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Abstract 
Sliding connections are present in several applications on the mechanics, civil and aerospace industries. A 
framework consisting on an accurate and stable formulation to describe the dynamics of flexible systems with 
sliding connections is developed. The total Lagrangian positional approach of the Finite Element Method is 
employed using 2D solid and frame elements to discretize bodies and connections. This allows a wide range 
of applications, particularly the local modelling of joints. The proposed formulation includes roughness along 
sliding paths independent from the finite element geometry discretization. Following variational principles, 
Lagrange multipliers are used to impose sliding constraints on the equations of motion. A direct time 
integration is performed by the generalized-α method and its stability in the present finite deformation 
context is evaluated. The resulting nonlinear equations are solved by the Newton-Raphson method. Examples 
are presented where the proposed framework is evaluated regarding its dynamical behavior and to solve 
practical scenarios for which sliding modelling is a necessity. 
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1 INTRODUCTION 

Sliding connections are part of several structures and mechanisms. They are employed to constrain contact between 
bodies by allowing relative sliding among their surfaces without detachment. Constraints imposed by sliding connections 
can be used in the local modelling of several types of joints – such as revolute, spherical, prismatic, cylindrical and plane 
– which are used to model a variety of applications on the mechanics, civil and aerospace industries. For instance, sliding 
connections are necessary in joints present in machinery and satellites, base isolation devices in buildings, vehicle-bridge 
interaction and cranes, only to list a few. 

This study proposes a numerical framework that consists on an accurate and stable formulation and solution 
strategy to describe the dynamics of flexible systems with sliding connections by employing the total Lagrangian 
positional approach of the Finite Element Method (FEM). In this technique, positions, instead of displacements, are used 
as the main variables to discretize solids and structures. It has been successfully used in several works with good results 
for unconstrained dynamic analyses (Coda et al., 2020; Siqueira and Coda, 2019; Coda and Paccola, 2014; Coda and 
Paccola, 2011; Coda et al., 2013). As far as the authors knowledge goes, for constrained cases the positional FEM has 
been used only for bilateral sliding connections of plane frames using the Newmark-β time integrator (Siqueira and Coda, 
2016; Siqueira and Coda, 2017). The main contributions of the work are: (i) a formulation capable of describing sliding 
surface contact between 2D solid finite elements where mesh independent roughness exists in the contact trajectory, 
this allows the local modelling of non-ideal joints in a wide range of applications; and (ii) the use of the generalized-α 
time integrator to control spurious frequencies that appear in systems with constraints imposed by Lagrange multipliers. 

Since in the proposed formulation, roughness or path imperfections are not dependent on the finite element 
discretization, less refined meshes can be used for the analyzed bodies. As far as the authors are aware, roughness in 
sliding interfaces is mostly solved by equivalent forces and simplified mass/spring/damper systems (Oliva et al., 2013; 
Yin et al., 2010; Ding et al., 2009; Lyubicheva and Tsukanov, 2022) or by employing very refined finite element meshes 
and unilateral contact simulations (Bonari et al., 2022; Li et al., 2022), making the proposed approach an important 
alternative for this kind of simulation. 

Differently from the proposed approach, the large majority of continuum mechanics studies interested in modelling 
sliding connections adopts the updated Lagrangian technique, mainly co-rotational formulations (Jelenic and Crisfield, 
2001; Cardona et al., 1991; Verlinden et al., 2018; Gay Neto and Wriggers, 2020). This approach uses intermediate frames 
of reference to characterize large displacements and results in variable mass matrices for the finite elements, usually 
requiring special time integration schemes to solve the equations of motion (Espath et al., 2015; Hilber et al., 1977; 
Mamouri et al., 2014; Simo et al., 1992; Leyendecker et al., 2008; Pimenta et al., 2008). On the other hand, formulations 
based on the total Lagrangian description use only one frame of reference, resulting (for solid elements) in nonlinear 
equations of motion with constant mass matrix. Thus, the same time integration methods employed in geometrically 
linear dynamic analysis can be used. Paultre (2011), for instance, clarify the use of direct time integration schemes in 
nonlinear systems. 

The good choice of the time marching method is an important aspect to be considered when solving dynamical 
systems with constraints, see Rong et al. (2019) for instance. The algebraic equations introduced by Lagrange multipliers 
constraints in the finite element system leads to numerical instabilities, even for linear dynamics (Géradin and Cardona, 
2001). To overcome this problem, time integrators that control the total energy of the system and methods that 
introduce numerical dissipation are frequently used. The former usually requires changes in the finite element 
formulation (Simo and Wong, 1991; Simo et al., 1992; Kuhl and Ramm, 1999; Leyendecker et al., 2006; 
Leyendecker et al., 2008) and is well suited to co-rotational formulations, while the latter can be applied in total 
Lagrangian formulations without changes. 

As the total Lagrangian FEM positional approach results in equations of motion with constant mass matrix, the 
generalized-α method (Chung and Hulbert, 1993) may be directly employed. This method (developed for the time 
marching of linear dynamics) is able to introduce numerical dissipation in a controlled manner. Here, its capability to 
obtain stable and representative responses is investigated for the nonlinear constrained (with roughness) dynamics case. 
The successful application of the generalized-α method in the present context, and the favorable results obtained, 
reflects the importance of the above-mentioned contributions of the present study. 

Since the proposed applications include finite deformations but small strains, the Saint-Venant-Kirchhoff 
constitutive model is used, which linearly relates the Green-Lagrange strain with the second Piola-Kirchhoff stress tensor. 
Also, to describe the dynamic response in a more realistic manner, structural dissipative aspects are considered by 
employing a Rayleigh-type damping adapted to the present geometrical nonlinear formulation. 

The work is organized as follows: Section 2 shows the nonlinear constrained equations of motion using the principle 
of stationary total energy, Section 3 presents the time discretization employing the generalized-α method. The resulting 
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nonlinear system of equations is solved by the Newton-Raphson method in Section 4. The kinematic descriptions for the 
employed solid and frame 2D finite elements are described in Section 5. The subsequent section focusses on the 
development of the sliding connections between the plane elements and the algorithm used for its contact point 
identification. Section 7 detaches the coupling strategy between the different element types making possible contact 
path definition and frame / solid transition. In Section 8 three examples are employed to demonstrate the use of the 
proposed sliding connection framework. The modeling of engineering applications, where the occurrence of sliding is 
necessary to represent its dynamical behavior, is presented and results are evaluated. Conclusions are discussed in 
Section 9. 

Dyadic notation is preferred throughout the text, but some expressions are made clearer by using index notation. 

2 EQUATIONS OF MOTION 

The general procedure for obtaining the equations of motion of the mechanical-structural system containing 
constraints is presented in this section. In subsequent sections, essential details of the employed finite elements and the 
sliding connections constraints are presented. 

Following Siqueira and Coda (2017), the principle of stationary total energy, which is common in nonlinear analysis 
(Holzapfel, 2000), is used to represent the finite deformation behavior of solids in the employed total Lagrangian 
environment. 

2.1 Dynamic nonlinear equilibrium for unconstrained systems 

A mechanical system without constraints is initially considered. The strain energy and external load potentials, as 
well as the kinetic energy and the dissipative damping energy, are included in the total energy of the system, which is 
written as 

0 0 0
0 0 0 0

1( ) ( )
2V s V

u dV F Y q y ds y y dV YΠ ρ= − ⋅ − ⋅ + ⋅ +∫ ∫ ∫E
  

   



    (1) 

in this expression the position vector Y


 collects all the nodal parameters used to describe the finite elements, u  is the 
specific strain energy written as function of the Green-Lagrange strain tensor E , y  and y  are the position and velocity 
vectors of the material points and F



 and q  are the concentrated and distributed external conservative loads, 
respectively. For the 2D solid element, 0s  represents its initial area whereas for the frame element 0s  is its reference line. 
Due to the total Lagrangian aspect of the formulation, 0s  is referred to the initial (reference) configuration of the body as 
well as the mass density 0ρ  and the volume 0V . The quantity   represents the amount of energy dissipated from the 
mechanical system (damping for instance). 

At equilibrium, the total energy expressed in Eq. (1) is stationary for any variation of the current position of the 
body; which is written as 

0δΠ = .  (2) 

As the degrees of freedom describing the mechanical system are united in one vector Y


, the variation of the total 
energy can be developed as 

0 0

0

0 0

0 0

:

0

V s

V

u yY dV F Y q Y ds
Y Y

dy y t dV Y
dt Y

δΠ δ δ δ

ρ δ δ

∂ ∂ ∂
= ⋅ − ⋅ − ⋅ ⋅ +

∂ ∂ ∂

∂
+ ⋅ ⋅ + ⋅ =

∂

∫ ∫

∫

E
E



   



 














. (3) 

Due to the energy conjugacy property (Ogden, 1984), the derivative of the specific strain energy regarding the Green 
strain is the second Piola-Kirchhoff stress tensor S . Also, noticing that y t yδ δ⋅ =

 

  the kernel of the variation of kinetic 
energy in Eq. (3) becomes 0 y yρ δ⋅ 

 . The dissipative energy expression due to damping is not usually known (Lanczos, 1970; 
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Gurtin et al., 2010), however its derivative / Y∂ ∂


  represents a known damping force vector that acts on the system 
degrees of freedom and may be assumed to exist. Considering those remarks, from Eq. (3), one writes 

0 0

0

0 0

0 0

:

0

V s

V

yY dV F Y q Y ds
Y Y

y y dV Y
Y

δΠ δ δ δ

ρ δ δ

∂ ∂
= ⋅ − ⋅ − ⋅ ⋅ +

∂ ∂

∂
+ ⋅ + ⋅ =

∂

∫ ∫

∫

ES


   



 



 






. (4) 

In order to solve position variation in Eq. (4) the finite element kinematics must be known. The specificities of each 
finite element are discussed in the next sections, however in the total Lagrangian FEM positional approach (Coda et al., 
2013; Coda and Paccola, 2007), the previous equation may be written as follows 

int 0F Y F Y Y Y Y YδΠ δ δ δ δ= ⋅ − ⋅ + ⋅ ⋅ + ⋅ ⋅ =M D
       

   (5) 

where the first integral in Eq. (4) represents the elastic internal forces grouped in the internal nodal force vector intF


. The 
concentrated and distributed loads (as nodal equivalents) are gathered in the same vector F



. The mass matrix . M ., as 
will be revealed by Eq. (53), is constant for the adopted elements. The damping force is assumed to be Rayleigh-type 
velocity proportional with damping matrix D . This matrix is also constant as will be shown by Eq. (54) when presenting 
the employed finite elements. 

The equations of motion for the geometrical nonlinear mechanical system without constraints arise from the 
arbitrary character of variations Yδ



 in Eq. (5), resulting 

int 0F F Y Y− + ⋅ + ⋅ =M D
   

  . (6) 

2.2 Constraint introduction 

When kinematic constraints are added to the system of equation (6), the search for the solution can be interpreted 
as a constrained optimization problem. 

In this work, constraint imposition is done by Lagrange multipliers by a set of holonomic constraints. The vector that 
groups the constraint equations c  to be introduced to the system can be written as 

( ), 0c Y t =


  (7) 

in which Y


 groups the previous finite element nodal parameters and additional variables introduced by the constraint 
equation itself. 

In order to introduce constrains into the principle of stationary energy, the following constraint potential is added 
to Eq. (1) 

cλ= ⋅


   (8) 

where the vector λ


, which has the same dimension as c , gathers the multipliers for each constraint equation. As the 
multipliers represent new degrees of freedom of the system, we write the variation of the constraint potential as a 
function of the nodal parameters and the multipliers as 

{ } { } conccY c Y Y F
Y c

λ
δ δ λ δλ δ δλ δ δλ

 ∇ ⋅∂  = ⋅ ⋅ + ⋅ = ⋅ = ⋅ 
∂   





      







  (9) 

where c∇  is the gradient of the constraint vector regarding nodal parameters, that is, its Jacobian matrix, and conF


 is 
the vector representing the forces that impose constraints on the system (arising from the introduced potential). As δλ



 
is also arbitrary, including Eq. (9) into Eq. (5) results the geometric nonlinear dynamic equilibrium with constraints, as 
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int
0

00 0 0

F cF Y Y
c
λ        ∇ ⋅⋅ ⋅         − + + + =         

               

M D


  



 





  


 (10) 

or, known the correspondence of nodal parameters and multipliers, the previous equation can be expressed in compact 
form, better suited for further developments, as 

int con 0F F Y Y F− + ⋅ + ⋅ + =M D
    

  . (11) 

Although the multiplier method introduces more unknowns in the system, constraints are exactly imposed without 
any additional parameter as, for example, penalty coefficients. In addition, multipliers have a direct mechanical 
interpretation as the internal force necessary to impose constraints. In the present case of sliding connections, they 
represent the contact force between surfaces. More details regarding the adopted constraint equation are given in 
Section 6. It is interesting to comment the physical interpretation of Eq. (7) enforced by using equations (8) and (10). In 
the proposed formulation, the constraint c  is the relative position between the sliding point and the sliding surface that 
depends on the curvilinear coordinate, defined along the sliding path, and the roughness function, see Eq. (56). In this 
sense, when Eq. (10), or (11), is solved, the Lagrange multipliers result the necessary force to guarantee the imposed 
constraint. 

3 TIME INTEGRATION 

From the equations of motion, Eq. (10), one can note that the introduction of constraints by multipliers result in a 
system with the original set of time differential equations with additional algebraic equations. As discussed by Géradin 
and Cardona (2001), even for linear cases, the massless multipliers related with the algebraic equations constraints are 
associated with infinite vibration frequencies, leading to numerical instabilities on the time marching response. It has 
been proven (Cardona and Géradin, 1989) for linear systems that the Newmark trapezoidal rule is unconditionally 
unstable in the presence of constraints, rendering unstable responses particularly in long term simulations. One possible 
approach to deal with this problem is the introduction of controlled numerical dissipation in the numerical time 
integration process. 

In the present study, we use the generalized-α method time integration (Chung and Hulbert, 1993) in order to 
introduce numerical dissipation in a controlled and optimal manner. In order to be complete, in the example section we 
show that the introduction of numerical dissipation using the Newmark trapezoidal rule is less able to maintain the 
response quality when compared to the generalized-α method. 

The generalized-α method is employed to discretize the solution in time increments t∆  by rewriting the forces in 
Eq. (11) for specific auxiliary time instants 1 ft α+ −  and 1 mt α+ −  as 

int con
1 1 11 1 0

f m ff f
t t tt tF F Y Y Fα α αα α+ − + − + −+ − + −− + ⋅ + ⋅ + =M D

    

  . (12) 

A linear combination of the type ( )1 11t t td d dα α α+ − += − +
  

 is used to evaluate any vector in (12) at an auxiliary instant 
using its current value 1td +



 and its past instant value td


. The parameter α  may represent fα  or mα . Applying this 
combination in the equation of motion results 

( ) ( ) ( )

( ) ( )

int int
1 1 1

con con
1 1

1 1 1

1 1 0

f t f t f t f t m t m t

f t f t f t f t

F F F F Y Y

Y Y F F

α α α α α α

α α α α

+ + +

+ +

− + − − − + − ⋅ + ⋅ +

+ − ⋅ + ⋅ + − + =

M M

D D

     

 

   

 

. (13) 

Nodal parameters velocity and acceleration vectors are written as 

2
1 1

1
2t t t t tY Y tY t Y Yβ β+ +

  = + ∆ + ∆ − +  
  

    

    (14) 

and 
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( )1 11t t t tY Y t Y tYγ γ+ += + ∆ − + ∆
   

     (15) 

in which the Newmark approximations with parameters β  and γ  are employed. Using (14) and (15) in Eq. (13) results 
the equations of motion for discrete time instants 

( )( ) ( ) ( )int con 11 1 1 2

111 0fm
f t tt t t Y PF F F

tt

α γαα
ββ

++ + +

 −−−  + + =++ −
∆ ∆ 

M D
 

    (16) 

with the vector that groups the terms of the previous time instant given by 

( ) ( ) ( )int con 11 fmt f m t t f t tt t tP Y T Y RF F F ααα α α −−= + ⋅ − ⋅ + ⋅ + ⋅+ − M M D D
    

  

   (17) 

with 

2
1 1

2
t t

t t
Y YT Y

t tβ β β

 −= + +  ∆  ∆

 



 

  (18) 

and 

2
+1 1 t

t t t
YR tY Y

t
γ γ γ
β β β

   − −= ∆ −    ∆   



  

  . (19) 

At the end of the time step the velocity and acceleration must be calculated from the approximations (14) and (15), 
or, using the previously defined vectors, they can be written as 

1 1
1 1 2andt t

t t t t
Y YY R Y T

t t
γ
β β
+ +

+ += − = −
∆ ∆

 

   

  . (20) 

which is best suited for computational calculations as involves less operations. 
To start the time march, the initial acceleration is evaluated from the initial configuration and velocity of the system 

by Eq. (11) which writes as 

1 int con
0 0 0 0 0( )Y F F F Y−= ⋅ − − − ⋅M D
    

  . (21) 

Relating the high frequency region spectral radius [ ]0,1ρ∞ ∈  to the generalized-α method parameters is possible to 
obtain an optimal situation of minimizing numerical dissipation of the fundamental frequencies and maximizing 
dissipation on the high frequencies. The α-parameters are obtained by (Chung and Hulbert, 1993) 

2 1 and
1 1m f

ρ ρα α
ρ ρ
∞ ∞

∞ ∞

−
= =

+ +
, (22) 

and the other parameters are given by 

( )21 1 1and
2 4 m fm f α αγ α α β − += − + = . (23) 

For linear dynamics, respecting Eq. (22) and (23) the method is second order accurate (Chung and Hulbert, 1993). 
Considering the presence of constraints, the relation 1/ 2m fα α< ≤  must also be respected to achieve unconditional 
stability (proven for the linear case in Géradin and Cardona (2001)). As a consequence of m fα α< , the situation without 
numerical dissipation, that is 1ρ∞ = , cannot be achieved. From the authors experience and the examples presented next, 
in most situations 0.9ρ∞ =  presents good results with small or negligible numerical dissipation even in nonlinear cases. 
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4 NONLINEAR EQUATION SOLUTION PROCEDURE 

As the equation of motion is nonlinear, the Newton-Raphson method is employed to obtain the current value of the 
nodal parameters 1tY +

 . In order to do so, the equilibrium equation (16), already discretized in time, is rewritten defining 
the mechanical unbalance vector 1tg +

  (numerical residuum) at the current time as 

( )( ) ( ) ( )int con1 11 1 1 2

111 0fm
ft t tt t tg Y PF F F

tt

α γαα
ββ

+ ++ + +

 −−−  = + + =++ −
∆ ∆ 

M D
 

  
 . (24) 

Applying a usual first order Taylor expansion one achieves the following linear system of equations for a trial solution 

vector { }0 0
1 1

t
t tY λ+ +



 

( ) ( )11 0 01 1 1
1

,
t

t t t
t

Y
g Y λ

λ
−+

+ + +
+

 ∆  = − ⋅ 
∆  

H







 (25) 

where 1 1t tg+ += ∇H   is the Hessian matrix, or tangent operator of the Newton method. 

Solving (25), a correction { }1 1
t

t tY λ+ +∆ ∆


 is added to the trial solution. This procedure is repeated until the relative 

position norm – calculated as || || / || ||Y X∆
 

, where X


 is the initial nodal position vector of the body – is smaller than a given 
tolerance. 

The Hessian matrix can be written in a compact way, respecting the organization of the degrees of freedom of the 
system, as 

( )( ) ( ) ( )int con
1 1 1 2

11
1 fm

ft t tF F
tt

α γα
α

ββ
+ + +

−−
−= ∇ +∇ + +

∆∆
H M D

   (26) 

In which int
1tF +∇

  represents the elastic part of the tangent (or Hessian) matrix associated with the strain energy potential 
of the finite elements and con

1tF +∇
  represents the part associated with imposed kinematic constraints. 

The elastic part can be developed to obtain 

0

int 2 2
int

1 1 0
1 11 1

: : :t t
V t tt t

F uF dV
Y Y Y Y Y+ +

+ ++ +

 ∂ ∂ ∂ ∂ ∂ ∇ = = +
 ∂ ⊗∂∂ ∂ ∂ ∂ ⊗∂
 

∫ E E ES
E E





      (27) 

in which ⊗  represents tensor product and 2 /u= ∂ ∂ ⊗∂E EC  is the fourth-order elastic constitutive tensor. For the adopted 
isotropic Saint-Venant-Kirchhoff model, the specific strain energy for the plane strain state is given by 

2 2 2 2
11 22 11 22 12 21 12 21

(1 ) 1 1( ) ( )
(1 ) 2(1 2 ) (1 2 ) 2 4

u E E E E E E E Eν ν
ν ν ν

− = + + + + + + − − 

E  (28) 

and for the plane stress state by 

2 2 2 2
11 22 11 22 12 212 2( ) ( )

2(12(1 ) (1 )
u E E E E E Eν

νν ν
= + + + +

+ )− −

E E E  (29) 

with E  and ν  being the material parameters that represent Young modulus and Poisson ratio in small strains, 
respectively. Those constitutive relations are employed for the 2D solid. For the plane frame finite element, the plane 
stress specific strain energy is reduced to avoid volumetric locking (Siqueira and Coda, 2017), and is given by 

2 2 2 2
11 22 12 21( ) ( )

2
u E E E E= + + +

E G  (30) 
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with / [2(1 ν= + )]G E  reproducing the shear modulus for small strains. 
The Green strain derivatives in Eq. (27) depend on the parameters chosen to define a particular finite element 

kinematics (as presented in the next section), see Eqs. (35), (40) and (47). 
Using Eq. (9), the part of the Hessian that refers to the constraint forces can be derived as 

{ }
( )

( )

con
con

1
1 1

,
t t

t t

c cFF
Y c

λ

λ
+

+ +

 ⋅∇ ∇ ∇∂  ∇ = =
∂  ∇ 0



 







 (31) 

where ( )c∇ ∇
  is a third-order tensor which can be understood as the set that groups the Hessian matrices of each 

constraint equation ic  and 0  is a null matrix. The derivatives shown in the previous equation are achieved after 
establishing the kinematic constraint equations for the sliding connections in Section 6. 

5 POSITIONAL APPROACH FOR THE FINITE ELEMENTS 

To compute the strain field, the motion of the material points composing the body from their initial configuration 
to their current position must be defined. Following Bonet et al. (2000) and Coda and Paccola (2007), in the positional 
approach of the FEM the deformation function (or motion) is obtained from the composition of two mappings based on 
a dimensionless reference domain as 

1 0 1( )f f f −=
  

  (32) 

where 1f
  represents the mapping from the dimensionless space to the current configuration of the body and 0f

  to the 
initial (reference) configuration. As the deformation function expression does not need to be explicitly known to define 
the strain measure, but only its gradient, one can write from Eq. (32) 

1 0 1( ) ( )Grad f −= = ⋅A A A


 (33) 

in which 1A  and 0A  are numerical values calculated at the integration points. It is noteworthy that 1A  have to be 
calculated at each iteration of the solution procedure, but 0A  can be calculated only once and stored, as the reference 
configuration does not change in a total Lagrangian description. Both tensors are obtained from the derivatives of the 
respective mappings regarding the dimensionless variables ξ



 as 

0 1
0 1andf f

ξ ξ
∂ ∂

= =
∂ ∂

A A
 

  . (34) 

Knowing the deformation gradient, the objective Green-Lagrange strain can be written as (Ogden, 1984) 

1 1( ) ( )
2 2

t= − = ⋅ −E C I A A I  (35) 

where t= ⋅C A A  is the right Cauchy-Green stretch tensor. 
Replacing the gradient of the motion given in Eq. (33) into Eq. (35), the Green strain derivative component – present 

in the internal force vector, Eq. (4), and in its gradient, Eq. (27) – can be developed as 

( ) ( ) ( ) ( ) ( )1 110 1 0 0 1 01
2

T
T T T T

Y Y Y

− − −  ∂ ∂ ∂  = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ∂ ∂ ∂  

E A AA A A A A A  

 (36) 

in which ( )0 T−
A  represents the inverse transpose of 0A . From Eq. (36), the second derivative of the Green strain, 

necessary for the solution procedure, Eq. (27), results in 
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( )2 1
2

T T
Y Y
∂

= + + +
∂ ⊗∂

E M M N N   (37) 

with 

( ) ( ) ( )2 1 10 1 0T T

Y Y

− −∂
= ⋅ ⋅ ⋅

∂ ⊗∂
AM A A A 

 (38) 

and 

( ) ( ) ( )1 1 10 0
T

T

Y Y

− −∂ ∂
= ⋅ ⋅ ⋅

∂ ∂
A AN A A  . (39) 

Next, in this section, the frame and 2D solid finite element kinematics are described presenting their particular 
mappings, thus, allowing the development of their particular derivatives detached in Eqs. (36) and (37). 

5.1 2D solid element kinematics 

To define the current configuration of the 2D solid it is necessary to map its current domain. This can be done by 
using the element nodal positions to write the following mapping 

1
1 2( , )i i if y Yφ ξ ξ= = 



 (40) 

in which iY   are the current coordinates of a node 


 for directions 1,2i =  and 1 2( , )φ ξ ξ


 are the shape functions of the 
adopted triangular element, being 1ξ  and 2ξ  its dimensionless variables. Fig. 1 depicts the mapping to the current 
configuration. 

 
Fig. 1. Plane solid mapping to the current configuration. 

Known (40) one can develop the derivative of the tensor 1A  in Eq. (36) as 

1
( , 1, 2)ij

j i
A

i j
Y

β αβ
α

φ δ,
∂

= =
∂

 (41) 

where 1,2α =  refers to node β  coordinates, /j jβ βφ φ ξ, = ∂ ∂  and iαδ  is the Kronecker delta. As the second derivative of 1A  
regarding the nodal parameters is null for this element, expression (37) simplifies to 

( )2 1
2

T
Y Y
∂

= +
∂ ⊗∂

E N N   (42) 
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for which only the already obtained first derivative of 1A  is necessary as can be observed in Eq. (39). 
In order to complete the description of the elastic part of the equilibrium, Eq. (4), and the solution procedure, Eq. 

(27), it is necessary to write the second Piola-Kirchhoff stress. Employing the energy conjugacy /u= ∂ ∂S E , for plane strain, 
Eq. (28), results 

( )
( )

11 22 12

21 22 11

E E E
E E E

λ λ
λ λ

 + 2 + 2
=  

2 + 2 +  
S

G G
G G

 (43) 

with [(1 )(1 2 )]λ ν ν ν= / + −E . Although not necessary for the solution procedure, in a plane strain condition, the following 
stress components can also be calculated 

3 3

33 11 22

0 ( 1,2)
)

i iS S i
S S Sν

= = =

= ( +
 . (44) 

For plane stress, using Eq. (29), the second Piola-Kirchhoff stress tensor results 

( )

( )

11 22 122

21 22 112

1

1

E E E

E E E

ν
ν

ν
ν

 + 2 
− =

 
2 + 

− 

S

E G

EG
 (45) 

in this case, the strain components following the out-of-plane axis are achieved by 

3 3

33 11 22

0 ( 1,2)

)

i iE E i

E S Sν
= = =

= − ( +
E

 . (46) 

To complete the details of the 2D solid element, it must be mentioned that the mapping for the initial configuration 
can be obtained similarly to Eq. (40) adopting the initial node’s positions in place of the current ones. As triangular 
elements are employed Hammer quadrature is adopted (Zienkiewicz et al., 2013) for the numerical integrations 
necessary to calculate the internal force vector, its gradient and mass matrix. 

5.2 Plane frame element kinematics 

The description of the frame finite element current configuration depends on its adopted kinematics. Similarly to 
the 2D solid finite element, positions instead of displacements are adopted as nodal parameters. Angles are used to 
describe the cross-section orientation allowing cross-sectional spin independent from the frame reference line. As a 
result, a Timoshenko-Reissner kinematics takes place and the frame element has three degrees of freedom per node. 
The current configuration mapping can be written as 

1 0
1 1 1

1 0
2 2 2

( ) cos[ ( ) ]
2

( ) sin [ ( ) ]
2

hf y Y

hf y Y

φ ξ η φ ξ θ

φ ξ η φ ξ θ

= = +

= = +



  



  

 (47) 

where iY   are the current coordinates of a node 


 for the directions 1,2i = , θ


 is the nodal cross-section angle and ( )φ ξ


 
are the shape functions for the reference line of the frame, being ξ  its dimensionless variable. Fig. 2 depicts this mapping 
identifying also the dimensionless variable η  employed to map material point positions along the transverse direction, 
respecting the initial height 0h  of the frame. In Eq. (47), the first summand of each equation represents the map to a point 
in the reference line and the second one maps the frame height from this reference line, using the same shape functions 
to interpolate nodal angles. 
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Fig. 2. Plane frame mapping to the current configuration. 

From the mapping to the current configuration, Eq. (47), the first derivative of the tensor 1A  in Eq. (36) can be 
developed as 

1 1,

,1 2

0 0 0
and

00 0Y Y
β ξ

β β β ξ

φ
φ

   ∂ ∂
= =   
   ∂ ∂   

A A  (48) 

regarding the positions of any node β , and as 

0 0 0
1 1 , ,

0 0 03 , ,

cos( ) ( ) sin( ) sin( )
2 2 2

cos( ) ( ) sin( ) cos( )
2 2 2

k k

k k

h h h

h h hY

β ξ β ξ β

β β
β ξ β ξ β

η φ θ φ φ θ η φ θ φ φ θ φ

θ η φ θ φ φ θ η φ θ φ φ θ φ

 − − − ∂ ∂
 = =

∂  ∂ − +  

A A      

     

 (49) 

for the nodal angles. The second derivative of 1A , necessary in (38), is non-null only for the angles, resulting, for any 
nodes β  and ζ  in 

{ }
{ }

2 1 2 1

3 3

0 0
, , ,

0 0
, , ,

sin( ) ( ) cos( ) cos( )
2 2

cos( ) ( ) sin( ) sin( )
2 2

k k

k k

Y Y

h h

h h

β ζ
β ζ

β ζ ξ β ζ ξ β ξ ζ β ζ

β ζ ξ β ζ ξ β ξ ζ β ζ

θ θ

η φ θ φ φ φ θ φ θ φ φ φ φ φ θ φ φ

η φ θ φ φ φ θ φ θ φ φ φ φ φ θ φ φ

∂ ∂
= =
∂ ∂∂ ∂

  − + −  
 =
  − + + −   

A A

     

     

. (50) 

As the height of the frame element is not free to change from its initial value when deformation occurs, to avoid 
volumetric locking, the constitutive equation is relaxed in order to exclude transverse expansions, as shown in Eq. (30). 
Using the strain energy conjugacy and the constitutive relation, the Piola-Kirchhoff stress tensor results in 

11 12

21 22

2
2

E Eu
E E

 ∂
= =  ∂  

S
E

E G
G E

. (51) 

The mapping of the initial configuration is analogous to Eq. (47) when adopting the initial values of the nodal 
parameters. To evaluate the necessary integrals, numerical integration with Gauss quadrature is used for each 
dimensionless variable direction. More details on this finite element can be obtained in Siqueira and Coda (2017), for 
instance. 

5.3 Mass and damping matrices 

To obtain the 2D solid element mass matrix one starts from the kinetic energy term present in Eq. (4) and uses the 
mapping described by Eq. (40), resulting 
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0 0 0
0 0 0 0 0 0 ( 1,2)m m

i i i m i m i i
V V V

y y dV Y Y dV dV Y Y iρ δ ρ φ φ δ ρ φ φ δ= = =∫ ∫ ∫ 

 

   

  (52) 

where the last integral can be identified as the mass matrix, which, in closed form is 

0
0 0

V
Y dV Yρ φ φ⋅ = ⊗ ⋅∫M

  

  . (53) 

As stated in previous sections, the resulting matrix is constant as the use of position degrees of freedom consistently 
relates to the translational inertia of the body. 

The mass matrix for the frame element is obtained analogously by starting with the kinetic energy term in (4) but 
using the frame mapping given by Eq. (47). Considering only the frame reference line, the mass matrix results in the 
expression given by Eq. (53). In general, for slender bars, as the ones analyzed in this study, rotational inertia (related to 
angle parameters) is not as important as the translational one (related to the translational parameters). Therefore, this 
term is neglected here, resulting in constant mass matrix. 

To complete the element dynamical information, the damping matrix is assumed to represent the Rayleigh-type 
damping as 

m kc c= +D M K  (54) 

were mc  and kc  are, respectively, the damping coefficients for the mass and stiffness matrices which can be obtained by 
(Paultre, 2011) 

2 22
1/ 1 /

j i ii jm
jk j jj i

c
c

ω ω ξω ω
ξω ωω ω

−       =     −   −      
 (55) 

in which iω  and jω  are angular frequencies and iξ  and jξ  are the damping ratios for two distinct modes of vibration i and 
j, respectively. Paultre (2011) recommends to select iω  as the first mode of the system and jω  as the higher frequency 
that contributes to the response. Also, due to little knowledge of the damping ratios it is usually assumed that i jξ ξ= . 

Rayleigh-type damping is frequently employed in dynamical analysis (Papageorgiou and Gantes, 2010; Petyt, 2010), 
particularly common in the linear case were both mass and stiffness of the body are constant. In the geometrically 
nonlinear framework of this study the mass was already shown to be constant, however the stiffness, understood as 

intF∇
 , Eq. (27), varies with the deformation of the body. 

Considering that viscous damping is a simplification of many dissipative phenomena occurring in the structure, we 
assume the stiffness of the body in Eq. (54) as the initial Hessian matrix. Thus, the damping matrix is also constant and 
can be stored in the beginning of computations. 

From this assumption follows that a modal analysis for the initial configuration of the body (which uses int
0F= ∇K
 ) is 

performed before starting the time integration to obtain the values of the damping coefficients in (54), by employing 
Eq. (55), and also to help the choice of the time step in practical analyses. 

6 SLIDING CONNECTIONS 

Equations (7) and (8) describe how to introduce constraints in equilibrium equations. In this section the general constraint 
is particularized to sliding connections including roughness. The referred connection represents the bilateral contact of two 
surfaces, curves for the plane case, able to slide among each other while retaining contact and not overlapping each other. A 
distance between contacting points may exist, which is the roughness profile representing surface asperities. 

In order to write the constraint equation for the present case, we consider that sliding points P̂  belonging to a finite 
element are constrained to move in a path, defined by an arc-length parameter s , with corresponding contact points P . 
The path may possess an arbitrary roughness profile defined by a vector ( )r s  as depicted in Fig. 3. The path (by means of its 
nodes) is associated to a finite element (called path element) making connection between elements, or may have its degrees 
of freedom constrained, representing rigid surfaces. 
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Fig. 3. Sliding connections for a plane solid element considering arbitrary roughness profile in its path. 

The sliding contact condition must ensure that P̂ P r= +
  at all times. As the geometry of the bodies is discretized by 

finite elements, this condition can be expressed directly using their nodal positions, therefore the constraint equations, 
see Eqs. (7) and (8), can be written as 

ˆˆ ( ) ( ) 0k
k k

Pk
i i i iP Pic Y Y r sφ ξ= − − =



 (56) 

for any k  pair of points in contact ( k̂P  and kP ) for both directions 1,2i = . In (56), ˆˆ kP
iY  is the sliding node position. Also, to 

obtain the contact point position in the path, kP
iY , the discretization ( )k

k

P
iPiY Yφ ξ= 



 was used, which consider a set of 


 path 

nodes positions iY   and their respective shape functions ( )φ ξ


 evaluated at the corresponding contact point 
kPξ  in the 

dimensionless space of the associated path element. 

The path discretization, as stated, can be done directly by employing the reference line of frame elements. Thus, 
when sliding occurs among 2D solids, a coupling strategy can be employed as discussed in a later section. An advantage 
of using frame elements, instead of a simple geometrical discretization, is allowing the definition of the roughness profile 
direction along the path. It is done by using the frame cross-section angle (or direction) at the contact point 

kPθ . Thus, 

the components of the roughness profile can be written as 

1

2

( ) ( ) cos ( ) cos ( )

( ) ( )sin ( )sin ( )

k k k k k

k k k k k

h hP P P P P

h hP P P P P

r s r s r s

r s r s r s

θ φ ξ θ

θ φ ξ θ

 = =   
 = =   

 

 

 (57) 

where θ


 are the known angles of the path nodes 


 and ( ) ( )hr s r s=
  is the ‘height’ of the roughness profile, which can be 

simply expressed as a function of the curvilinear coordinate s , i.e., independent of the path discretization. Moreover, the 
roughness profile as expressed by (57) accompanies the current position of the deformed connected bodies. It is important 
to advance that the curvilinear coordinate s  can be related to the dimensionless coordinate ξ , as it will be clarified next. 

From the constraint equations, Eq. (56), it is now possible to write its derivatives, necessary to calculate the 
constraint force, Eq. (9). The complete set of equations is presented in the Appendix 1. 

As can be noted, curvilinear coordinates are new variables introduced by the presence of each sliding connection. 
By considering a point of the path to be its origin, the initial value of each contact point is known to be the curvilinear 
distance to the specified origin. During the motion, the current value of 

kPs  is obtained directly in the solution updating 

procedure. If, for instance, the initial value of the curvilinear coordinate is made null, its current value is found to be the 
relative displacement of the point (measured along the path curve). However, when a roughness profile is involved, 
particularly in the presence of several contact points, attention must be paid to specify the intended initial value 
measured in the path, as the profile height is dependent on it. 



Dynamical analysis of sliding connections with mesh independent roughness by a total Lagrangian FEM Tiago Morkis Siqueira et al. 

Latin American Journal of Solids and Structures, 2022, 19(7), e467 14/31 

6.1 Contact point identification 

The identification of the curvilinear variable ( )
k kP Ps s ξ=  is necessary to find the correct position in the roughness 

profile. As 
kPs  is the main variable introduced by the constraint equations, it is found immediately in the solution 

procedure updating process. However, the nondimensional variable evaluated at the contact point of the active path 
element, 

kPξ , not directly obtained, is critical as it is employed in the expressions of the solution procedure and also used 

to identify the transition between path elements. 
The sliding contact condition for each contact pair, expressed by the constraint equations in (56), can be seen as an 

overdetermined nonlinear system to find 
kPξ , when all other variables are known in a particular iteration of a time step. 

Therefore, a least square technique (Nocedal and Wright, 1999) is employed to obtain the nondimensional variable. 
Expressing the residual i , function of the only unknown 

kPξ , from Eq. (56) as 

ˆˆ( ) ( ) ( ) 0k
k k k

Pk
i i i i iP P Pic Y Y r sξ φ ξ= = − − =



  (58) 

where 1,2i = , is possible to define the following objective function 

21 1( ) ( ) ( ) or ( ) ( )
2 2k k k k ki iP P P P Pp pξ ξ ξ ξ ξ= =



   . (59) 

As the least squares approach seeks the smallest residual, and the objective function is quadratic and positive, the 
required condition for minimization is ( ) 0

kPp ξ∇ =  at the solution. Expanding the objective function by a first order Taylor 

series as 

( ) ( ) ( )0 0 0
k kk k

P PP Pp p pξ ξ ξ ξ≅ +∇ ∆ =  (60) 

being 0
kPξ  a trial value, and writing 

( ) ( ) ( )0 2 0 0
k kk k

P PP Pp p pξ ξ ξ ξ∇ = ∇ +∇ ∆ =  (61) 

the required minimization condition results in the Newton method to be employed to solve for the increment 
kPξ∆  as 

( )
( )

0

2 0
k

k

k

P
P

P

p

p

ξ
ξ

ξ

∇
∆ = −

∇
. (62) 

The non-dimensional variable is updated by 0
k kk

P PPξ ξ ξ= + ∆  until the norm 0| / |
k k

P Pξ ξ∆  satisfies a certain tolerance. In 

the authors experience, and for the studied cases, usually fast convergence is found, with about 3 iterations for a given 
tolerance of 1.10-8, when assuming the starting trial value 0 0

kPξ =  or the last known value of the dimensionless variable 

from a previous iteration. 
The derivatives in (62) can be developed as 

( )k
k k

i
iP

P P

ddpp
d d

ξ
ξ ξ

∇ = =
  (63) 

and 

( )
22

2
2 2k

k kk k

i i i
iP

P PP P

d d dd pp
d dd d

ξ
ξ ξξ ξ

∇ = = +
    (64) 
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for which differentiation of the residual, Eq. (58), provides 

( ), k k
k k

i i
P P

P P

d drJ
d dsξφ ξ
ξ

= − −


  (65) 

and 

( )
2 2, ,

,2 2

k k

k k
k k

k k

P P
p pi i i

P P
P PP P

Y Yd dr d rJ
J dsd ds
ξ ξξ

ξξφ ξ
ξ

= − − −


  (66) 

with summation implied on the index 1,2p = . The Jacobian 
kPJ  expression and the roughness profile vector derivatives 

are given by Eq. (74) to (76), (83) and (84) in the Appendix 1. 
The previous iterative procedure for a given sliding node, when performed for all possible path elements, results in 

kPξ  and its associated current path element. The search for the active path element ends when the converged value for 

kPξ , obtained for a particular element, respects the nondimensional space bounds [ ]1,1ξ ∈ − . It is interesting to note that, 

as there is no superposition of path elements, the search is optimized by limiting this check only for the path element 
which its bounding box includes the sliding node position. 

7 FINITE ELEMENT COUPLING STRATEGY AND REMARKS 

Coupling between frame and solid elements has a double function, it serves to create the path for sliding 
connections but it also allows moment transfer among frame and solid elements. 

As both types of elements use positions as nodal parameters, coupling occur by kinematical compatibility of this 
variable, i.e., the direct association of those degrees of freedom at shared nodes, see Fig. 4. Although quadratic elements 
are described in figure, the formulation allows elements with any approximation order. The extension of the auxiliary 
elements (that can also be used as path elements) are specified respecting the model dimensions. 

Fig. 4 also shows the sliding connections and their path created from frame elements. In the way the constraint 
equation (56) is written, the sliding node is characterized only by its nodal position, thus, both nodes belonging to a solid 
or a frame element can be constrained to move along a chosen path using the same expression. Thus, there is no 
difference in computational implementation for frame/frame or solid/frame sliding. 

It is noteworthy that the positions of sliding nodes do not necessarily have to coincide with the position of path 
nodes, however sliding nodes are contained in a path element. Also, the path element stiffness and mass may or may 
not be assigned, i.e., for null values the material properties of the bodies are exclusively dependent on the sliding bodies. 
The use of non-null properties for path elements represents a physical contact surface that possesses different material 
properties from the sliding bodies. 

 
Fig. 4. Coupling between frame and solid elements for moment transmission and sliding path creation  

(contact points farther apart for clarity). 
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8 NUMERICAL APPLICATIONS AND DISCUSSION 

Three case studies are presented in this section to assess the proposed sliding connection dynamical framework in 
terms of mechanical behavior of the structural system and to demonstrate scenarios where the occurrence of sliding is 
necessary to depict real applications. For the iterative solution in the following simulations the relative position tolerance 
adopted is 1.10-8. 

8.1 Study of the quick return mechanism behavior and its numerical stability 

To demonstrate a mechanical application, a classic quick return mechanism with flexible bodies is analyzed. This 
mechanism was initially proposed and studied by Bauchau (2000) using frame elements. Here we analyze it with 2D solid 
elements (Fig. 5). The mechanism is composed by a 1.0 m arm AB able to spin around a fixed support B and connected 
to an 0.25 m bar NA by a revolute joint. The motion is imposed by a 0.20 m crank RS which turns around the fixed support 
R with constant angular speed Ω  = 5π rad/s and slides over the arm AB with a cylindrical joint S. This mechanism has a 
total of 3 revolute joints (at A, B and R) and 2 cylindrical joints (at S and N). 

 

Fig. 5. Initial configuration of the mechanism (dimensions in centimeters). 

All three bars have 5.98 cm squared cross sections and density 1724.82 kg/m3. The arm is flexible with E  = 
47.04 GPa. To simulate the rigid behavior of the remaining bars a 106 times greater Young modulus was adopted. In the 
reference, as frame elements were employed, lumped mass and mass moment of inertia at the slider S (0.31 kg and 
0.27 g.m2) and N (2.50 kg and no inertia) were used. To agree with the specified values, here, the sliders were given the 
dimensions in Fig. 5, with 5.98 cm thickness, and density of 1046.47 kg/m3 for the slider S and 2603.00 kg/m3 for slider 
N. Both sliders have the same Young modulus as the arm AB. Null Poisson ratio is employed for the whole mechanism 
and no structural damping is present. 

For the solid analysis, as the joints are not treated as points, sliding occur locally and sliding connections are 
employed to allow the motion of the different joint types. Thus, the revolute joints are modelled by a circular hole at the 
ends of the bars (with half the size of the bars width) constrained to move in a circular path. The sliders S and N are 
composed by rectangular blocks having their parallel sides constrained to move along their path (arm AB sides and rigid 
supports, respectively), which allows the translational motion of the joint. To complete the sliders, a revolute joint exists, 
connecting the center of each block to the respective bar, allowing rotation. The paths employed for the joints are 
highlighted in Fig. 6. The rigid support for slider N is also discretized by path elements with all degrees of freedom 
restricted. For simulation purposes the rigid support has 2.0 m length. No roughness in any sliding path is considered for 
this example. 



Dynamical analysis of sliding connections with mesh independent roughness by a total Lagrangian FEM Tiago Morkis Siqueira et al. 

Latin American Journal of Solids and Structures, 2022, 19(7), e467 17/31 

 
Fig. 6. Quick return mechanism mesh (separate for clarity): frame elements in red and solid plane elements sides in black. 

Cubic finite elements were adopted for the mesh with 648 plane elements and 105 path (frame) elements. For 
the circular parts of the mesh (holes and bar ends) each half circumference is discretized by 6 elements. All path 
elements are massless and, for simulation purposes, with a 1.0 mm squared cross section having the same material 
properties as the arm AB, except for the slider S paths along arm AB, for which null Young modulus is adopted (to 
avoid over-stiffening the arm). 

The results obtained for the solid model are compared with Bauchau (2000) and refers to the third cycle of motion, 
the only one present in the reference. Fig. 7 shows the evolution of the horizontal speed of the center of the slider N and 
Fig. 8 the arm tip deflection (at center of the revolute joint at A) evaluated orthogonally to a line that follows the arm 
spin at point B. The results were obtained using the generalized-α method with ρ∞ = 0.90 and a time increment of 0.1 ms. 
The time step was estimated to be approximately 1/10 of the third period of vibration of the mechanism at the initial 
resting position. The first three modes (with periods 21.88, 1.81, and 1.09 ms, respectively) are associated with flexure 
of the arm AB. 

Good agreement with the reference response is observed. The return movement of the arm is observable in Fig. 8, 
(starting at about 1.05 s) including the inversion of the predominant side of deflection during the quick return of the 
mechanism. Fig. 7 shows the clear direction change of the slider N with the return of the arm. Finally, Fig. 9 depicts the 
motion for selected instants of the cycle. 

Small differences in tip deflection amplitude and vibration phase are perceptible when comparing solid and frame 
models. These differences are due to kinematic descriptions and temporal integration strategies. The bar kinematics 
used in Bauchau (2000) is less elaborated than the solid description adopted here, they also use a quite different variable 
time steps in a strategy to conserve or dissipate the energy of the system. 

 
Fig. 7. Time history of the slider N speed along x-axis. 
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Fig. 8. Time history of the arm AB tip deflection. 

To further investigate the differences in the response, the mechanism is also discretized and simulated using only 
positional frame finite elements. 10 cubic frame elements are used for the arm AB, which serves as the path for the 
slider S, and 2 elements are used for each rigid bar. Material and geometrical properties are the same employed in the 
solid model. Slider N and points R and B are modelled as simple supports and only one revolute joint (at A) is necessary 
in this case. The cylindrical joint at the slider S is represented by the same constraint equations present in Eq. (56). 
A modal analysis is performed for the frame model confirming the same time step previously used. 

Results for the frame model are shown in Fig. 7 and Fig. 8 where the same amplitude is found when compared to 
the solid model, but larger than the reference response. This shows that the present positional formulation is more 
flexible than the bar theory employed in Bauchau (2000) as it represents the frame element by a solid-like approach. It 
is interesting to note that the three responses begin the third cycle of the mechanism motion at different instants and 
are out of phase from each other. Aside from the time integration aspects, we understand that the differences 
encountered in phase are related to the model mass. Employing the solid element, the rotational inertia can be 
accounted in a very precise way, whereas it is neglected in the employed frame model and simplified in the reference 
frame model. 

Regarding time integration, simulations are also performed to access the quality of the integration scheme. Cases 
with (ρ∞ ≠ 1.0) and without numerical dissipation (ρ∞ = 1.0) are tested using the generalized-α and the Newmark method 
– obtained by making αf = αm = 0 in Eq. (12). Géradin and Rixen (2015) give the spectral radius relation to Newmark 
parameters as γ α=1/ 2 +  and 2(1 / 4β α= + )  with ) / )α ρ ρ∞ ∞= (1− (1+ . 

Fig. 10 shows the time evolution of the total contact force acting on slider S sides (obtained directly from the 
multipliers values and also depicted for some instants in Fig. 9). As expected, without numerical dissipation, the 
dynamical problem with multipliers presents instabilities, which hindered the complete reproduction of the 
mechanism cycles. 

Further tests show that, for this mechanism, a spectral radius in the range 0.0 - 0.9 for the α method results stable 
and presents almost identical force responses. Also, the numerical damping does not affect significantly the displacement 
response (Fig. 11), even for the strongest case of damping (ρ∞ = 0.0). For the Newmark method, on the other hand, stable 
responses were only obtained at the cost of artificially damping the response. See, for instance, results for ρ∞ = 0.9 and 
0.8. This indicates that the use of this last integration scheme is less adequate for a general case. 

Finally, despite small differences, very good agreement between results is observed, which confirms that the 
mechanism behavior is well represented, particularly when using the solid model. Still, the frame model is also adequate 
and less expensive in terms of number of degrees of freedom and consequently computation time. 
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Fig. 9. Snapshots for the third cycle of the motion with details of the horizontal displacement (m) of the mechanism and contact 

forces (N) at the sides of slider S. Time instants selected for: a) start of the third cycle, b) slider N maximum displacement,  
c) maximum value of the total contact force in slider S faces, d) slider N maximum return speed (zero contact force in slider S) and  

e) end of the third cycle. 
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Fig. 10. Slider S sides total contact force for different integration schemes and spectral radius. 

 
Fig. 11. Arm AB tip deflection for different integration schemes and spectral radius. 
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8.2 Sensitivity analysis of doubly bent beams regarding roughness and damping 

An interesting example of bifurcation of equilibrium under tensile load, which requires the presence of sliding 
connections to occur, is employed to test and validate the proposed modelling with the experimental and analytical 
results from Zaccaria et al. (2011). Fig. 12 depicts the structure with two flexible bars with length L, initially aligned, and 
the horizontal displacement u applied at one side. The reactive traction force F in the right support is measured. The 
flexible bars are connected to a rigid bar (initially in the vertical position) by sliding connections covering each bar height 
(Fig. 13), thus representing prismatic joints. 

 

Fig. 12. Initial and deformed configurations of the beams. 

Each flexible bar is discretized by 200 cubic triangular plane solid elements (4 elements along the height). As the 
vertical bar is rigid, it is simply modelled by 6 cubic frame elements and is used directly as the path for the sliding 
connections. Fig. 13 shows details of the mesh at the contact points. 

 

Fig. 13. Mesh detail at the sliding connections. 

Material and geometry properties are taken from the experiment performed in the reference. Each carbon steel 
AISI 1095 flexible bar ( E  = 200 GPa, ν  = 0.30 and 0ρ  = 7850 kg/m3) has an effective length L = 225 mm, rectangular cross 
section with 1 mm height and 25 mm width. The rigid bar is realized in the experiments by 2 linear bearings (Rollon Easy 
Rail SN22-80-500-610) each having, according the manufacturer, 0.70 kg/m, 11 x 22 mm cross section and 580 mm for 
each slider to move. Thus, to simulate the rigid behavior, a 22 mm squared cross section and Young modulus 103 times 
greater than the flexible bars is adopted. Each slider has 0.08 kg distributed along the height of the beams. Plane stress 
conditions are considered for all elements. 

To avoid obtaining the trivial numerical solution (i.e., simple axial elongation of the bars), a perturbation is 
introduced into the system in the form of an initial inclination of the rigid bar by an angle 0φ . After the system has reached 
static equilibrium for a given value of 0φ , the horizontal displacement is applied. To demonstrate convergence to the 
analytical solution, progressively smaller values for the initial angle are used to obtain the tension reaction force 
trajectory in a static simulation. Fig. 14 presents the achieved equilibrium trajectories and the experimental result from 
Zaccaria et al. (2011). The numerical response agrees well with the experimental data, particularly considering that the 
rigid bar is not perfectly vertical but has an initial rotation of about 2°. Moreover, as expected, the numerical solution 
converges to the analytical one for smaller eccentricities. 
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Fig. 14. Right support reactive force evolution with the displacement for different initial rotations of the rigid bar (statical response). 

Good agreement of the deformed shape of the structure obtained in the experiment and in the numerical simulation 
for different values of slider rotation is achieved as shown in Fig. 15. The contact force distribution along the height of 
the right beam is also presented showing an orthogonal distribution to the cross section at the prismatic joint, which is 
expected as the sliding is tangential and free to occur. 

 
Fig. 15. Static numerical simulation (in blue) superimposed to the experimental results from Zaccaria et al. (2011) for different 

values of slider rotation and corresponding contact forces distribution (N) along the height of the right beam. 

To better represent the experimental response, dynamical simulations are performed considering not only the 
bodies inertia, but also structural damping of the system and roughness in the sliding path. Only the case with 0φ  = 2° 
(closest to the experimental response) is simulated. The right support is moved horizontally at 0.25 mm/s. Modal analysis 
for the initial configuration of the system resulted in the first 3 vibration modes related to the flexure of the beams, with 
angular frequencies of 23.30, 68.11 and 210.14 rad/s. It provided a time step estimative of 18.0 ms. Also, a very small 
damping ratio ξ = 5.10-8 is assumed for the first and third modes to calculate both Rayleigh damping matrix coefficients 
according to Eq. (55). The generalized-α method with ρ∞ = 0.9 is employed. 

A random roughness profile is adopted to represent sliding imperfections in the linear bearings. Following specialized 
literature (Vakis et al., 2018; Yang and Lin, 1995), surface roughness may be obtained by a Power Spectrum Density (PSD) as 

( ) ( )
1

cos 2
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with nG  being the PSD function associated to a spatial angular frequency nΩ . The spatial frequency increment is 
obtained by max min( ) / N∆Ω = Ω −Ω  where N is the amount of frequencies increments in the range min max( , )Ω Ω  with minΩ  
and maxΩ  the lower and upper cut-off frequencies defining the PSD function. Each spatial angular frequency is computed 
by interpolation as min ( 1)n nΩ = Ω + ∆Ω − . The randomness of the profile is associated to a random phase angle nψ  
(uniformly distributed from 0 to 2π). The adopted PSD function is taken from ISO (1995), originally proposed by Dodds 
and Robson (1973), as 

0
0

w
n

nG G
−Ω =  Ω 

 (68) 

where 0G  is the roughness coefficient, a parameter associated with the amount of irregularities, 0Ω  = 1.0 rad/m the 
reference spatial frequency and w  the exponent of the PSD function. The parameters to compute the roughness profile 
were chosen to result in a small profile height (about 1.0 μm), Fig. 16, as 0G  = 8.10-15 m3, w  = 1.0, and N = 20 spatial 
frequencies distributed from minΩ  = 100.0 cycle/m to maxΩ  = 1000.0 cycle/m. 

 
Fig. 16. Roughness profile in the sliding path. 

 
Fig. 17. Right support reactive force evolution with the displacement (dynamical response), simulated results in black and 

experimental result from Zaccaria et al. (2011) in blue. 

Results for the reactive force along the dynamical equilibrium trajectory are shown in Fig. 17. As structural damping 
and roughness parameters of the sliding path are not precisely known in this case, the previous values are assumed and 
some differences are expected. Nevertheless, it should be noted that without the presence of structural damping, or, 
alternatively, without the roughness profile, the dynamical response does not represent the experimental behavior as the 
presence of both effects is necessary to describe the local interaction at the joints and the overall response of the bodies. 

8.3 Analysis of a building under seismic activity with imperfect base isolation device 

A five-story building subjected to seismic activity is analyzed considering a base isolation device at each column 
(Fig. 18). The device, commonly known as a friction pendulum system (Saaed et al., 2015), is composed by an articulated 
slider with two sliding interfaces: one in the upper plate (connected to a column) and another in the lower plate (which 
is supported by the ground). The employed device geometry is inspired by Mokha et al. (1991) and depicted in Fig. 18 
along with its finite element discretization. 
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Fig. 18. Geometry of the building and base isolator (centimeters) with its mesh: frame elements  

(including structure, auxiliary element and path) in red and 2D solid elements sides in black). 

Cubic solid and frame elements are used to discretize the building and its base isolation devices. The reinforced 
concrete building ( E  = 20.0 GPa and 0ρ  = 2400.0 kg/m3) is modelled by 60 frame elements. The columns have 50 cm 
side squared cross section. For the beams to characterize representative floor stiffness and mass, the same cross section 
is employed but with 15168.2 kg/m3 density. Each isolation device has 50 cm thickness, is made of steel ( E  = 200.0 GPa 
and 0ρ  = 7850.0 kg/m3) and discretized by 60 plane elements. Massless frame elements are also employed at both 
sliding paths (with the same elastic material properties as the device) and to define the connection of the column to the 
upper plate (rigid auxiliary elements with E  = 200.106 GPa) as shown in Fig. 18. These elements cross sections have 50 cm 
width and 1 cm height. Null Poisson ratio is adopted for the structure. 

A real earthquake signal is used for the base motion of the isolation devices. The 1987 event known as Superstition 
Hills is employed with its vertical and horizontal displacement components as measured in the Imperial Valley Wildlife 
Liquefaction Array station obtained from PEER (2022) and depicted in Fig. 19. Prior to the earthquake displacement, an 
initial statical analysis is performed with a uniform vertical load of 34.0 kN/m applied at each floor level. This force is 
maintained throughout the dynamical analysis. 

 
Fig. 19. Superstition Hills earthquake displacement components from PEER (2022) for the  

Imperial Valley Wildlife Liquefaction Array station. 

To evaluate the influence of small manufacturing imperfections on the isolation device, a small roughness profile in 
the lower slider path is adopted with its height depicted in Fig. 20. A case without roughness in the path is also analyzed. 

 
Fig. 20. Roughness profile in the lower sliding path of the isolation devices: rh(s) = 1.10-4.cos(40.0s), expression units in meters. 
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In order to define damping, we use the first natural angular frequency of the structure iω  = 8.56 rad/s and the 11th 
mode jω  = 133.98 rad/s. It is important to mention that the first ten natural frequencies are associated with the bending 
of the whole structure or of beams and the 11th is associated with columns stretch. Considering these frequencies, a 
damping ratio ξ = 5%, usual for concrete structures (Papageorgiou and Gantes, 2010), is adopted for both modes in Eq. (55) 
to obtain the Rayleigh damping matrix. A time step of 5.0 ms is employed with the generalized-α method (ρ∞ = 0.9) in the 
absence of surface imperfections, otherwise a time step of 1.0 ms is necessary to obtain stable reaction forces and 
acceleration, although displacements are properly represented. 

Fig. 21 shows the initial configuration of the building and the instant for which the largest sliding occurs for both 
cases (with and without imperfections). It is noticeable that, without imperfections, the building deformation is 
symmetric at the beginning of the analysis and the contact forces distribution is regular during all the base motion 
excitation. In contrast, when the proposed non-symmetrical roughness is present, the structure found initial static 
equilibrium with a larger displacement at the left device than the right one. Also, the contact force distribution is less 
regular than the one achieved for the previous case, presenting inverse orientation at some points. This is due to the 
employed path roughness which causes the bodies to deform locally in order to remain in contact by the imposed 
bilateral sliding constraints. 

The presence of imperfections clearly reduce the efficiency of the isolation devices by diminishing the slider relative 
displacement and increasing the base shear (horizontal resultant reaction force) as shown in Fig. 22. Also, the interstory 
drift (difference in horizontal displacement from consecutive floors) and horizontal acceleration of the top floor are larger 
when roughness is present, even when compared with the case without sliding devices (Fig. 23). These results show an 
interesting consequence of the presence of manufacturing imperfections which ultimately result in a worse overall 
response of the structure. 

Finally, it is worth noting from Fig. 23 that the vertical acceleration on the top floor is not affected by the presence 
of the isolation devices, which is expected as only the horizontal movement is released. Moreover, in the presence of 
the isolation device (regardless the presence of roughness) the interstory drift changed from the third to the first floor. 

 
Fig. 21. Horizontal displacements (m) of the building (right isolation device shown on the top and left device on the bottom for each 

time snapshot) and contact forces (N) in the lower slider path for cases a) without and b) with manufacturing imperfections. 
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Fig. 22. Right column base shear force and slider relative displacement. 

 
Fig. 23. Right column interstory drift for selected floors and top floor mid-span acceleration. 
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9 CONCLUSIONS 

A framework for the dynamical simulation of plane structures with sliding connections undergoing finite deformation 
is presented. A total Lagrangian finite element formulation is used by employing a position-based approach to discretize the 
bodies. Lagrange multipliers are used to successfully introduce sliding connections constraints into the mechanical system. 

An arbitrary roughness profile for the sliding connection path is directly incorporated in the formulation. As the 
profile is independent of the finite element discretization, the employed meshes could be coarser than discretizing the 
roughness by solid or frame elements. 

The geometrical nonlinear equations of motion, obtained in the positional finite element formulation, render a 
constant mass matrix allowing to directly introduce Rayleigh-type structural damping, important when dealing with real 
applications. This characteristic also allowed the successful use of the generalized-α method to address known stability 
issues in constrained mechanical systems. Tests carried out in the time marching approach confirms the necessity of 
appropriately controlling the numerical dissipation of the system to obtain representative responses when using 
Lagrange multipliers in dynamical systems. 

Examples illustrate that the proposed framework is efficient even when handling strong geometrical nonlinear 
problems, in both static and dynamic cases, in the presence of roughness in the sliding connection. Thus, the proposed 
framework is a viable alternative for general analysis of general multibody flexible systems. 
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Appendix 1 - Constraint equation derivatives 

The derivatives for the constraint equation of the sliding connections, Eq. (56), are presented. For the positions of 
the sliding node and the path element, it results, respectively 
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being 1,2α =  the directions and β  a node in the path element. The derivatives for the path angles are 
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. And for the curvilinear position results 
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 and the Jacobian of the transformation from the real space to the nondimensional space of the path 

element given by 
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The derivatives for the roughness profile components in Eq. (73) results 
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with ,, ( )
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. The derivative of the profile height is calculated from ( )hr s  expression for each case. 

The second derivatives of the constraint equation are also needed for the solution procedure using Newton method 
as seen in Eq. (31). From Eq. (70) the non-null values results in 
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From expressions (71) and (72), differentiating for the path angles one obtain 
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and for the curvilinear position 
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Considering the symmetry of the Hessian matrix (by the Schwarz's theorem), starting from Eq. (73), the second 
derivative regarding the path element positions results analogous to the one in Eq. (77), and differentiation for the path 
nodes gives an expression analogous to Eq. (80) and (81). 

Finally, the second derivative for the curvilinear position is written as 
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, summation on the direction 1,2p =  implied, and the second derivatives of the roughness profile 

height components obtained by 
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