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Material influence on the response of impacted beams
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Abstract

The dynamic response of elastic-plastic beams is studied numerically using several ma-
terial constitutive models which take into account material strain hardening and strain-rate
hardening. A comparison is drawn between the beam responses of these more sophisticated
models and the ones predicted by a rigid, perfectly plastic material law. A method for
choosing the material parameters in the bilinear model is proposed. The numerical simula-
tion shows the importance of the elastic effect which reduces the plastic work absorption as
well as causes part of the plastic work to be dissipated during vibration. The study reported
here allows a better understanding of the influence of various material parameters on the
dynamic response of structures and helps to establish some limits of validity for the rigid,
perfectly plastic analysis.

1 Introduction

Over the past few decades, the phenomenon of impact in structures has been investigated in
detail [8]. While the initial motivation in the 60’s and 70’s was mainly for the development of
military technology, interest in the field has now spread to the civil area [9], with applications
ranging from automotive structures [16,18] to environmental disasters [14].

The inelastic response of structures under large impact loads has found important appli-
cations in the design of transportation systems [7]. Passenger cars, containers transporting
hazardous substances, nuclear casks, pipes in chemical plants, oil rigs and many other struc-
tures have now to be crashworthy in order to comply with safety codes issued by governments
and institutional bodies.

The most common approach for basic analysis of impacted structures assumes that the
material is rigid-perfectly plastic (RPP), ie a material with no elastic deformation and a constant
flow stress, regardless of the strain level. In fact, the so-called rigid-perfectly plastic analysis,
established in the 50’s, was upgraded to impact analysis by taking into account inertia forces in
the equilibrium equations and strain rate effects on the flow stress.
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Within some limitations, it is possible to use numerical schemes to perform complex analysis
of real structures under impact loading [3,5]. However, the details yielded by these analyses are
in some cases less important than some global parameters, for example, maximum permanent
displacement and the associated impact energy. Moreover, despite the fact that supercomputers
are capable of dealing with very complicated structures using a wide variety of material models,
rigid-perfectly plastic simplification is still used for metal structures, especially in dynamic
cases. Hence, for a large-scale structure or in a preliminary design stage, a rough estimation of
structural response by a simplified model is of practical significance.

Nonetheless, hardly any material behaves as perfectly plastic, which poses an important ques-
tion, namely, the accuracy of perfectly plastic analysis when dealing with materials exhibiting
important strain hardening and strain rate effects.

It has been found that, for some materials such as mild steel, copper, lead and titanium
alloys, the yield stress as well as the post-yield flow stress increase with the strain rate. Vari-
ous viscoplastic constitutive models were proposed and applied to describe the phenomenon of
material strain-rate sensitivity and recent progress in this area can be found in Reference [12].

Obviously, theoretical analyses become more complicated even for a very simple structure
when strain-rate sensitivity of material is taken into account since the strain rate in a structure
varies with position and time. To overcome this difficulty, some simplifications were introduced
in the analysis of structural impact. Symonds [21], for instance, suggested an approximate
viscous relation to simplify the analysis, later modifyed in Reference [1].

Within the framework of the rigid-perfectly plastic theory, the strain rate effect of materials
on the structural response is introduced by a characteristic strain rate. Hence, the quasi-static
flow stress is replaced by a dynamic value estimated under that strain rate [8, 17]. In some
cases, good agreement is obtained between simplified method of analysis and experimental data.
However, it is obvious that the error caused by such simplifications alone is uncertain and the
general method for choosing a characteristic strain-rate remains unsolved.

Strain hardening is another effect which cannot be considered in the rigid-perfectly plastic
model. When this effect is significant, the error is not negligible if the initial yield stress is used
in the model since most impact phenomena involve large strains. Experimental results show
that in such cases a better agreement with the RPP prediction can be obtained if another value
for the flow stress, e.g. the ultimate tensile stress (UTS), is considered [11,17,20,22].

Elastic effects of the material on the structure response to dynamic loads have been studied
by many authors [6, 19, 23, 27]. The results show the importance of elastic wave propagation
during the early stage of response of simple structures, like beams.

Although numerical simulations using Finite Element (FE) Methods are widely used in struc-
tural analysis, less work has been done on the comparison of numerical results with those yielded
by the rigid-perfectly plastic methods applied to elemental structures. This is an important is-
sue because the RPP methods are widely used to predict several features of the response of an
impacted structure due to its simplicity and easy of use.

It should be emphasised that small changes in the material strain hardening or strain rate
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Figure 1: Buckling transition for a tube with L = 630 mm and made from material with low
sensitivity to the strain rate. (a) no strain rate effect is considered. (b) strain rate effect is taken
into account. The labels indicate the impact velocity.

response can substantially affect the strucuture response. Accordingly, it is important to have
at hand a rational way to choose the flow stress, as here endeavoured. To give an example of
the importance of using an accurate flow stress if errors are to be avoided, consider the axial
impact of the aluminium tube investigated in Reference [10]. There, the material response is
such that the flow stress changes by only 6% for a strain rate of ε̇ = 15/s, i.e. a low strain rate
sensitive material. Even so, for this range of strain rates, two very distinct structural responses
are obtained if strain rate effects are or not considered, Figure 1. In this case, a tube having
length L = 630 mm collapses progressively, when assuming a strain-rate insensitive material,
but responds by a global bending mode to the same impact velocity when strain-rate effects are
taken into account.

The importance of chosing a proper flow stress is explored here by comparing the response
of beams subjected to dynamic loads as given by a FE analysis using different material models
with those yielded by the RPP methods. By so doing, it is possible to investigate how the strain
and strain rate hardening influence the beam response. Moreover, one can propose a correction
for the flow stress used to represent the material behaviour in the RPP analysis to improve the
comparison with FE results based on a experimental material description.
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2 Material and structure models

The non-linear relationship between the flow stress and strain for most metals makes difficult
an analytical treatment of a structural problem envolving large strains. Clearly, to model a
material using a single flow stress makes the analysis more tractable, although fine details of the
response cannot be predicted.

A bilinear material offers a better description of the material behaviour, possibly offering a
balance between simplicity and exactness. Hence, it is important to compare the exact response
of a structure with that predicted by a model which adopts either a perfectly plastic or a bilinear
material.

Numerical tests are performed to simulate the response of aluminium alloy and mild steel
beams under various dynamic loadings. It is known that, unlike mild steel, aluminium alloy is
not a strain-rate sensitive material. In order to examine the effect of material properties on the
response, different material models are used and comparisons are made to reveal the importance
of the material property or to find a practical approach to obtain a simplified model.

The basic idea is that the difference in the response of a beam modelled with real material
properties and that modelled with a simplified material model under the same dynamic loading
could be attributed mainly to the simplification of the material behaviour. Obviously, the error
yielded by any simplification depends on the range of the response of interest. Here, it is focused
on medium finite deformations, ie when the final deflection is one to three times of the beam
height.

2.1 Structure description

Two kinds of beams, namely cantilevers and fully clamped beams, were investigated. The
dimensions of the cantilever beams were H = 10mm, B = 8mm and L = 100mm. For a fully
clamped beam, the cross-section is kept the same, only the length is changed to L = 200mm.

These beams were analysed numerically using the finite-element code ABAQUS [4]. It is
assumed that the numerical response provided by the code when using experimental material
properties is comparable to the experimental structural response to a very good degree [24,26].

Two dimensional, 8-node, biquadratic, isoparametric, plane stress finite elements with re-
duced integration were used to model the cantilever and clamped beam, Figure 2. A total of
356 and 404 elements were used for the cantilever and fully clamped beams, respectively. In
order to reduce the effect of stress concentration at the support, the meshing of the beams was
extended 32 mm inwards the clamped boundary, Figure 2. The elements in this region were
fully restrained at the lower and end surfaces.
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Figure 2: Mesh for the (a) cantilever and (b) clamped beam.

2.2 Loading description

Three basic types of dynamic load were applied to the beams. The first one is the impact of a
mass at the centre of the clamped beam and at the tip of the cantilever. The case of a uniformly
distributed load throughout the beam span for both beams was also considered. The last case
analysed was that of a concentrated load applied at the centre of the clamped beam and at the
tip of the cantilever. The pulse loads have the characteristics indicated in Figure 3, whereas
the load and beam types used in this investigation are summarised in Figure 4. The values for
impact mass, impact velocity, pulse duration and pulse intensity were changed as indicated in
Section 3.

τ 

p

Figure 3: Rectangular pulse load used in this investigation. The actual pulse intensity, p, and its
duration, τ , are indicated in Section 3.

In the case of an impact mass, a mass element was used and it was assumed that the mass
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Figure 4: Beam configuration used in this investigation. (a) and (b) Cantilever and clamped
beam under an impact mass, respectively. (c) and (d) Cantilever and clamped beam under
a distributed dynamic load, respectively. (e) and (f) Cantilever and clamped beam under a
concentrated dynamic load, respectively.
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Material ρ E ν σy σu σf εp
u εp

f D p

(kg/m3) (GPa) (MPa) (MPa) (MPa) (1/s)

Aluminium alloy 2,700 72.0 0.300 115.0 351.0 440.0 0.153 0.520 — —

Mild steel 7,800 208.0 0.286 259.0 546.0 784.0 0.176 0.830 1.05e7 8.3

Table 1: Main mechanical material properties of the two materials used in the numerical simu-
lation [25].

remains in full contact with the beam throughout the response. The contact area in this case
is assumed to be finite, 2 mm and 4 mm along the axial direction for cantilevers and clamped
beams, respectively. This was arrived at by reducing the degree in the transverse direction of the
associated nodes, i.e., all nodes in the contact area have the same displacement in the transverse
direction. Similar constraints are applied to the case of a concentrated load.

2.3 Material modelling

Two materials were used as a reference in this study; a mild steel, known to be strain rate
sensitive, and an aluminium alloy whose main mechanical properties are not strain rate sensitive.
They were experimentally characterised both static and dynamically in Reference [25] and Table
1 lists their main properties. The quasi-static equivalent stress–strain curve for the aluminium
and mild steel are depicted in Figure 5.

By adopting in the numerical simulation the equivalent stress–strain curves shown in Figure
5 one arrives at what is here considered the exact solution for the impact response of the beams.
Alternatively, the numerical simulation can be run using simplified constitutive laws, ie

• Elastic, linear plastic (bi-linear) material without rate-sensitivity.

• Rigid, linear plastic material without rate-sensitivity.

• Rigid, perfectly plastic material without rate-sensitivity.

• Elastic, linear plastic (bi-linear) material with rate-sensitivity, catered by a characteristic
strain rate.

These constitutive laws are represented in Figure 6. It is evident by comparing Figures 5 and 6
that a major issue to be investigated is which value of the elastic modulus, flow stress and strain
rate should be used in the simplified material models in order to represent consistently the real
material behaviour.

It seems reasonable to retain the real values of the stress and the plastic strain at failure. In
order to select a value for the yield stress in a bilinear elastic-plastic model, numerical simulations
are conducted using material properties of aluminium alloy. Two possible material constants
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Figure 5: Quasi-static equivalent stress-strain curve for (a) aluminium and (b) mild steel.

Latin American Journal of Solids and Structures 2 (2005)



Material influence on the response of impacted beams 175

ε

σ

(a)

ε

σ

(b)

ε

σ

(c)

ε

σ 

bilinear material
with strain rate 
effects

ε1 

ε2 >ε1

. .

.

(d)

Figure 6: Material models used in the simulation. (a) Elastic, linear plastic (bi-linear) without
rate-sensitivity, (b) Rigid, linear plastic material without rate-sensitivity, (c) Rigid, perfectly
plastic material without rate-sensitivity, (d) Elastic, linear plastic (bi-linear) with rate-sensitivity.
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could be used. One is the true yield stress, σy, and the other is extrapolated from the values of
stress and plastic strain at failure, σf and εp

f , respectively, and those at the point of ultimate
tensile strength, σm and εp

m, to the point with zero plastic strain,

σ1 =
σmεp

f − σfεp
m

εp
f − εp

m
. (1)

However, using the actual yield stress as the flow stress for the bilinear model, one will under-
estimate the material resistance to plastic deformation. Conversely, using equation 1 one will
overestimate it. Thus, it is explored here the use of an intermediate value for the flow stress,
σn, such that

σn = σy +
σ1 − σy

n
. (2)

In the present work, three different values for n are considered, namely n = 2, n = 3 and n = 4.
For a structure made from a strain-rate hardening material, as the mild steel described by

Table 1, the stress distribution depends not only on the strain field but also on the velocity
gradient field. In order to simplify the strain-rate hardening behaviour, it is a common practice
to introduce a characteristic strain rate and then replace the real constitutive equation by a
rate-independent stress-strain relation associated with the characteristic strain rate. This simple
approach has provided good agreement with experiments since a significant change of flow stress
will take place only when the order of magnitude of strain rate changes.

One of the most popular equations to cater for strain rate effects on the flow stress is due to
Cowper and Symonds [8] and can be written as

σ0d
= σ0s

[
1 +

( ¯̇ε
D

)1/p
]

, (3)

where σ0d
and σ0s are the dynamic and static flow stress, respectively; ¯̇ε is the average strain

rate and D and p are material constants whose value for the mild steel used here are listed on
Table 1.

One can now define a strain rate factor

α = 1 +
( ¯̇ε

D

)1/p

(4)

such that the yield, ultimate and failure stresses used in equations (1) and (2) can now be
multiplied by α. This, in turn, provides a correction for the material strain rate sensitivity and
allows the strain rate effects to be taken into account when using a bilinear stress–strain curve.

The key factor to reach a reasonable result for the estimation of the strain rate hardening is
to estimate the characteristic strain rate.
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For a cantilever, plastic deformation occurs mainly near the support for all load cases studied
here. So the strain and strain rate distributions are spatially non-uniform and the average strain-
rate can be estimated by

¯̇ε =
Wm

4kT
√

L2 −W 2
m

(5)

where Wm is the maximum deflection and T is the associated time. Although the maximum
deflection, Wm, and the response time, T , are not known a priori, a rough estimate is possible. In
considering the fact that the flow stress changes significantly only when the order of magnitude
of the strain rate changes, such estimate is enough for engineering practice. However, in order
to make comparisons, Wm and T are calculated from the numerical results using true material
data, with the difference between the total strain and the plastic strain being neglected.

In equation (5), k is the dimensionless length of the plastic region with respect to the beam
height. Various suggestions for the bending hinge length exist within the framework of the rigid-
perfectly plastic model [15]. According to Mosquera et al. [13], values of k = 2 and (roughly)
k = 3 can be arrived at by considering the ratio of the dynamic to static plastic bending moment.
Additionally, a value of k = 3.333 was also selected based on the work of Alves and Jones [2],
who suggested a length of the plastic region equal to one third of the beam length for a cantilver
with a rectangular cross section.

For a fully clamped beam, membrane deformation becomes dominant when the transverse
deflection exceeds the beam height. Thus, the average axial strain, ε̄m, from the transverse
deflection is given approximately by

ε̄m =

√
1 +

(
Wm

L

)2

− 1, (6)

yielding an average strain rate of

¯˙ mε =

√
1 +

(
Wm
L

)2 − 1

T
. (7)

This method is used to simulate the responses of fully clamped mild steel beams under different
dynamic loads. The static yield stress in this model is calculated using equation (2) with n = 3
due to reasons to be discussed later.

Lastly, elastic effects on the dynamic response of the beams were explored by comparing
numerical results which used real material, rigid-linear plastic and rigid-perfectly plastic material
models. Unfortunately, as the ABAQUS code does not provide any rigid-plastic model, a Young’s
modulus as high as 100 times the actual value was used to represent a rigid material model.

2.4 Rigid-perfectly plastic prediction

Numerical simulations and analytical calculations are performed to find the value of yield stress
in the rigid-perfectly plastic model which will predict nearly the same final deflection as that
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calculated by the true material model.
The theoretical response for various beam configurations and load types based on rigid,

perfectly plastic methods are grouped as follows [8]:

• Cantilever under a concentrated load

Wf

H
=

6τ2P

ρBH2

(
1

σyBH2
− 1

4LP

)

when η ≤ 3
(8)

Wf

H
=

4τ2P 2

ρσyB2H4

(
1 +

2 ln (η/3)
3

)

when η > 3
(9)

• Cantilever under a distributed load

Wf

H
=

3τ2p

4ρH2

(
2pL2

σyH2
− 1

)
(10)

where

η =
4LP

σyBH2
(11)

• Fully clamped beam under distributed load

Wf

H
=

√
1 + 2η(η − 1)(1− cos (γτ))− 1

2
when

γτ ≤ π

(12)

where

η =
pL2

σyH2
γ =

√
3σy

ρL2
(13)

• Fully clamped beam under a central mass impact

Wf

H
=

√
1 +

LV 2
0 (2M+ 4ρBHL

3 )
σyBH3 − 1

2
(14)
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Test P τ Material T Wm Wf Error
Number (kN) (ms) model (ms) (mm) (mm) (%)

1 1.6 0.125

Real 0.694 13.28 9.67
Bilinear n = 2 0.629 10.83 7.12 -26.4
Bilinear n = 3 0.662 11.92 8.73 -9.7
Bilinear n = 4 0.690 12.66 9.80 1.3
Rigid-Linear 0.529 6.47 6.44 -33.4

2 1.6 0.200

Real 0.905 24.62 20.37
Bilinear n = 2 0.818 20.07 16.32 -19.9
Bilinear n = 3 0.943 23.18 19.54 -4.1
Bilinear n = 4 1.000 25.23 21.73 6.7
Rigid-Linear 0.812 15.74 15.70 -22.9

Table 2: Results for aluminium cantilever under a concentrated load.

3 Results

3.1 Aluminium beams

For cantilever aluminium beams under a concentrated load, one load magnitude of 1.6 kN and
two pulse durations of τ = 0.125ms and τ = 0.200ms were used. The response of the aluminium
cantilever to these loads are such that the final displacement varies roughly between H and 2H.

It was noted that, due to the material elasticity, the cantilever reaches a maximum dis-
placement, Wm, at time T and springs back, reaching a final displacement, Wf , after several
oscilations.

Table 2 lists the main results for the two loading conditions when using four different material
models, ie bilinear with n = 2, n = 3 and n = 4, and rigid-linear plastic 1.

The response given by the numerical simulation is compared to the one also obtained nu-
merically but now using the actual equivalent stress–strain curve. The error due to the material
law simplification is also listed on the Table.

Similarly, Table 3 list the same variables as in the previous case but now for a cantilever
loaded uniformly throughout its span. The load intensities chosen are now p = 6.0MPa, p =
9.0MPa and p = 12.0MPa, applied during τ = 0.1ms.

The case of a distributed load applied uniformly along the fully clamped beam is listed on
Table 4. In this case, the loads are p = 10.0MPa and p = 20.0MPa, again acting during the
same interval τ = 0.1ms.

1For aluminium, σy = 115 MPa, σ1 = 314 MPa, σf = 440 MPa, εp
f = 0.52, so σ2 = 214.5 MPa, Eh2 = 433.7

MPa, σ3 = 181.3 MPa, Eh3 = 497.5 MPa, σ4 = 164.8 MPa, Eh4 = 529.3MPa, for n = 2, n = 3 and n = 4,

respectively.
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180 Marćılio Alves and J.L. Yu

Test p τ Material T Wm Wf Error
Number (MPa) (ms) model (ms) (mm) (mm) (%)

1 6.0 0.10

Real 0.707 12.16 8.92
Bilinear n = 2 0.545 10.07 6.85 -23.2
Bilinear n = 3 0.717 11.29 8.28 -7.2
Bilinear n = 4 0.750 12.17 9.08 1.8
Rigid-Linear 0.731 8.62 8.60 -3.6

2 9.0 0.10

Real 0.843 22.51 18.17
Bilinear n = 2 0.801 20.41 15.85 -12.8
Bilinear n = 3 0.887 23.10 19.40 6.8
Bilinear n = 4 0.962 24.77 21.40 17.8
Rigid-Linear 0.842 19.61 19.57 7.7

3 12.0 0.10

Real 0.983 34.41 29.68
Bilinear n = 2 1.000 33.73 29.48 -0.7
Bilinear n = 3 1.117 37.96 34.12 15.0
Bilinear n = 4 1.183 40.44 36.86 24.2
Rigid-Linear 1.055 34.05 34.01 14.6

Table 3: Results for aluminium cantilever under a distributed load.

Test p τ Material T Wm Wf Error
Number (MPa) (ms) model (ms) (mm) (mm) (%)

1 10.0 0.10

Real 0.433 10.79 9.00
Bilinear n = 2 0.417 9.99 7.89 -12.3
Bilinear n = 3 0.437 10.87 9.07 0.8
Bilinear n = 4 0.456 11.37 9.71 7.9
Rigid-Linear 0.471 8.72 8.70 -3.3

2 20.0 0.10

Real 0.392 21.47 20.31
Bilinear n = 2 0.399 20.77 19.26 -5.2
Bilinear n = 3 0.422 22.44 21.20 4.4
Bilinear n = 4 0.440 23.43 22.37 10.1
Rigid-Linear 0.436 20.99 20.97 3.2

Table 4: Results for a fully clamped aluminium beam under a distributed load.
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Test M V0 Material T Wm Wf Error
Number (kg) (m/s) model (ms) (mm) (mm) (%)

1 2.00 5.00

Real 3.929 12.10 10.17
Bilinear n = 2 3.878 11.45 9.25 -9.0
Bilinear n = 3 4.158 12.37 10.40 2.3
Bilinear n = 4 4.278 12.90 11.03 8.5
Rigid-Linear 4.514 11.26 11.24 10.5

2 6.00 5.00

Real 6.528 21.17 19.45
Bilinear n = 2 6.580 20.73 18.62 -4.3
Bilinear n = 3 7.015 22.13 20.48 5.3
Bilinear n = 4 7.324 23.00 21.55 10.8
Rigid-Linear 6.911 21.36 21.34 9.7

Table 5: Results for a fully clamped aluminium beam under a mass impact.

Table 5 refers to the case of a fully clamped aluminium beam under an impact mass M = 2kg
and M = 6kg hitting the beam with a velocity V0 = 5m/s.

3.2 Mild steel

For the mild steel beams, it is necessary to take into account strain rate effects on the material
response. In order to explore this phenomenon, the simulations were processed using bilinear
material models with a fixed n = 3 in equation (2) but different estimations of the average strain
rate. Three values for α in equation (4) were used. They are associated with three different
plastic zone sizes, ie hinge lengths of 2H, 3H and 3.33H. Also, a rigid-linear material model
was investigated with n = 3 and a hinge length of 3.33H. The results for displacement were
compared with the ones obtained using the actual mild steel equivalent stress–strain curve.

Table 6 is related to a cantilever under a concentrated load of P = 3.20kN applied during
τ = 0.15ms, τ = 0.20ms and τ = 0.30ms. In Table 7, the results refer to the cantilever subjected
to a distributed load p = 20MPa and p = 30MPa, when τ = 0.10ms. For this same pulse
duration, Table 8 refers to the case of a fully clamped beam under the various distributed loads
indicated in the table. Finally, Table 9 presents results for a fully clamped mild steel beam
under the central impact of a mass.

4 Discussion

The rigid, perfectly plastic methods of analysis has been successfuly used in the analysis of many
types of basic structures, operating both under static and dynamic loads. The major material
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Test P τ Material T Wm Wf α Error
Number (kN) (ms) model (ms) (mm) (mm) (%)

1 3.20 0.15

Real 0.810 11.44 9.18
Bilinear n = 3 0.700 10.01 7.74 1.202 -15.7
Bilinear n = 3 0.703 10.07 7.84 1.192 -14.6
Bilinear n = 3 0.707 10.08 7.87 1.190 -14.3
Rigid-Linear 0.593 5.66 5.64 1.190 -38.6

2 3.20 0.20

Real 0.974 17.32 14.81
Bilinear n = 3 0.944 14.98 12.57 1.208 -15.1
Bilinear n = 3 0.947 15.10 12.68 1.198 -14.4
Bilinear n = 3 0.949 15.12 12.71 1.195 -14.2
Rigid-Linear 0.769 9.73 9.70 1.195 -34.5

3 3.20 0.30

Real 1.232 31.31 28.51
Bilinear n = 3 1.232 27.88 25.06 1.218 -12.1
Bilinear n = 3 1.248 28.13 25.35 1.207 -11.1
Bilinear n = 3 1.248 28.19 25.42 1.205 -10.8
Rigid-Linear 1.092 20.76 20.74 1.205 -27.3

Table 6: Results for a mild steel cantilever under a concentrated load.

Test p τ Material T Wm Wf α Error
Number (MPa) (ms) model (ms) (mm) (mm) (%)

1 20.0 0.10

Real 1.000 19.76 17.09
Bilinear n = 3 0.921 18.23 15.69 1.210 -8.2
Bilinear n = 3 0.930 18.36 15.84 1.200 -7.3
Bilinear n = 3 0.932 18.39 15.90 1.198 -7.0
Rigid-linear 0.878 15.88 15.86 1.198 -7.2

2 30.0 0.10

Real 1.233 36.62 33.58
Bilinear n = 3 1.287 37.33 34.51 1.222 2.8
Bilinear n = 3 1.306 37.59 34.81 1.212 3.7
Bilinear n = 3 1.312 37.66 34.88 1.209 3.9
Rigid-linear 1.250 34.75 34.72 1.209 3.4

Table 7: Results for a mild steel cantilever under a distributed load.
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Test p τ Material T Wm Wf α Error
Number (MPa) (ms) model (ms) (mm) (mm) (%)

1 25.0 0.10
Real 0.510 11.05 9.85

Bilinear n = 3 0.496 10.72 9.32 1.192 -5.4
Rigid-linear 0.460 8.91 8.89 1.192 -9.7

2 40.0 0.10
Real 0.493 17.93 17.06

Bilinear n = 3 0.500 17.52 16.42 1.218 -3.8
Rigid-linear 0.494 16.17 16.16 1.218 -5.3

3 80.0 0.10
Real 0.443 35.64 34.93

Bilinear n = 3 0.485 37.24 36.63 1.257 4.9
Rigid-linear 0.493 36.43 36.42 1.257 4.3

Table 8: Results for a fully clamped mild steel beam under a distributed load.

Test M V0 Material T Wm Wf α Error
Number (kg) (m/s) model (ms) (mm) (mm) (%)

1 4.0 5.00
Real 3.975 12.10 10.86

Bilinear n = 3 4.004 11.86 10.40 1.152 -4.2
Rigid-linear 3.898 11.08 11.06 1.152 1.8

2 10.0 5.00
Real 6.232 19.74 18.73

Bilinear n = 3 6.313 19.68 18.31 1.164 -2.2
Rigid-linear 6.228 19.10 19.09 1.164 1.9

3 10.0 7.00
Real 6.216 27.44 26.50

Bilinear n = 3 6.330 27.91 26.90 1.177 1.5
Rigid-linear 6.337 27.46 27.44 1.177 3.5

Table 9: Results for a fully clamped mild steel beam under a mass impact.
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parameter underlying such analysis is the flow stress, which is sometimes taken as the material
yield stress, the ultimate stress or even the fracture stress. The choice of which value is to be
used depends on whether or not a more conservative design is sought or whether the ultimate
capacity of the structure to bear loads is aimed, or even if a better correlation with experimental
data is in play.

In fact, the present study clearly shows that the flow stress is not an easy parameter to
choose in order to predict correctly the final displacement of cantilevers and clamped beams.
Moreover, it is obvious that real materials exhibit strain and strain rate herdening, which become
significant for large values of load acting over short time. Hence, it is important to access how a
better representation of the use of a bilinear material model improves the response description.

Inspection of equation (2) shows that large values of n make the flow stress in a bilinear
model approach the material yield stress. It is believed that the range of n ∈ [2, 4] is reasonable
and the results for different cases when n = 2, n = 3 and n = 4 are summarised in Tables 2 to
5.

Generally speaking, when the intensity of load and consequently the transverse deflection
are small, a small value of the yield stress, or, a lager n should be chosen. However, it appears
that the relative error depends not only on the magnitude of the loading and the value of n,
but also on the type of structure. For example, a better result is achieved for an aluminium
cantilever if n = 4 and W/H ∼ 1. If W/H ∼ 2, then n = 3 gives better results and if W/H ∼ 3
a good choice is n = 2.

For fully clamped aluminium beams, n = 3 and n = 2 lead to a better result for W/H ∼ 1
and W/H ∼ 2, respectively, regardless of the load being distributed or concentrated.

Nevertheless, it seems that when n = 3, the errors caused by a bilinear simplification are
acceptable for most cases studied here. This value for n is used to model the mild steel, allowing
to focus the investigation on the strain rate effects.

The results for mild steel cantilevers under different dynamic loads are listed in Tables 6
and 7. Here the value of α instead of k is shown, the largest value of α corresponding to the
smallest value of k (k = 2.0). It appears that all results for strain rate sensitive cantilevers under
concentrated loads underestimate the final deflection, though k = 3.333 gives relatively better
results. On the other hand, for cantilevers under distributed loads, the error strongly depends
on the intensity of the dynamic load.

For fully clamped mild steel beams under distributed load and impacted by a mass, the
results in Tables 8 and 9 indicate a good agreement for the final displacement at the beam
centre when using a real material and a bilinear and rigid-linear material, with n = 3.

Using equations (8) to (14), it is possible to calculate the final displacement of cantilevers
under a concentrated and distributed load, and of fully clamped beams under a distributed load
and under an impact of a mass, respectively. Hence, it is possible to use a flow stress, σT

0 ,
such that the theoretical displacement value matchs the one obtained numerically when using
the real material data for the constitutive law. It is also possible to adjust the flow stress used
in a numerical analysis, σN

0 , for these cantilevers and beams when adopting a perfectly plastic
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material model.
A comparison of the yield stresses required for rigid-perfectly plastic model, both numerical

and theoretical, to reach the same final deflection as that calculated using true material data is
listed in Tables 10 and 11.

Table 10: Flow stress required by the rigid, perfectly plas-
tic model, to match the exact numerical final displacement of
cantilevers.

Material Load Test Wf σN
0 σT

0

Type a Number (mm) (MPa)b (MPa)c

Aluminium
C

1 9.67 137.5 137.9
2 20.37 155.6 157.3

D
1 8.92 184.6 188.9
2 18.17 211.5 217.7

Mild steel
C

1 9.18 282.9 285.1
3 28.51 331.1 337.9

D
1 17.09 393.0 404.6
3 33.58 458.1 474.6

a C: concentrated load; D: distributed load.
b Theoretical value of yield stress.
c Numerical value of yield stress.

Table 11: Flow stress required by the rigid, perfectly plastic
model, to match the exact numerical final displacement of fully
clamped beams.

Material Load Test Wf σN
0 σT

0

Typea Number (mm) (MPa)b (MPa)c

Aluminium
D

1 9.00 187.0 138.2
2 20.31 235.0 163.2

M
1 10.17 232.3 153.4
2 19.45 281.7 164.1

Mild steel
D

1 9.85 367.0 271.7
2 17.06 420.7 304.9

M
1 10.86 423.4 278.8
2 18.73 494.0 291.6

a M: mass impact; D: distributed load.
b Theoretical value of yield stress.
c Numerical value of yield stress.
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It is evident that a good agreement between theoretical and numerical values of the flow
stress is found for cantilevers. The theoretical value is a little bit lower than the numerical one
and the difference is less than 4%. However, the yield stresses obtained by numerical simulations
for fully clamped beams are significantly lower than the corresponding theoretical ones.

It transpires from the deformed configurations that necking occur at the mid-span and at
the supports for fully clamped beams, when a rigid-perfectly plastic model is used. No such
evidence is found when the true material model is used, as shown in Figure 7. This explains the
difference between the numerical and theoretical results mentioned above, since the theoretical
model does not take the geometrical non-linearity of the cross-section into account.

It is obvious from Tables 10 and 11 that the yield stress required to reach the right results
depends on the intensity of the load. As expected, a larger value of yield stress should be used
for a stronger load. This means that the error is sensitive to the choice of the yield stress. More
seriously, different values of the yield stress should be chosen for different types of loads. Figure
8(a) and (b) shows the dependence of the yield stress on the final deflection for aluminium and
steel beams, respectively. It can be seen that, for the same final deflection, the yield stress for
cantilevers subjected to concentrated load is higher than all other cases. Thus, a unique value
suitable for all cases is impossible.

In order to explore such sensitivity, besides the value which will predict right result, two
additional values of the yield stress are used, which are ± 10% different from the values listed in
Tables 10 and 11. The errors of the resulted final deflection are listed in Tables 12 and 13. It is
clear that cantilevers are more sensitive to the choice of yield stress than fully clamped beams.

Material Load Wf
b Theoretical Numerical

Typea (mm) W−
f Error W+

f Error W−
f Error W+

f Error

(mm) (%) (mm) (%) (mm) (%) (mm) (%)

Aluminium

C
9.67 11.26 16.4 8.40 -13.1 11.18 15.6 8.48 -12.3

20.37 23.81 16.9 17.65 -13.4 23.60 15.9 17.78 -12.7

D
8.92 10.10 13.2 7.96 -10.8 10.07 12.9 7.98 -10.5

18.17 20.47 12.7 16.29 -10.3 20.41 12.3 16.31 -10.2

Mild steel

C
9.18 10.70 16.6 7.97 -13.2 10.63 15.8 8.04 -12.4

28.51 33.38 17.1 24.65 -13.5 33.04 15.9 24.86 -12.8

D
17.09 19.20 12.3 15.36 -10.1 19.18 12.2 15.38 -10.0

33.58 37.64 12.1 30.27 -9.9 37.61 12.0 30.28 -9.8

a C: concentrated load; D: distributed load.
b W−

f : Final deflection when the yield stress is 10% lower than the required value.

W+
f : Final deflection when the yield stress is 10% larger than the required value.

Table 12: Influence of the yield stress variation used in the rigid, perfectly plastic
model, on the final deflection of cantilevers.

The numerical simulation also reveals that when material elasticity is considered, the plastic
deformation will not end after the maximum deflection is reached. A typical curve of the deflec-
tion history and the corresponding energy history are shown in Figures 9 and 10, respectively.

Latin American Journal of Solids and Structures 2 (2005)



Material influence on the response of impacted beams 187

(a)

(b)

(c)

(d)

Figure 7: Distribution of the final equivalent plastic strain for a fully clamped aluminium beam
under a dynamic distributed load of p = 10 MPa and τ = 0.1 ms. The material models used
are (a) true material data; (b) bilinear model; (c) rigid-linear plastic model; (d) rigid-perfectly
plastic model.
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Figure 8: Flow stresses (obtained numerically when using a rigid, perfectly plastic material
model) necessary to match the final deflection value with the one obtained using a real material,
for different beam and load configurations. (a) aluminium alloy beams, (b) mild steel beams.
CC and CD– cantilever under a concentrated and distributed load, FD and FM– fully clamped
beam under a distributed load and central impact mass, respectively.
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Material Load Wf Theoretical Numerical

Type (mm) W−
f Error W+

f Error W−
f Error W+

f Error

(mm) (%) (mm) (%) (mm) (%) (mm) (%)

Aluminium

D
9 9.78 8.70 8.33 -7.40 9.76 8.40 8.30 -7.80

20.31 21.77 7.20 19.06 -6.20 22.54 11.00 18.57 -8.60

M
10.17 10.91 7.30 9.54 -6.20 10.97 7.90 9.49 -6.70

19.45 20.72 6.50 18.36 -5.60 21.07 8.30 18.13 -6.80

Mild steel

D
9.85 10.65 8.10 9.15 -7.10 10.61 7.70 9.17 -6.90

17.06 18.29 7.20 15.99 -6.30 18.56 8.80 15.82 -7.30

M
10.86 11.63 7.10 10.20 -6.10 11.71 7.80 10.14 -6.60

18.73 19.96 6.60 17.67 -5.70 20.26 8.20 17.46 -6.80

Table 13: Influence of the yield stress variation used in the rigid, perfectly plastic model, on the
final deflection of fully clamped beams.

M (kg) 40 10 2 0.4 0.025
V0 (m/s) 2.5 5 11.18 25 100
Wf (mm) 18.86 18.73 18.47 17.72 12.26

Table 14: Final deflection of a fully clamped mild steel beam under a central mass impact for
various values of impact velocity and mass and a fixed initial impact energy of 125J.

Due to further plastic dissipation, the amplitude of the elastic vibration decreases. It should
be noticed that part of the plastic work is dissipated during unloading and reloading of the
material. This feature is not considered when the rigid-perfectly plastic model is used, where
all plastic work is assumed to increase the transverse deflection.

When finite deformations are considered, an assumption is often introduced to simplify the
analyses in the rigid-perfectly plastic model, namely that the deformation mode is the same as
in static cases and energy balance is used to obtain an analytical solution. When this method
is used to cases of mass impact, this simplification implies that the final deformation depends
only on the total initial kinetic energy, regardless whether a light mass or a heavy mass is used.

To explore the influence of impact velocity on the response of a fully clamped mild steel
beam under a mass impact, numerical simulations are performed using real material data and
maintaining the same kinetic energy. The results are shown in Table 14. Although only slight
difference is found when the initial velocity is in the range of 2.0-40 m/s, care should be taken
when the impact velocity is very high.
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Figure 9: History of the transverse deflection at the free end of a mild steel cantilever under
distributed dynamic load of p=20 MPa and τ=0.1 ms.
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Figure 10: Variation of external work and plastic, elastic and kinetic energy with time for a mild
steel cantilever under distributed dynamic load of p=20 MPa and τ=0.1 ms.

5 Conclusion

The influence of the flow stress on response of some basic beam configuration was examined in
this investigation. It is evident that care should be taken in order to select a value of flow stress
which is capable of predicting within a small error the final displacement of the beams analysed.

It was also shown that the flow stress used in perfectly plastic models can differ significantly
from the flow stress to be adopted in a numerical analysis, also for perfectly plastic material
modelling.

Hence, this study offers some guidelines in setting some validity limits for the perfectly plastic
approach of solving structural impact problems.
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