and degree of structural damage has become an important research direction 
in curved beam damage identification. The occurrence of cracks in the structure will cause the change of local stiffness 
(Hu et al. (2007)), which will change the dynamic characteristics of the structure, thus affecting the natural frequency 
and vibration mode of the structure. Therefore, it is important to establish correct structure models both for the 
undamaged and the damaged structure in order to solve the frequency and vibration mode with certain accuracy. 

The damage of structures is usually represented by the appearance of cracks. It can be found in some related 
articles. For example, Friswell and Penny (2002). There are roughly two methods for modeling cracks or crack-like defects 
in elastic beam structures. One is to introduce the concept of equivalent spring to simulate cracks. For example, (Rice 
and Levy (1972); Anifantis and Dimarogonas (1983); Chondros et al. (1998); Al-Said (2008)). The other is to reduce the 
relevant section size and simulate crack defects through notches in experiments. For example, (Dessi and Camerlengo 
(2015); Petroski (1981); Pau et al. (2011)). Based on the above methods, researchers have published many vibration 
studies of cracked beam structures with a large number of results. For example, (Wang et al. (2018); Anifantis and 
Dimarogonas (1983); Dimarogonas (1996)), which lay the foundation for the identification of cracks in beam structures. 
In addition, other crack modeling methods have also been developed, such as the uniform crack beam theory (Christides 
and Barr (1984); Shen and Pierre (1990)) and the nonlinear characteristics of breathing crack beams (Douka and 
Hadjileontiadis (2005); Chondros et al. (2001)). 

Due to the influence of curvature, the plane curved beam structure leads to the coupling effect between internal 
forces, which is more complex than the straight beam. The dynamic research of cracked beam structure mainly focuses 
on the straight beam, while the curved beam structure has less research in this field. Krawzcuk and ostachowicz (1997) 
first analyzed the dynamic behavior of cracked curved beams, and studied the dynamic characteristics of circular arches 
with transverse cracks by using the finite element method. Viola et al. (2005) modeled the undamaged and damaged 
structures in the plane, proposed an exact analytical solution and an approximate numerical solution, and applied the 
two methods to solve for the intrinsic frequencies and vibration patterns of the circular arches to verify the consistency 
between them. Cerri et al (2008) also conducted an experimental study based on this and proposed an identification 
method based on frequency testing. Karaagac et al. (2011) established the finite element model of in-plane curved beam 
based on the energy method, and studied the influence of unilateral crack and its position on modal and dynamic 
stability. Caliò et al. (2016) Based on different damage modeling methods, the differences of different spatial arch models 
are evaluated. Eroglu and Tufekci (2017) used the concept of linear elastic fracture mechanics for crack modeling and 
exact solution of in-plane free vibrations of planar curved beams with crack is presented utilizing the transfer matrix 
method. Rezaiee-Pajand and Gharaei-Moghaddam (2020) proposed a force-based formula for cracked curved beam 
element, and formed a new cracked beam finite element, which verified the accuracy of the proposed element in 
calculating the frequency of cracked curved beam. Sun et al. (2021) carried out equal geometric free vibration analysis 
of curved Euler Bernoulli beams and obtained high-precision frequency solutions. 

All the above-mentioned studies mainly use the finite element method (Krawzcuk and ostachowicz (1997); 
Krishnan et al. (1995); Raveendranath et al. (2000); Zhu and Meguid (2008); Rezaiee-Pajand and Gharaei-Moghaddam 
(2020) and analytical method (Viola et al. (2005); Qatu (1993); Khdeir and Reddy (1997); Tong et al. (1998); Tseng et al. 
(2000)) to solve the frequency and vibration mode of the curved beam witn damage. The latter requires the 
establishment of vibration differential equations for solution. Although the motion equation of curved beam can be 
solved accurately, due to different boundary conditions, different integral constants need to be solved, and it is only 
applicable to the solution of constant section, which has not been widely used in engineering. The finite element method 
is an approximate solution to solve the natural frequency and vibration mode of the damaged curved beam. The finite 
element method can effectively improve the calculation efficiency and obtain an approximate solution close to the exact 
solution. However, from its principle, its total stiffness matrix is usually integrated into a strip matrix distributed along 
the diagonal, with a large number of zero coupling terms, which is bound to bring some errors. 

In this paper, from the perspective of structural discretization, the cracked circular curved beam model is established 
by the equivalent reduced section method, and the structural mechanics method and the principle of virtual work are 
used to solve for the structural flexibility matrix, and the overall stiffness matrix of the damaged circular curved beam is 
obtained after the matrix inversion. The structural characteristic equation is established and solved to obtain the natural 
frequency and vibration mode of the circular curved beam with crack. The frequency difference and vibration mode 
difference between undamaged and damaged structures were used to analyze the effect of single crack damage depth 
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and distribution on the disturbance of the frequency and vibration mode of the circular curved beam, to verify the 
effectiveness of the theoretical research applied to identify the damage of curved structures in this paper, and to provide 
a theoretical basis for the study of the dynamic characteristics of circular curved beams with damage and damage 
identification. 

2 Analysis 

2.1 Integrated stiffness matrix of in-plane circular curved beam with crack 

According to structural mechanics, stiffness matrix and flexibility matrix are reciprocal matrices, and the specific 
relationship can be expressed as follows: 

1
K D

         (1) 

Where [D] is the flexibility matrix of circular curved beam, [K] is the stiffness matrix. 
The compliance matrix is an integrated matrix, which is obtained by integrating the internal force functions of 

statically indeterminate curved beam structure and statically determinate structure under unit loads in the directions of 
freedom in three planes. 

Fig. 1 shows the stress model of a circular curved beam with simple support at both ends of the plane in polar 
coordinate system. The origin of the polar coordinate system is taken at the center of the circular curved beam structure. 
The polar diameter   is the radius of curvature of circular curved beam structure. Polar angle   is the polar Angle 
coordinate of any section of the circular curved beam structure. The z-axis is perpendicular to the paper face and   is 
the corresponding central Angle of the structure. The integral circular curved beam structure is separated into n nodes, 
and the allowable degrees of freedom of the nodes include radial translational displacement u , circumferential 
translational displacement v , and rotational angular displacement  . The forms of external forces that can be applied 
to a node include radial force, circumferential force, and couple force. The internal forces produced by the full-beam 
section include radial shear Q , circumferential axial force N , and bending moment M . 

 
Figure 1 Geometric structure diagram of circular curved beam 

In this paper, crack damage in curved beams is studied. In order to show the weakening effect of damage on the 
section properties of curved beams, the curved beams are divided into three sections, that is, 10,   ; 1 2,     and 

2 3,     are denoted as cross-section area 1A , elastic modulus 1E , shear modulus 1G  in the first and third sections, and 

2A , 2E , 2G  in the second section. Since the solution of the internal force function depends on the calculation of the 
reaction force of the support and is affected by the position of the external load, it is discussed in this case. 
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It should be noted that the unit loads in the three degrees of freedom directions in the plane need to act on the 
three sections in turn. This is because the solution of the bearing reaction force is related to the section properties. The 
solution process of the whole flexibility coefficient is a cyclic process. The following is a brief introduction to the solution 
process. 

 
Figure 2 Force analysis diagram of statically indeterminate curved beam structure under unit radial force 

When radial unit load P=1 acts on point 10,   , the circumferential redundant force AF   and radial support reaction 

force AF   are solved by force method, and the internal force function of statically indeterminable structure is 

established based on structural geometric relations. As shown in Figure 2. 
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Figure 3 Force diagram of statically fixed curved beam structure 

There are three internal force functions of statically determinate structure under in-plane unit load. As shown in 
Figure 3. 

Under unit radial force: 
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Under unit tangential force: 
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Under the action of unit couple: 

( )

( )

( )

( ) ( )
( ) ( )
( ) ( )

p p1

sin
sin

sin
sin
cos
sin

NR NL

MR ML

QR QL

NL
R

ML

QL
R

δ δ

δ δ

δ δ

δδ
ϕ
δδ δ θ δ θ
ϕ
δδ
ϕ

=

= −

=


=


 = ≤ ≥ 

 
 

=


（ ） （ ）  (5) 

Due to different integral intervals, the piecewise integral summation operation of the above internal force functions 
is needed to obtain the compliance element ijd  of row i and column j when using the displacement integral formula. 

 N NP S SPP
ij

F F F FMM
d ds ds k ds

EI EA GA
= + +∑ ∑ ∑∫ ∫ ∫   (6) 

Through the above calculation, the radial uncoupled compliance matrix, radial - circumferential coupled compliance 
matrix, and radial - rotational coupled compliance matrix can be obtained. Similarly, formula (2)-(6) is used to calculate 
the displacement summation in cases 1 2,p       and 2,p       respectively. Numbered according to the degree of 
freedom of nodes: 1-radial translational displacement, 2-circumferential translational displacement and 3-rotational 
angular displacement. The obtained structure is integrated into the flexibility matrix of order according to the coordinate 
numbering. According to the coordinate numbering, the obtained results is integrated into the 3n×3n order flexibility 
matrix. The interval 1 2,     is represented as the damaged element, and the two ends of the element are polar Angle 
coordinate. The section parameters of the element are changed to characterize the section crack damage of the circular 
curved beam structure. 
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Equation (7) lists the solution process of the radial uncoupled flexibility matrix D
     of the 5-node circular curved 

beam structure, in which the calculation of the flexibility elements should consider the integration interval and 
integration order. If p  and p  are both in the interval 10,    , and p p  , it can be known from equations (3) and (6). 
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The flexibility element is solved as follows: 

= + +1 2 3i jd d d d   (11) 

According to Equation (1), the exact stiffness matrix with damage can be obtained by inverse matrix operation [D]. 
The numerical distribution of the stiffness matrix [K] is shown in Fig. 2: 

 
Figure 4 Numerical distribution of stiffness matrix with crack damage 

As can be seen from the figure 4, the highest peak of the main diagonal is the coefficient term related to the 
rotational stiffness, which is much higher than other translational stiffness values. Due to the uneven distribution of the 
element grid at the damage location and the change of section properties at the damage, the stiffness value distribution 
presents the phenomenon of high and low. The peak value mutation is the damage position of the circular curved beam 
structure, which is due to the reduction of the unit section, resulting in the change of stiffness. 

2.2 Integrated mass matrix with crack damage 

The mass matrix of the circular curved beam structure is integrated by lumped mass method. The mass matrix 
integrated by the lumped mass method is usually a diagonal matrix distributed along the main diagonal without 
considering the coupling relationship between rotational mass and translational mass. The simplified lumped mass model 
of statically in indestructed in-plane circular curved beam structure is shown in Fig. 5. 
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Figure 5 Mass distribution of circular curved beams 

The circular curved beam structure is divided into sections, and the nodes are taken as the connecting points. It is 
assumed that each arc mass accumulates into point mass at each node, and the mass allocated to each node is 
determined by statics. Its lumped mass matrix is: 
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  (12) 

After eliminating the mass coefficient corresponding to the constraint, the number of diagonal items in the matrix 
is equal to the freedom degree of the circular curved beam. im  represents translational mass, and ij  represents the 
moment of inertia of the rigid body. 

2.3 Natural vibration analysis of In-plane circular curved beam 

In the undamped modal analysis of circular curved beam structures, the required structural characteristic matrices 
are stiffness matrix [K] and mass matrix [M]. The modal calculation of circular curved beam belongs to the eigenvalue 
problem in mathematics. The governing equation of its structural characteristics is: 

K M     (13) 

In the formula,   is the eigenvalue corresponding to the natural vibration frequency of the structure,  and is the 
structural modal vector corresponding to the eigenvector. 

3 The example analysis 

In order to verify the calculation results, a specific example is introduced, as shown in Figure 6. The calculation 
example uses a rectangular section constant curvature curved beam simply supported at both ends, with section height 
h=15mm, section width b=45mm, Sectional area A=675mm2. The physical parameters of the circular curved beam 
without damage state are shown in Table 1. 
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Figure 6 Curved beam section and overall geometric dimensions 

Table 1 Physical geometric parameters of circular curved beam 

Characteristic properties Values 

Section height, h 45mm 
Breadth of section, b 15mm 

Central Angle of a curved beam, φ 120° 
Radius of the axis of the arch, R 1000mm 

Young’s modulus, E 2.06×105Mpa 
Shear modulus, G 8.0×104Mpa 

Relevant moment of inertia of the cross-section, I 1.14×105mm4 
Shearing factor, k 1.2 

3.1 Natural vibration analysis of In-plane circular curved beam 

The circular curved beam model is divided into 20 segments with a total of 21 nodes, as shown in fig 7. It is assumed 
that the range of the damage element is 1 2,    , and the crack section height is reduced to simulate the stiffness 

weakening of the beam segment. The damage degree at the structural crack is defined as follows: 

dh

h
    (14) 

2 1

2

 





   (15) 

Where   is the damage degree coefficient, and dh  is the section height of crack damaged beam element.   
Characterize the section position of crack damage. 

 
Figure 7 Damaged circular curved beam model with crack 
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The method above is applied to solve the frequency value of the circular curved beam at 1 2 3=0.16 =0.33 =0.5  、 、  
and no damage state. In order to verify the effectiveness of the proposed method in analyzing the free vibration of circular 
curved beams with different damage degrees, a finite element model was established for the above problems, and its 
numerical solution was obtained. The frequency values obtained by the two methods are listed in Table 2. Through the results 
of the two methods, it can be seen that the larger the damage coefficient is, the smaller the natural vibration frequency is. The 
solution in this paper has the same trend as that of the finite element method. The error values of the two methods indicate 
that the frequency values of each order obtained by using the precise algorithm in this paper maintain excellent and stable 
solutions under different damage coefficient. The correctness of the proposed method for solving the dynamic characteristics 
of damaged circular curved beams is verified. 

Table 2 Natural frequency of circular curved beam with crack damage 

Mode 
Frequency (∝= 𝟎𝟎) 

error/ (%) 
Frequency (∝= 𝟎𝟎.𝟏𝟏𝟏𝟏) 

error/ (%) 
Frequency (∝=0.33) 

error/ (%) 
Frequency (∝=0.5) 

error/ (%) 
Present Ansys Present Ansys Present Ansys Present Ansys 

1 24.4386 24.52 0.31 24.4184 24.50 0.31 24.3620 24.44 0.31 24.1957 24.271 0.31 
2 61.7341 61.97 0.39 61.7093 61.95 0.39 61.6242 61.87 0.39 61.3568 61.60 0.39 
3 118.9588 119.25 0.24 118.6711 118.97 0.25 117.9499 118.24 0.25 115.9943 116.28 0.25 
4 188.0406 188.61 0.30 188.0336 188.6 0.30 188.0029 188.57 0.30 187.9056 188.48 0.31 
5 277.0375 277.25 0.08 276.4685 276.68 0.08 275.0815 275.29 0.08 271.3751 271.57 0.07 

Fig 8 shows the results of the influence of damage degree on the natural vibration frequency of circular curved 
beams solved by the method in this paper. In order to clearly compare frequency changes under different damage 
degrees, a double Y-axis diagram is adopted, with frequency value on the left and frequency change rate on the right 
(the relative variation of the natural frequencies between the damaged and the undamaged configurations). It can be 
seen from the figure that the frequency of each damage degree increases with the increase of order, but there is no 
significant difference. With the increase of damage degree, the relative frequency difference increases and is negative, 
indicating that the natural frequencies progressively decrease as the depth of the crack increases. 

 
Figure 8 Influence of damage on natural vibration frequency of circular curved beam 

In order to study the influence of crack location on the natural frequency of circular curved beam, the crack location 
changes uniformly every 10 degrees from left to right. As shown in Figure 9, the frequency value of damaged circular 
curved beam with =0.5  is a function of single crack position  . It can be seen from the figure that due to the symmetry 
of the structure, the curve in the figure is a symmetric function curve. When the crack position is in the middle of the 
span, the first-order natural frequency of the circular curved beam reaches the maximum value, and when the crack 
position is 1/4 away from the side span, it reaches the minimum value. 

Figures 10 show the relationship between the first four normalized frequency differences and the damage location 
  when the damage coefficient =0.5 . It can be seen from the figure that when the crack is located near the midspan, 
the first-order natural frequency difference is negative, which indicates that the first-order natural frequency of the 
circular curved beam increases after the midspan damage, which may be different from what we considered before. 



Free vibration analysis of in-plane circular curved beams with crack damage: a semi analytical solution Xiaofei Li et al. 

Latin American Journal of Solids and Structures, 2022, 19(6), e462 10/14 

Similarly, when the damage location is at 1/4 span, the second-order frequency difference is negative. However, the case 
that the frequency of the damaged structure is higher than that of the undamaged structure only exists in the first two 
frequencies, and ANSYS has a good corresponding relationship with the solution in this paper. 

 

Figure 9 First natural frequency values at different crack locations =0.5  

 

Figure 10 First four order normalized natural frequency difference   =0.5  

In order to explore the abnormal phenomenon of damage on the first four natural frequencies of circular curved 
beams, the increase of damage coefficient a is considered at the abnormal positions of the first and third natural 
frequencies, as shown in Figure 11. It is worth noting that the damage degree does not change the phenomenon. In order 
to justify this unexpected behaviour, it can be seen from the comparison with other literatures that the solution in this 
paper considers not only the reduction of the stiffness of the damaged structure, but also the reduction of its mass, 
because the reduction of the damaged section will change the mass matrix, resulting in the change of the overall mass 
of the structure. As assumed in Krawczuk and Ostachowicz (1997), the occurrence of crack damage only leads to the 
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change of stiffness, while the overall quality of the structure remains unchanged. The same assumption is also made in 
Caliò et al. (2016). This provides a way to solve the unexpected behaviour of structure. 

As shown in Figure 12, It is assumed that the crack only changes the stiffness of the element, whereas the mass of 
the element remaining unchanged. the mass reduction has been balanced by means of supplementary concentrated 
masses uniformly applied in the damage zones. It can be seen that in the first and third natural frequencies, the presence 
of the supplementary mass eliminates the region of frequency reduction, because all the curves have now positive values. 

 
Figure 11 The first four normalized frequency difference of damage increase in the midspan of circular curved beam 

 
Figure 12 Variation of the first and third natural frequencies with the damage location with supplementary mass 

3.2 Disturbance influence of damage on vibration modes 

The first and fourth order modal solutions of α=0 and α=0.5 are obtained by using the method presented in this 
paper, as shown in Fig 13. By comparing the mode shape changes of circular curved beam in undamaged and several 
damaged configurations, it can be seen that the mode changes are greatly affected at the damage position, and the 
rotational displacement z  has the most obvious effect. Because the stiffness weakening caused by the crack is located 
at the 13th element, close to the right bearing, its effect on the rotational displacement of the right endpoint is more 
evident than that left endpoint. The results of the numerical calculations confirm the usefulness of the method used for 
the modal changes of circular curved beams with damage. 

 
Figure 13 Vibration modes of circular curved beam with demage in undamaged and 3 -damaged 
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In order to show the influence of damage to modes more directly, Fig 14-16 shows the different curves of each 
mode of the first and fouth order. It is obvious that the damaged area has a significant influence on the modes change. 
The larger the damage coefficient, the more severe the damage disturbance to the vibration mode, and the damage has 
a certain impact on each vibration mode component, among which the numerical impact on the rotational displacement 

z  is the largest. By analyzing the difference curve of vibration modes of each order, it can be seen that the method in 
this paper has good applicability to analyzing the free vibration of circular curved beams with damage. In this paper, the 
method is programmed by Matlab mathematical calculation software, and the material parameters and geometric 
parameters of each region are expressed in sections. The purpose of solving the dynamic characteristics of circular curved 
beams with damage is achieved by controlling the parameters. 

 
Figure 14 Rotational mode difference (k=1, k=4) 

 
Figure 15 Radial mode difference (k=1, k=4) 

 
Figure 16 Tangential mode difference (k=1, k=4) 

4 CONCLUSION 

This paper establishes the mathematical model of circular curved beam with damage, simulates the damage state 
of circular curved beam by controlling the parameter changes, solves the free vibration problem of circular curved beam 
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with damage, obtains the self-oscillation frequency and vibration shape solution affected by the damage, compares the 
analysis results with the finite element calculation results for verification, and obtains the following conclusions: 

(1) By comparing the finite element numerical calculation results, it can be seen that accurate solutions of self-
oscillation frequencies and vibration patterns can be obtained by using this paper. Since the finite element method 
does not take into account the coupling effect between the non-adjacent nodes, which leads to the overall rigidity 
of the calculation results and affects the solution process requiring high precision error limits, this paper provides a 
semi-analytical method to improve the solution accuracy and has better adaptability for analyzing the dynamic 
characteristics of circular curved beams with crack damage. 

(2) The results show that with the increase of the damage degree, the natural frequency of the circular curved beam 
decreases gradually, and the disturbance to the vibration mode becomes stronger, especially for the rotation 
displacement z . The crack location has a significant effect on the natural frequency. In the existing damage model, 
when the crack is located in the middle of the span, the first and third natural frequencies show unexpected 
behavior, which is independent of the damage strength. The mass reduction has been balanced by means of 
supplementary concentrated masses uniformly applied in the damage zones and satisfactory results are obtained. 
Through the study of the positive problem of damage identification, the suitability of the semi-analytical solution 
for solving the natural frequency and mode of vibration of in-plane circular curved beams with damage is verified. 
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HS Zhai and DY Zhao; Writing - original draft, XF Li, ZY Pan and HS Zhai; Writing - review & editing, XF Li, ZY Pan and DY 
Zhao; Resources, XF Li and ZY Pan; Supervision, XF Li. 
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