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Abstract 
This paper describes an isogeometric analysis of the boundary element method, called IGABEM, applied to 
anisotropic 2D plane elastic problems. The Lekhnitskii's anisotropic fundamental solution is used and the 
singular integral terms is regularized. For the weak singularity kernel, the Telles transform is used. On the 
other hand, in the strong singularity term, the Singularity Subtraction Technique – SST is used. The shape 
functions used are the Non-Uniform Rational B-Spline - NURBS. Thus, the same mathematical representation 
of Computer Aided Design - CAD is used in the implemented computational code. This avoids the generation 
of meshes and provides an exact representation of most complex geometries. As a reflection of this 
isoparametric concept, errors from geometric interpolation are excluded, improving numerical results. 
Furthermore, to increase the numerical efficiency of the code, the NURBS are decomposed into Bézier curves. 
To evaluate the accuracy of the formulation, complex problems using high-order isogeometric boundary 
elements are analyzed. Their results are compared to analytical solutions showing good agreement. 
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1 INTRODUCTION 

As it is well known, Computer-Aided Design (CAD) programs use non-uniform rational B-Splines (NURBS) to model 
boundaries of solids. NURBS can exactly represent circles, ellipses, spheres, cylinders, and many other engineering 
geometries, which is not possible to obtain with the use of other functions such as, for example, polynomials, even those 
of higher order. Among the difficulties in working with high-order polynomials, we can highlight the globality: when 
changing any point of the curve, the entire curve will be affected. Therefore, when working with polynomials, it is usually 
necessary to divide a curve into elements. This behavior is not observed when using NURBS, because each control point 
only affects a portion of the whole curve (Cottrell et al., 2009). The NURBS geometric representation is typically smooth, 
whereas the representation for polynomials is typically continuous but not smooth. The ability to efficiently use a 
smooth basis in analysis has computational advantages over polynomials. 

In this paper, NURBS are used not only to model geometry but also to approximate displacements and tractions 
throughout the boundary. NURBS curves are given through the Bézier extraction operator, which decomposes a set of 
NURBS basis functions for the Bernstein polynomial (Borden et al., 2011). This will allow the generation of continuous Bézier 
elements of class 0C , according to Beer and Duenser (2019), giving local representation of the basis functions, in addition 
to establishing a well-defined element from where collocation points are defined. The proposed Bézier elements provide a 
structure of elements for isogeometric analysis (Hughes et al., 2005), which is incorporated into the BEM, giving the idea of 
the isogeometric analysis boundary element method (IGABEM). Thus, the isoparametric concept is preserved, once that 
geometry, displacements, and tractions are interpolated by the same functions. Applications are presented for two-
dimensional linear anisotropic elasticity problems, whose fundamental solution is written using through the formalism of 
Lekhnitskii (1968), in which the constitutive equation in terms of the flexibility tensor for the Airy stress is used. These 
fundamental solutions are present in several works and in different areas dealing with anisotropic elasticity, some of which 
are fracture mechanics (Rajapakse and Xu, 2001), (Albuquerque et al., 2004); bending problems (Pastorino et al., 2021); 
stress concentration factor (Özaslan et al., 2019). However, when using the fundamental solutions of Lekhnitskii, depending 
on the position of the collocation points of the discretized geometric region, singularities arise. These singular integrals are 
represented by the displacement (weak singularity) and traction (strong singularity) kernels. For weak singularity, the Telles 
transformation (Telles, 1987) was used, which develops a new transformation for the traditional Gaussian quadrature. And 
for strong singularity, the Singularity Subtraction Technique (SST) is used, as presented by Guiggiani (1998). The SST allows 
integration over high-order curved boundary elements, and this idea fits perfectly with the NURBS curves. In addition, 
according to Cordeiro and Leonel (2020), the SST is a methodology that can be applied to cores in a generic way since it 
does not impose any formal restrictions on the type of core to be integrated. 

Therefore, this article presents an Isogeometric Analysis of the Boundary Element Method, with the anisotropic 
fundamental solution integrated by the Singularity Subtraction Technique - SST. As far as the authors know, the IGABEM for 
anisotropic materials has not yet been presented in the literature. Furthermore, the NURBS are decomposed into Bézier curves 
without the loss of continuity properties, which helps to reduce the cost of the developed computational algorithm. As a result, 
this formulation has superior accuracy when compared to codes that use the conventional MEC. Different numerical examples 
of simple and complex structures are presented to demonstrate the efficiency of the proposed methodology. 

2 FUNDAMENTALS OF ANISOTROPIC ELASTICITY 

If considered an infinitesimal element within the domain Ω  the equilibrium of forces is expressed in the form
, 0ij j ibσ ρ+ = , where ij jiσ σ=  is the stress tensor, ib  is the vector of body forces, and 𝜌𝜌 is the density of the material. 

The traction at any point on the domain boundary Ω is given by: 

,i ij jt nσ=  (1) 

where jn  is the normal vector of the boundary. According to Hwu (2010), it is necessary to have the compatibility 
conditions for the deformation fields to guarantee the existence of a continuous displacement field of single value for a 
continuous body. Thus, the compatibility equation for infinitesimal deformation, given the symmetry of the 
deformations, for the two-dimensional case is satisfied if its derivatives obey the following relationship: 

12,12 11,22 22,11.2 = +    (2)  
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 Constitutive relationships for linear elastic material in an infinitesimal element, are related by generalized Hooke's 
law, as follows: 

,ij ijkl klCσ =   (3) 

.ij ijkl klS σ=  (4) 

The terms ijσ  and ij  are the second order stress and strain tensors, respectively. Each tensor is represented by 

nine index components , 1,2,3i j = . In Equation (3), the linearity coefficient is the fourth order tensor with 81 elements, 

called a tensor of elastic constants, which satisfies Green's symmetry conditions ijklC = klijC = ijlkC = jiklC . 

For plane stress or plane strain problems, Equation (4) can be written as: 

11 11 12 16 11

22 12 22 26 22

12 16 26 66 12

b b b
b b b
b b b

ε σ
ε σ
γ σ

    
    =    
        

 (5) 

where, 𝑏𝑏𝑖𝑖𝑖𝑖  are given in terms of material compliance coefficients ija  (Lekhnitskii, 1968) as: 

for plane stress, ij ijb a=
 (6) 

3 3

33

 for plane strain, 

                              ( , 1,2,6).

i j
ij ij

a a
b a

a
i j

= −

=

 (7) 

2.1 Formulation of the boundary integral equation 

The boundary integral equation for anisotopic elastic problems can be derived from Betti's reciprocal theorem and 
Somigliana Identity, as can be seen in Gaul et al. (2013). Therefore, for a bidimensional anisotropic elastic problem of 
boundary Γ  and considering a null body forces, a boundary integral equation can be written in the form: 

( ) ( ) ( )( ) , ( ) ( ) , ( ) ( )ij i ij j ij jc u T u d U t d′ ′ ′

Γ Γ
+ Γ = Γ∫ ∫x x x x x x x x x x  (8) 

The right hand side integral represents an integral in the sense of Cauchy main value, and ijc  is the free coefficient 

term. In the case of this work, as the collocation points are always in a smooth part of the boundary, we have / 2ij ijc δ= , 

were ijδ  is the Kronecker delta. 

Fundamental solutions for plane anisotropic elasticity used in Equation (8) are based on the Airy stress function as seen in 
Lekhnitskii (1968). For 2D problems in plane strain state, the fundamental solution of displacement ijU  and the fundamental 

solution of traction ijT , which represent the displacement and the traction at the field point z , in the direction j , when the 

concentrated force is acting on the direction i  at the source point 0z , are given through a mapping in the complex plane, as: 

1

Fe

1 1 1

ield point

2 1 1 2

2 1 2 2 2 1 2 2

 poinS u to rc

.o o o
o

o o o

z x x z x x
z z

z x x z x x
µ µ
µ µ

+ +       
= = = =       + +      

   

 (9) 

Based on Equation (9), fundamental solutions of displacement and traction are written as follows: 
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( ) ( ) ( )1 1 1 1 2 2 2 2, 2Re ln ln ,ij o i j o i j oU z z q A z z q A z z = − + −   (10) 

( ) ( ) ( ) ( ) ( )0 1 1 1 2 1 2 2 1 1 2
1 1 2 2

1 1, 2Re ,ij j i j i
o o

T z z g n n A g n n A
z z z z

µ µ
 

= − + − 
− −  

 (11) 

where [ ]Re  stands for the real part of the terms. Elements 𝑞𝑞𝑖𝑖𝑖𝑖, jig , and jkA  can be seen in Sollero & Aliabadi (1993). 

3 REPRESENTATION OF NURBS THROUGH BÉZIER EXTRACTION 

Some geometric shapes are not possible to draw exactly using conventional polynomials. To solve this problem, 
rational functions, known as NURBS, are used as basis functions. With this basis is possible to achieve all forms of 
geometries, from the simplest to the most complex. In NURBS basis functions, in addition to the vector of nodes and the 
degree of the curve, it is necessary to introduce a weight vector. Thus, NURBS basis are defined through a weighted 
average between the B-Spline basis functions and may have a different weight for each control point. 

From the algebraic point of view, a NURBS curve of grade p  is defined as: 

1

,
1

( ) ( ),
n

i i p
i

t R t
+

=

= ∑PS  (12) 

In Equation (12), the term iP  are the control points, and the set , ( )i pR t  is the rational basis written as, 

( ) ( )

( )

( )
( )

, ,
,

,
1

,i i p i i p
i p n

j j p
j

w t w t
R t

W tw t

φ φ

φ
=

= =

∑
 (13) 

where ( ),i p tφ  is the basis B-Spline of degree p  for a vector of non-uniform knot written as { }  0,  0...,  0,  1,  ...,1u = , 

( )W t , is the weight function. Equation (13) can also be written in the matrix form as: 

1

2

3

1( ) ( )  where .
( )

W
W

t t
W t

W

φ

 
 
 = =
 
 
 

R W W


 (14) 

Important characteristics for Equation (14) can be consulted in Hughes et al. (2005). 

3.1 NURBS in the form of Bézier curves 

The Bézier extraction operator for NURBS breaks down a set of NURBS base functions into Bernstein's polynomial. 
This allows the generation of continuous 0C  Bézier elements according to Beer et al. (2020), giving local representation 
of basis functions in addition to establishing a well-defined element where collocation points are located. The work of 
Borden et al. (2011) presented details of this methodology. 

To build NURBS by Bézier curves, two steps are required: 1) Bézier decomposition, where all inner nodes are 
repeated by insertion of nodes up to multiplicity equal to p  and 2) Bézier extraction operator. 

3.1.1 Insertion of knots 

The refinement process is performed inserting new nodes [ )1,k kξ ξ ξ +∈  to k p>  into the existing vector 

{ }0 1 2 1, , , , , , , ,k k m pξ ξ ξ ξ ξ ξ ξ+ += … …U . New nodes are added at the midpoint between the old ones. In order to avoid 
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change in the continuity of the curve, 2m +  new control points are inserted. Furthermore, there is no change in 
geometric or parametric properties of the curve. Therefore, for each inserted node in the existing node vector, a new 
control point is added. This is done through: 

( ) 1

1
1             if  1  

                         if   1 
= 1   if 1     where    =  if  1

                          if  
0             

,

 if  1

i
i i i i i i

i p i
n

i k p
i

i m k p i k
i m

i k

ξ ξ
ξ ξ

α α α−
+

 ≤ ≤ −
= 

− + − < < − + ≤ ≤ 
− = ≥ +

P
P P P

P
.



 (15) 

According to Borden et al. (2011), the continuity of basis functions is reduced by one with each node insertion. 
However, by defining the new control point, the continuity of the curve is maintained. 

3.1.2 Bézier decomposition 

To illustrate the Bézier decomposition, consider Figure 1. In Figure 1(a) and 1(b) the NURBS curves are shown 
through the gray dashed line, constructed from the control points and their basis functions. The NURBS of Figure 1(a) 
was built using the basis functions obtained via conventional NURBS, as shown in Figure 1(c), while the NURBS of Figure 
1(b) was constructed using the basis functions obtained via Bézier decomposition by the Bernstein polynomial, as shown 
in Figure 1(d). Figure 1 shows a cubic curve, whose associated node vector is { }0,0,0,0,1,2,3,4,4,4,4=U . The process of 

decomposing the Bézier curve is carried out by inserting repeated nodes { }1,1,2,2,3,3=U  in all internal nodes, through 
Equation (15), until there is a multiplicity equal to the degree of the curve. 

 
Figure 1. In (a) and (b) NURBS cubic curve and its control points. In (c) and (d) the basis functions of each curve. 

According to Borden et al. (2011), it is important to highlight that those internal knots should have multiplicity 1p +  
to form Bézier elements. However, p  multiplicity is sufficient to represent Bernstein's polynomials, which in this context 
are also called Bézier basis functions. With each node that is inserted, the continuity of the basis functions is reduced by 
one degree at the knot location. Note that knots internal to element, 1,2 and 3ξ = , Figure 1(c), appear only once in the 
knot vector and, therefore, the maximum possible continuity level 1 2pC C− =  is represented. 

3.1.3 Bézier extraction operator 

The Bézier extraction operator C  is constructed considering the n  control points and the m  knots necessary to 
perform the decomposition of the vector ( )0 1, , , mU U U=U   and jα  according to Equation (15). Equation (15) can be 

rewritten in matrix form to represent the sequence of control points created by inserting knots, as: 

( )1
.

tj jj+
=P C P  (16) 

By repeating the form of Equation (16) m  times, the final set of control points 
1m b+
=P P  is defined for C  as: 

( ) ( ) ( )1 1 .
t t tt m m−=C C C C  (17) 
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In this way, Bézier elements are obtained through the final form of the decomposition, and the relationship between 
the new Bézier control points and the initial NURBS control points is written as: 

.
b t=P C P  (18) 

Since, inserting a knot does not cause geometric or parametric changes in the curve, then, given the set of Bernstein 
basis functions defined by the knot vector ( )i tB  to 1,2, , 1i n m= + − , it is possible to obtain, 

( ) ( )( ) ( ) ( ) ( ).
t tb t t tt t t t= = =P B C P B P CB P N  (19) 

After matrix multiplication, Equation (19) is written as, 

( ) ( ),t tφ=CB  (20) 

where C  is called the Bézier extraction operator and depends only on the knot vector. Note that B  is represented as 
class 0C , and C  maps the Bernstein polynomial basis piecewise into NURBS, performing the linear combination of the 
Bézier basis functions. Thus, when writing CB , this term reverts to the continuity of the original NURBS. 

Inserting Equation (20) into Equation (14), the NURBS basis functions using the Bézier extraction operator, becomes: 

1( ) ( ).
( )

t t
W t

=R WCB  (21) 

In this format, Equation (21) is ready to be used as a shape function in the discretization of IGABEM. 

4 ISOGEOMETRIC BOUNDARY ELEMENTS 

In IGABEM, the definition of curves is based on patch which are the knots in the 1 1, n pξ ξ + +    interval and the [ ]1,i iξ ξ +  

interval are the knots span, ξ  being the Gaussian element, [ 1,1]ξ ∈ − . In IGABEM, it is necessary to construct a term of 
connectivity between elements, in which a set of local basis functions are related to global functions in the form 

, ( )n p
e
c Rφ ξ≡ . The number of the local basis function ( )c , the element number ( )e  and the number of the global basis 

function are related by a connectivity function, see (Simpson et al. 2013). From this connectivity between elements, it is 
possible to establish isogeometric approximations for the geometric element, and the geometry of the problem is 
described using the basis functions as follows: 

1

1
.( ) ( )

p
e e

e c c
c

ξ φ ξ
+

=

= ∑x x   (22) 

Displacements and tractions are written as: 

1

1
,( ) ( )

p
e e

e c c
c

ξ φ ξ
+

=

= ∑u u   (23) 

1

1
,( ) ( )

p
e e

e c c
c

ξ φ ξ
+

=

= ∑t t  (24) 

where e
cx , e

cu  and e
ct  are vectors of the geometric coordinates, displacement coefficients and traction coefficients 

respectively, associated with the control point corresponding to the basis function c  for the Bézier curve e . It is 
important to note that the term coefficient is used, since NURBS basis functions do not necessarily obey the Kronecker 



Anisotropic elastic applications in composite materials using the isogeometric boundary element method Jailson França dos Santos et al. 

Latin American Journal of Solids and Structures, 2023, 20(1), e471 7/23 

delta property. Therefore e
cu  and e

ct  represent the displacements and traction at collocation points that may not belong 
to the domain (Simpson et al. 2013). 

Using Equations (23) and (24), in Equation (8), we have: 

( ) ( ) ( ) ( )
1 1 11 1

1 1
1 1 1 1 1

, ( ,) ( ) ( ) = , ( ) ( ) ( )
e eN Np p p

e le e le e le
ij l j ij l j ij l j

l e l e l
c u T J d u U J d tφ ξ ξ φ ξ ξ ξ ξ φ ξ ξ ξ

+ + +
′ ′ ′ ′

− −
= = = = =

   +       ∑ ∑∑ ∑∑∫ ∫x x x x x  (25) 

where le
ju  and le

jt  represent the components of vectors e
cu  and e

ct , and J  is the Jacobian of the transformation. In 

conventional BEM, the Kronecker delta property of the basis functions guarantees that the basis functions are 
interpolating. In the IGABEM, on the other hand, it cannot guarantee that this is true, and the displacement must be 

given as ( )
1

1
( )

p
e le

i l j
l

u dφ ξ
+

′

=

= ∑x , where ξ ′  is the local coordinate of the collocation point in the element e . 

The Bézier extraction operator promotes the construction of elements very similar to the one used in the 
conventional BEM. Each patch of the parametric space corresponds to an element independent of the adjacent elements, 
which, in turn, corresponds to the parametric subintervals adjacent to the initial one. Thus, in this paper, Equation (25) 
is applied to each control point. Finally, a non-sparse and non-symmetric matrix algebraic system is obtained as follows: 

,=Hu Gt   (26) 

where H  and G  are influence matrices. Note that the control points, except for rectilinear geometries, do not belong 
to the NURBS curve. And so, the boundary conditions cannot be applied directly to Equation (26). To solve this problem, 
an E  transformation matrix for NURBS is generated according to Cabral et al., (1990). This matrix uses basis functions 
to relate the values at the control points to the values at the collocation points, in the form: 

,c=u Eu  (27) 

,c=t Et  (28) 

where u  and t  are the vectors containing the displacements and tractions at the collocation points, cu  and ct  are 
vectors containing values at the control points. Now, Equations (27) and (28) can be applied to Equation (26): 

1 1 .− −=HE u GE t  (29) 

Reorganizing the known and unknown terms of Equation (29) we arrive at a linear equation system of the type 
=Ax b . Where x  is the solution vector of unknown tractions and displacements. 

4.1 Strategy for the generation of collocation points 

As commented, control points may not be necessarily on the curve, but on the control polygon. This is not the best 
choice for collocation points in the BEM. In Li & Qian (2011), different forms of distribution for the collocation points 
were tested. Based on their results, the Greville coordinates is the best choice, with stable and accurate results for the 
isogeometric method. Thus, the Greville abscissa used here is defined as the mean value of knots: 

1 2' .i i i p
i p

ξ ξ ξ
ξ + + ++ + +
=



  (30) 

When the curve is smooth, Greville coordinates are perfect to be use as collocation points. Otherwise, when there are 
corners, in order to avoid collocation points at corners, it is proposed to change the positions of the first and last 
collocation point: 
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( )' ' ' '
1 1 2 1 ,sξ ξ ξ ξ= + −  (31) 

( )' ' ' '
1 ,n n n nsξ ξ ξ ξ −= − −  (32) 

where s  is a coefficient that defines how much the collocation point moves. As shown by Wang & Benson (2015), an 
optimal value is 0.5s = . 

4.2 Singular integrals 

In the conventional BEM, only one basis function associated with an element is non-zero at a given collocation point. 
This is not true for IGABEM, since more than one basis functions can be different from zero at the collocation point. 
Therefore, there is only one singular integral in each element. While in NURBS, the basis functions do not have this 
characteristic, as several of them can be non-null in the collocation points. For each collocation point there are k  singular 
integrals. This characteristic related to the analysis of singularities in IGABEM is a crucial point to solve the BIE. 

The fundamental displacement solution containing the weak singularity was treated in this work with the Telles 
transform. Details about this method will not be given here, once it can be found in Telles (1987). On the other hand, for 
traction equation, the Subtraction Singularity Technique (SST) seen in Guiggiani (1998) is used. It is based on the 
expansion of the kernel in series for the treatment of singularities. In general, this technique is formulated based on the 
substitution of the singular integral, creating two new terms: a new regular kernel and a new singular integral, in such a 
way that the latter can be integrated analytically. 

The first step of this method is to consider the expansion of kz , which is the complex mapping shown in Equation 
(9), in Taylor series around the singular term 0ξ , which becomes: 

( ) ( ) ( )
0

2*
0 0 0 .( ) i

i i
zz z O

ξ ξ

ξ ξ ξ ξ ξ ξ
ξ =

∂
= + − + −

∂
 (33) 

Expanding the derivative in Equation (27), it becomes: 

0 0 0

1 2

1 2

.i i iz z zx x
x xξ ξ ξ ξ ξ ξ

ξ ξ ξ= = =

∂ ∂ ∂∂ ∂
= +

∂ ∂ ∂ ∂ ∂
 (34) 

Now, substituting Equation (34) into Equation (33), results in: 

( ) ( ) ( )2* 1 2
0 0 0

1 2

.( ) i i
i i

z zx xz z O
x x

ξ ξ ξ ξ ξ ξ
ξ ξ

 ∂ ∂∂ ∂
= + − + + − ∂ ∂ ∂ ∂ 

 (35) 

It is worth remembering that the unit vector n  which is normal to the boundary Γ , and its components in 1x  and 
in 2x  directions are written as 1xn  and 2xn  in the form: 

( ) ( ) ( ) ( ) ( ) ( )2 1 2 1
0 0 1 0 0 2 0 0 e .x x

x x x xJ n J n Jξ ξ ξ ξ ξ ξ
ξ ξ ξ ξ

∂ ∂ ∂ ∂ 
= − → = = ∂ ∂ ∂ ∂ 

n i j  (36) 

From Equation (36) one arrives at: 

( ) ( ) ( ) ( )1 2
0 2 0 0 1 0 and x x

x xJ n J nξ ξ ξ ξ
ξ ξ
∂ ∂

= − =
∂ ∂

 (37) 

So when replacing Equation (37) in Equation (35), it is possible to find the following equation: 
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( ) ( ) ( ) ( ) ( ) ( )2*
0 0 0 1 0 2 0 0

2 1

 ( ) i i
i i x x

z zz z J n n O
x x

ξ ξ ξ ξ ξ ξ ξ ξ ξ
 ∂ ∂

= + − − + − ∂ ∂ 
 (38) 

where 

[ ]1 2
1 1

2

 
.

1,i
i

i
i

z x x
x x
z
x

µ

µ







∂ ∂
= + =

∂ ∂
∂


=

∂

 (39) 

Through Equation (38), we arrive at the final expression for the expansion of kz  around 0ξ , writing as: 

( ) ( ) ( ) ( ) ( )( ) ( )2*
0 0 0 1 0 2 0 0 .( )i i i x xz z J n n Oξ ξ ξ ξ ξ µ ξ ξ ξ ξ= + − − + −  (40) 

The expansion written in this form as presented by Cordeiro & Leonel (2020), when replaced in the strongly singular 
integral, can isolate singularities of kernels of integrals. Therefore, for the regularization process of the strongly singular term, 
expanded auxiliary kernels for the boundary will be added and subtracted. Then, the strongly singular term is written as: 

( ) ( ) ( ) ( )
1 1 1* *

0 0 0 01 1 1
, ( ) ( ) , , , .ij k T T TT J d K K d K dξ ξ φ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

− − −
 = − + ∫ ∫ ∫  (41) 

Note that, in the integral on the left hand side of Equation (41), ( )kφ ξ  is the basis function that approximates the 

( )ju x  term and ( )J ξ  is the parameter that transforms the dimensionless coordinate to real coordinates. While the 

terms of the right-hand integrals 0( , )TK ξ ξ  are the original kernels of the integral, that is: 

( ) ( )0 0, , ( ) ( ),T ij kK T Jξ ξ ξ ξ φ ξ ξ=  (42) 

and *
0( , )TK ξ ξ  is written in the form of the expansion of the Taylor series around 0ξ ξ= , obtained through the linear 

term of the expansion of Equation (40). 

( ) ( )
( )

0* * *
0 *

0

, 2Re ( ) ( ),
( )

ijl
T k

l l

T
K J

z z
ξ

ξ ξ φ ξ ξ
ξ ξ

 
=  

−  
 where 0 1 0 2 0( ) ( ( ) ( ))ijl jl l x x ilT g n n Aξ µ ξ ξ= − . (43) 

When analyzing Equation (41) after replacing Equations (42) and (43), the strong singularity *
01 / ( ( ) ( ))l lz zξ ξ−  is noted. To 

regularize the integral between square brackets of Equation (43), Marczak & Creus (2002) used the first-order term of the 
expansion of the basis function. On the other hand, Cordeiro & Leonel (2020) considered only the constant term of the 

*
0( ) ( )k kφ ξ φ ξ=  expansion. As it has been shown that only one term is necessary for an adequate representation, then only the 

constant expansion term is used in this work, and with that, the integral between square brackets of Equation (41) is solved 
numerically by the Gauss Legendre quadrature. On the other hand, the other integral on the right side is still singular and must be 
solved analytically in the sense of the Cauchy Principal Value – CPV through a limit analysis. So *

0( , )TK ξ ξ  is written as: 

( ) ( )
( )

( ) ( ) ( ) ( )( ) ( )

0

0

1 1 0*
0 *1 1

0

1

0 0 1 0 2 0 *1
0

, lim 2Re ( ) ( )
( )

1                        2Re g lim .
( )

ijl
T k

l l

k jn l x x in
l l

T
K d J d

z z

J n n A d
z z

ξ ξ

ξ ξ

ξ
ξ ξ ξ φ ξ ξ ξ

ξ ξ

φ ξ ξ µ ξ ξ ξ
ξ ξ

− −→

−→

 
=  

−  
   = −   

−    

∫ ∫

∫
 (44) 



Anisotropic elastic applications in composite materials using the isogeometric boundary element method Jailson França dos Santos et al. 

Latin American Journal of Solids and Structures, 2023, 20(1), e471 10/23 

From Equation (40), it is possible to find the relationship: 

( ) ( )
( ) ( )

( )
1 0 2 0
*

0 0 0

1 .
( )

i x x

i i

n n
J z z

µ ξ ξ
ξ ξ ξ ξ ξ

−
=

− −
 (45) 

Thus, it is possible to remove the term that is replaced in Equation (44), which is now written as: 

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( )

0

0

1 1 1 0 2 0*
0 0 0 *1 1

0

1

0 0 1
0 0

0

, 2Re g lim
( )

1                        2Re g lim

                        2Re g

i x x
T k jn in

i i

k jn in

k jn

n n
K d J A d

z z

J A d
J

ξ ξ

ξ ξ

µ ξ ξ
ξ ξ ξ φ ξ ξ ξ

ξ ξ

φ ξ ξ ξ
ξ ξ ξ

φ ξ

− −→

−→

  − =   
−    

   =   
−    

=

∫ ∫

∫

( )0

1CPV .inA
ξ ξ

  
 

−  

 (46) 

Therefore, with Equation (46) it is possible to calculate the singular integral in a regular way using the limit 
[ ]0 0 0CPV 1/ ( ) ln(1 ) ln(1 )ξ ξ ξ ξ− = − − + . 

It is necessary to draw attention to an important fact in the work of Cordeiro & Leonel (2020). Their final equation 
to regularize the strongly singular term, similar to Equation (46), has a Jacobian 0( )J ξ  on the right side of the equation. 
However, when using Equation (45) in Equation (46), this Jacobian is canceled out and at this point this equation differs 
from theirs. 

4.3 Treatment of body forces 

In order to efficiently apply the boundary element method without volume integration for problems involving body forces, 
such as gravity and centrifugal force, the present authors used the modified boundary conditions method in the context of 
anisotropic plane elasticity. This method was used by Caicedo & Portela (2017) and by Oliveira and Portela (2019) to regularize 
singular stress fields at the tip of cracks in applications of the finite element method and meshless methods, respectively. In the 
case of this work, the method is the same, but the objective is different from that presented in the literature. The particular 
solutions used for domain integrals are those presented by Deb and Banerjee (1990). In the work of Deb and Banerjee (1990), an 
extra integral was generated in the boundary integral equation, which led to a new vector in the matrix equation. However, in 
this work, no extra integrals are generated, only the boundary conditions are modified. 

By decomposing the elastic field a homogeneous part H  and a particular part P , stresses and displacement can 
be written as: 

( ) ,ij ij ij i i
P P H

j j ij
Pσ σ σ σ σ σ= − + = +  (47) 

( ) ,i i i i
P

i
P H P

iu u u u u u= − + = +  (48) 

where P
ij i ij
H

jσ σ σ−=  and P
i i i
H uu u= −  are respectively the homogeneous solutions for the stress and displacement fields 

that is, disregarding the body forces of the original problem, P
ijσ  and P

iu  are respectively the stress and displacement 

particular solutions of the original problem, representing the elastic field with the body forces. 
Considering that the body forces is due to the rotation of the body (centrifugal load), the motion equation is given by: 

2
, 0ij j ixσ ρω+ =

 (49) 

Particular solutions for this equation can be found in Deb and Banerjee (1990). For displacements, we have: 
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( ){ } ( ){ } ( )3 2 2 3
1 11 12 1 11 2 1 16 2 1 2 11 12 1 12 2 1 2 16 26 1 26 2 2 ,1 1 1 1

3 2 3 2
pu b b c b c x b c x x b b c b c x x b b c b c x = + + + + + + + + + 

 
 (50) 

( ) ( ){ } ( ){ }3 2 2 3
2 16 26 1 26 2 1 22 12 1 12 2 1 2 26 2 1 2 22 12 1 22 2 2 .1 1 1 1

3 2 2 3
pu b b c b c x b b c b c x x b c x x b b c b c x = + + + + + + + + + 

 
 (51) 

And for stress, we have: 

( )2 2 2
11 1 1 2 2 1 ,p c x x c xσ = + +  (52) 

( )2 2 2
22 1 1 2 2 2 ,p c x x c xσ = + +  (53) 

12 2 1 2.p c x xσ =  (54) 

Components 1c  and 2c  are represented in the form of Equations (55) and (56), for the plane stress state and for 
plane strain state, according the Equations (6) and (7), respectively. 

( )
212 66

1
11 12 22 66

4
2 3 2

,
3

b bc
b b b b

ρω
−

=
+ + +

 (55) 

211 12 22
2

11 12 22 66

.2
3 2 3

b b bc
b b b b

ρω
+ +

= −
+ + +

 (56) 

where ρ  is the density of the material and ω  is the angular velocity. 

5 NUMERICAL RESULTS 

In order to assess the proposed method, four applications were analyzed, with different mesh refinements and curve orders. 
The first application is a problem of elastic analysis in an orthotropic rotating disk, whose analytical solution was presented by 
Chang (1974). The second application is the determination of the stress concentration factor in an infinity plate, whose analytical 
solution was presented by Lekhnitskii (1968). The third application is the calculation of the stress distribution in a rectangular plate. 
In this one, the solution was the same used in Nuismer & Whitney (1975). Finally, the fourth application is the calculation of the 
tangential stress distributions along the circumference of a hole, whose analytical solution was presented by Lekhnitskii (1968). 

5.1 Elastic analysis on a rotating disk under constant angular velocity. 

Consider an orthotropic rotating disk, of radius R , as shown in Figure 2. The disk is in a plane stress state, at a 
constant angular velocity ω . The direction of the longitudinal and transversal elastic module 1E  and 2E  respectively, 
are also shown in Figure 2. Equations representing stress tensor components were given by Chang (1974). When 
evaluated in polar coordinates, stress tensor components are written as: 

( )

( ) ( )( )

2 2 2

2 2 2 2 2

1 (1 ) ,
2
1 3 ,
2
0,

r

t

rt

K R r

K r R R r n

σ ρω

σ ρω

σ

= − −

= − + −

=

 (57) 
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Figure 2. Representation of the orthotropic rotating disk. 

where rσ  is the radial stress, tσ  is the tangential stress (circumferential), and rtσ  is the shear stress. Finally, the equations 
for displacement vector components are written as: 

( )
2 22 2 2

2 2 2 2 2 2 2 2 211 12
1 3 ,

2 3 3 2 3
a x a xx x xu K y R R y K x y R R yρω ρω              = + − + − + + + − + − +                            

 (58) 

( )
2 22 2 2

2 2 2 2 2 2 2 2 212 22
2 3 .

2 3 2 3 3
a y a yy y yu K x y R R x K x R R xρω ρω              = + − + − + + + − + − +                            

 (59) 

where the radial displacement is written through Equations (58) and (59) in the form 2 2
1 2ru u u= + . 

Considering symmetry, the problem can then be simulated by modeling a quarter of the disk, as shown in Figure 3. 
The model geometry was built with three NURBS curves ( 1N , 2N , and )3N  as shown in Figure 3. Boundary conditions 
(bc) are given by Equation (60). 

1

2

3

0,     ( , ) ,

 bc: 0,      ( , ) ,

0,     ( , ) .

x y

x y

x y

t u x y N

t t x y N

u t x y N

 = = ∈


 = = ∈


 = = ∈

 (60) 

 
Figure 3. A quarter of the orthotropic rotating disk. 
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Table 1 presents elastic constants and the geometric information used in the simulation of the problem. 

Table 1. Mechanical properties of the material and geometric information: problem 01. 

Description of variables Values of variables Description of variables Values of variables 

Longitudinal elastic modulus 1 17.24 GPaE =  Laminate Layers 2C =  

Transverse elastic modulus 2 48.26 GPaE =  Fiber direction 0θ =   

Poisson's coefficient 12 0.29ν =  NURBS degree 2 p =  

Shear module 12 6.89 GPaG =  Radius 1 mR =  

Angular velocity 20 rad/sω =  Density 31 kg/mρ =  

The quarter of the disk was modeled with different amount of Source Points - SP and Integration Points - IP, as can be 
seen in Figure 4. These quantities are defined by each NURBS, such as 04SP and 08IP. This means the total geometry has 12 
source points. Numerical results for displacements are presented for the 1N  edge in Figure 4(a) and for the 3N  edge in 
Figure 4(b). The circumferential stress is shown in Figure 4(c) and the radial stress in Figure 4(d), for the 1N  edge. Numerical 
results show that the mesh refinement with 4 source points already presents good agreement with analytical solutions. On 
the other hand, the number of integration points has strong influence on the numerical results, as shown in Figure 4. 

 
Figure 4. (a) Displacement on edge 1N , (b) displacement on edge 3N , (c) radial stress and (d) circumferential stress . 

In order to identify the influence of mesh refinement on the numerical error, the study of convergence for 
displacements and stresses was carried out using a relative error measurement: 

 

2

1
,

n

i i
i analytical numerical

u u

n
ε

=

−

=

∑
 (61) 
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where ε  is the Euclidean norm of the difference between analytical and numerical solutions and n  is the total number 
of NURBS source points. Results for the errors are shown in Figure 5, with displacements at edge 1N  and at edge 3N
being shown in Figure 5(a), and circumferential stress and radial stress error in Figure 5(b), for the edge 1N . These errors 
represent global errors computed 0,at edges 1N , 2N , and 3N . 

 
Figure 5. Error ε : (a) displacement in x  and y , (b) Circumferential and radial stress. 

5.2 Stress concentration factor in a circular hole in a plate of infinite dimensions. 

Consider a plate of infinite dimensions with a circular hole as shown in Figure 6. The aim of this example is the 
computation of the Stress Concentration Factor - SCF on a rectangular plate of an anisotropic material, with constant 
thickness and under an infinite with load σ  in the y  direction. This problem is a good example to illustrate the efficiency 
of higher-order IGABEM, mainly for modeling the curved hole boundary around which stresses vary rapidly. According 
to Lekhnitskii (1968) the stress concentration factor for an orthotropic material on a plate of infinite width is given by: 

 
Figure 6. Plate with hole in infinite plane with uniform stress in y axis. 

2
11 22 12

T,MAX 11 22 12
22 66

21 ,
2

A A AK A A A
A A

∞  −
= + − + 

 
 (62) 

where ijA  are laminate stiffness matrix terms. For the anisotropic SCF, Konish & Whitney (1975) was used, as: 
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T,MAX
1 2

1 1Re 1 ,
( ,0)yK i
r

σ
σ µ µ

σ∞   
= + +  

  
=


 (63) 

where iµ  are roots of the characteristic equation for an anisotropic material. In addition to the maximum SCF given by 
Equation (63), it is also possible to write the equation for the minimum SCF: 

[ ]T,MIN 1 2
(0, .) RexK r

σ µ µ
σ

σ
∞ = ==  (64) 

Consider a symmetrical laminate of graphite/epoxy with elastic properties given in Table 2. Plate dimensions are 
much larger than the hole diameter, so a uniform uniaxial stress-tension region completely surrounds the hole. Due to 
the symmetry of the problem, the modeling can be performed considering the geometry shown in Figure 7 with the 
specified dimensions, which is the representation of a quarter of the model shown in Figure 6. The geometry was built 
with NURBS of degree 2p =  with unidirectional fiber reinforced lamina with fiber angles varying at (0 , 45 ,90 )θ ° ° °= . In 
Figure 7 is shown point A where the maximum stress occurs and point B where the minimum stress occurs. Finally, to 
obtain the numerical solution, the boundary conditions given by equation (65) are considered. 

Table 3 shows the numerical results for the maximum SCF (point A of Figure 7) and the minimum SCF (point B of 
Figure 7). In the analysis of three laminate fiber directions, results are in good agreement when compared to analytical 
solutions, as can be seen through the percent error shown in the table, and also with quadratic discontinuous boundary 
element method (shape functions are Lagrangian polynomials). 

 
Figure 7. Illustration of a quarter of the plate with the hole pulled in the y  direction. 

Table 2. Elastic properties graphite/epoxy. 

Description of variables Values of variables 

Longitudinal elastic modulus 1 181 GPaE =  

Transverse elastic modulus 2 10.3 GPaE =  

Poisson's coefficient 12 0.28ν =  

Shear module 12 7.17 GPaG =  

Load 1σ =  
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
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 (65) 

Table 3. Numerical results for SCF maximum (point A) and SCF minimum (point B) shown in Figure 7. 

SCF maximum and minimum (IGABEM)  SCF maximum and minimum (Lagrangian BEM) 

 0θ =   45θ =   90θ =     0θ =   45θ =   90θ =   

Total collocation 
nodes 

85 120 315  Total collocation 
nodes 

100 140 1000 

Percent error 0.01% 0.26% 0.18% Percent error 0.16% 0.31% 4.08% 
IGABEM 2.37144 2.37409 6.73794 Lagrangian BEM 2.37557 2.37918 6.47457 

Analytical 2.37177 2.38043 6.75048 Analytical 2.37177 2.38043 6.75048 
Total collocation 

nodes 
200 100 140 Total collocation 

nodes 
1000 140 160 

Percent error 0.12% 0.91% 0.03% Percent error 1.54% 0.96% 0.07% 
IGABEM -4.19743 -0.52409 -0.23863 Lagrangian BEM -4.12714 -0.52380 -0.23873 

Analytical -4.19199 -0.52892 -0.23855 Analytical -4.19199 -0.52892 -0.23855 

Figure 8 shows displacements for the infinite plates for the three analyzed cases. The black line is the undeformed 
plate, and the blue line is the deformed plate. 

 

Figure 8. Original plate (black) and deformed (blue) with fiber orientations in (a) 0θ °= , (b) 45θ °= and (c) 90θ °= . 
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5.3 Stress distributions along the main direction. 

The analytical solution for the distribution of stresses along the principal direction of a circular hole in an orthotropic 
plate of infinite dimensions was presented by Lekhnitskii (1968). For the same problem, in Nuismer and Whitney (1975) 
we see a regression polynomial obtained by adding second, fourth, sixth and eighth order terms, which very well 
simulates the Lekhnitskii analytical solution. Terms of this polynomial were determined from the use of the exact value 
of the SCF given by Equation (62) for the orthotopic case or by Equation (63) for the anisotropic case. The polynomial 
equation is written as: 

( )
2 4 6 8

,MAX( ,0) 2 3 3 5 7 , ,
2y T

r r r rx K x r
x x x x

σσ ∞
          = + + − − − >         

           
 (66) 

For applications in this section, geometric configurations similar to those applied in the problem presented in section 
5.2, see Figure 9, are considered, but with radius 1r = , width of the plate 30x = , and the height of the plate 30y = . 
The boundary conditions are the same as shown in Equation (65). The laminate considered in this application is a cross-
ply laminate with stacking sequence [ ]0 / 90

S
. Numerical results were obtained based on three types of symmetrical 

laminates: graphite/epoxy, boron/epoxy, and aramid/epoxy as shown in Table 4. 

 
Figure 9. Illustration of the collocation points for a quarter of the plate with a hole pulled in the y  direction. 

Table 4. Elastic properties for laminated materials. 

Graphite / Epoxy (AS / 3501)  Boron / Epoxy (B(4) / 5505)  Aramid / Epoxy (kevlar 49/epoxy) 

Description of variables Values of variables Description of 
variables Values of variables Description of 

variables Values of variables 

1E  138 GPa  1E  204 GPa  1E  76 GPa  

2E  8.96 GPa  2E  18.8 GPa  2E  5.5 GPa  

12G  7.1 GPa  12G  5.59 GPa  12G  2.3 GPa  

12ν  0.30  12ν  0.23  12ν  0.34  

Figure 10 shows the numerical results for ( ,0)y xσ  for the three types of materials. A total of 105 collocation points 

with 8 control points were used. For plotting the graphs, only the values in (1,0)yσ  are shown where the SCF is located, 
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and the other ( ,0)y xσ , for 1 4,5x< < . Numerical results, as shown in Figure 10 (a), (c), and (e), show a good agreement 

for the given materials. However, in Konish & Whitney (1975), authors point out that this solution is restricted to 
geometries where the plate dimensions are much larger with respect to the hole size. 

To measure the magnitude of the errors between the analytical and the numerical solution, errors are plotted for 
each type of material, as shown in Figures 10 (b), (d), and (f). This error analysis was performed using Equation (67). 

 



Error ,      for    1,2, .

MAX

i i
analytical numerical

i
analytical

u u

u

i n= =

−


 (67) 

As it can be seen in Figure 10, the behavior of errors is as expected, i.e., they are larger near the hole, decreasing 
with the increase of the distance from the hole. 

 
Figure 10. Stress distribution for: (a) graphite/epoxy, (c) boron/epoxy and (e) aramid/epoxy, and their respective errors. 
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5.4 Tangential stress distributions along the circumference of the hole. 

This application is based on a geometry similar to the problem in Figure 6, being the plate of infinite dimensions 
with a circular hole. However, now the stress σ  is applied in the x  direction, as shown in Figure 11. Note that in this 
application an angle ϕ is considered, which describes the direction of the fiber in the laminate. Notice that the maximum 
SCF is now located at point B and the minimum SCF at point A. Thus, the analytical equation for the tangential stress a 
the hole θσ  in Figure 11 is given as: 

 
Figure 11. Hole in infinite plane and uniform stress in x , being ( ,́ )́x y  the coordinates of the fibers and ( , )x y  of the laminate. 

{ }2 2 2 2 2 2

1

cos ( )sin cos (1 )cos sin sin (1 )sin cos sin cos .E k n k n k n k n
E
θ

θσ σ ϕ ϕ θ ϕ ϕ θ ϕ ϕ θ θ   = − + + + + − − + +     (68) 

Constants k and n  are given by Lekhnitskii (1968). Note that θ  is the polar angle measured from the x  axis and 
Eθ  is the Young's modulus in the tangent direction to the opening boundary written according to Equation (69), which 
is related to the elastic constants in the principal direction by: 

14 4
2 21

1 1 2

2sin 1 cossin cos .vE
E G E Eθ
θ θθ θ

−
   = + − +  
   

 (69) 

For computational simulation of this problem, consider the geometry shown in Figure 12 given by five NURBS curves. 
Information on material type, source points, control points and NURBS degree are detailed in Tables 5, 6, and 7. Boundary 
conditions necessary for the numerical solution of the problem are given in Equation (70). 

 
Figure 12. Illustration of a quarter of the plate with a hole pulled in the x  direction. 
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In these examples, boron/aluminium, carbon/epoxy and carbon/phenolic laminates are used, whose elastic 
constants were taken from Daniel et al., (2006). Figures 13(a), 14(a), and 15(a) show different variations of tangential 
stresses around the circumference of the circular hole for the laminates. Whereas, the errors shown in Figures 13(b), 
14(b) and 15(b) were obtained through Equation (67). Furthermore, in Figures 13(c), 14(c), and 15(c) the deformations 
of each laminate are shown. 

Table 5 NURBS data and elastic properties for boron/aluminum (B4/6061-Al) laminate. 

Boron / Aluminium (B4/6061-Al) Elastic properties 

Source points 30  1E  235 GPa  12G  47 GPa  

Control points 08  2E  137 GPa  12ν  0.30  

NURBS degree 04      

 
Figure 13: Boron/Aluminum: (a) tangential stresses in θσ  (b) error, and (c) deformation. 

Table 6 NURBS data and elastic properties for carbon/epoxy (AGP370-5H/3501-6S) laminate. 

Carbon / Epoxy (AGP/370-5H/350-6S) Elastic properties 

Source points 30  1E  77 GPa  12G  6.5 GPa  

Control points 08  2E  75 GPa  12ν  0.06  

NURBS degree 04      

 
Figure 14: Carbon/Epoxy: (a) tangential stresses in θσ  (b) error, and (c) deformation. 
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Table 7 NURBS data and elastic properties for carbon / phenolic (8H Fabric) laminate. 

Carbon / Phenolic (8H Fabric) Elastic properties 

Source points 30  1E  20 GPa  12G  6.8 GPa  

Control points 08  2E  19 GPa  12ν  0.23  

NURBS degree 04      

 
Figure 15. carbon / phenolic: (a) tangential stresses in θσ  (b) error, and (c) deformation. 

All numerical results for the different laminates given in Figures 13 - 15 show good agreement with the analytical 
solution. However, it is worth mentioning two situations that we must be aware when simulating this type of problem. 
The first is the degree of anisotropy 1 2/E E , which when it is large, it can increase the difficulty of the numerical results 
to agree to the analytical ones, as the anisotropic degree larger in Figure 13 with respect to that used in Figure 15, for 
example. And the second situation is that in the regions close to the hole, the numerical results always present a little 
more difficulty in following the analytical solution as well, as shown in the error analysis of Figures 15, for example. This 
can be justified, because close to the boundaries there are sudden variations of the stress. 

6 CONCLUSION 

In this paper, the IGABEM with Bézier decomposition was successfully applied to solve 2D anisotropic plane elastic 
problems. The Lekhnitskii's anisotropic fundamental solution was used and the singular integral terms, which arise in the 
boundary integral equation of displacement and traction, were regularized. For the weak singularity kernel, the Telles 
transformation was used. For the strong singularity term, the singularity subtraction technique was used. The 
convergence and numerical precision of the proposed formulation was demonstrated through the analysis of different 
problems. Stress distribution in a rotating disk was computed by a different approach, using modified boundary 
conditions. Numerical solutions computed using IGABEM have shown excellent agreement with analytical solutions 
available in the literature, even with a small amount of degrees of freedom. 
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