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Abstract 
Deformation in polymers is highly dependent on molecular structures and motion and relaxation mechanisms, 
which are highly influenced by temperature and mechanical load history. These features imply that some 
models can fit for specific classes of polymers and not for others; moreover, these models also include several 
non-linearities, which turns out to be challenging for computational simulation. This work develops and 
simulates a thermal-structural phase-field model for the polytetrafluorethylene (PTFE) polymer. The 
constitutive multimechanism model used considers a non-isothermal non-linear elastoviscoplastic model, 
able to represent elastic molecular interactions, and viscoplastic flow from polymer segments. Material 
parameters for complex rheological models are addressed, through a genetic algorithm, to adjust curves from 
simulated models to stress-strain experiments available in literature. Results of stress-strain curves, followed 
by rupture, for a temperature ranging from -50° C to 150° C are plotted in comparison with experimental 
results, presenting a reasonable fit. 
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1 INTRODUCTION 

Nowadays, polymeric materials have been used largely in engineering applications. Due to advances in 
reinforcement fibres and combined molecular structures, polymeric materials can offer many advantages when 
compared to others materials even in most precise or under extremely severe usage conditions. 

Considering the significant increasing of polymeric products and components in many applications taking into 
account different safety and quality requirements, the appropriate description of the mechanical behaviour of polymers 
and their structures is necessary for design purposes. Usually, polymers have quite different structural and thermal 
responses when compared to metals, which can impact their manufacturing process and also usage conditions. For this 
reason, many material constitutive models were developed in last decades and still represent a growing field. 

Deformation in polymers are highly dependent on their molecular structures. Motion and relaxation mechanisms 
are highly influenced by temperature and mechanical load history. These features imply that some models can fit well 
for specific classes of polymers and not for others. There are still several non-linearities, which turn out to be challenging 
for computational simulation. 

Most common failure modes in mechanical components include fracture and, consequently, are very relevant in 
terms of simulation objectives, in order to avoid damage to structures and hazard to people. Due to this fact and new 
material models, failure simulation is applied in very early stages of product development to evaluate risks and, 
consequently, ensure safety to products. In this context, phase-field models have emerged as an efficient and promising 
technique for evaluating fracture evolution, due to continuous treatment of discontinuities and sharp surfaces that 
challenge simulations. 

This paper aims to develop and simulate a thermal-structural phase-field model for the polytetrafluorethylene 
(PTFE) semi-crystalline polymer taking into account relevant constitutive models in the literature. The response of this 
model will be compared to experiments in order to evaluate its behaviour, explore possibilities for internal variables and, 
finally, contribute to the current state of the art for this material. 

2 LITERATURE REVIEW 

For describing properly the behavior of polymers, a large number of works, started decades ago, aimed to develop 
constitutive models in order to reproduce different aspects of mechanical response. When properly adjusted, these 
models can, with reasonable accuracy, reproduce the macroscopic response of polymers under multi-axial loading 
conditions over a wide range of strain rates and temperatures. 

A starting point for many others authors describing amorphous polymers response, Haward and Thackray (1968) 
presented an one-dimensional rheological model, composed by two mechanisms (Eyring dashpot and Langevin spring). 
Stress response is built from different contributions, both from intermolecular interactions and also from preferred 
orientation of the entangled molecular network. The model reproduced features of both glass-like and non-linear rubber-
like behaviors, for materials like cellulose acetate, cellulose nitrate and PVC. 

Subsequently, and counting on development of rubber elasticity by Treloar (1975), many others authors extended 
constitutive models for including more dimensions and complex behaviors. Parks, Argon and Bagepalli (1984) 
implemented a three-dimensional constitutive model for PMMA, taking into account in the rheological model the 
macromolecular structure and micro-mechanisms of plastic flow as well. Boyce, Parks and Argon (1988) included the 
effect of deformation rate, pressure, true strain softening and temperature on the plastic resistance. The result of this 
work is the well known BPA model. Wu and Giessen (1993), based on constitutive description of rubber elasticity, 
described an isothermal three-dimensional model for elastomers and also for polycarbonate, taking into account large 
strain of molecules through a non-Gaussian statistical mechanics. Tervoort et al. (1997) introduced a compressible-
Leonov model, in which the elastic volume response is separated from the elasto-viscoplastic isochoric deformation and 
making possible to extend the model in a straightforward way to include a spectrum of relaxation times. In Govaert, 
Timmermans and Brekelmans (2000), the compressible-Leonov model is extended to describe the phenomenological 
aspects of the large strain mechanical behavior of glassy polymers and applied to polycarbonate response simulation. 
Anand and Gurtin (2003), in the sequence of including complex mechanisms of polymers, modelled a three-dimensional 
continuum isothermal theory for elasto–viscoplastic deformation of amorphous solids such as polymeric and metallic 
glasses. This model was able to capture highly non-linear stress–strain behaviour that precedes the yield-peak and gives 
rise to post-yield strain softening. Buckley et al. (2004) showed constitutive responses of three glassy thermoset 
polymers at high and low strain rates. 

All these models mentioned above were used to describe, primarily, isothermal deformation of polymers below 
their glass transition temperature. To include temperature evolution, Anand et al. (2009) presented a detailed continuum 
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mechanic development of a thermo-mechanically coupled elasto-viscoplastic theory to model the strain rate and 
temperature dependent large deformation response of amorphous polymeric materials. This work was applied to large-
strain compression experiments on three amorphous polymeric materials: polymethylmethacrylate (PMMA), 
polycarbonate (PC), and a cyclo-olefin polymer (Zeonex-690R). Temperature range spanning room temperature to 
slightly below the glass transition temperature of each material, and strain rates ranging from 1×10−4 s−1 to 1×10−1 s−1 
were considered in the work of Ames et al. (2009), and also for temperature range spanning room temperature to 
approximately 50°C over the glass transition temperature are showed by Srivastava et al. (2010). 

In addition to amorphous polymers, multi-mechanism models were also used for simulating semi-crystallyne polymers 
and, in special, fluoropolymers. In this area, several models are proposed, like the Dual Network Fluoropolymer Model (DNF) 
and the Three Network Model (TNF), as described by Bergstrom (2015), in an evolution of models described earlier by 
Bergström and Boyce (1998), Arruda, Boyce and Jayachandran (1995) and Kletschkowski, Schomburg and Bertram (2002). 
In many cases, due to complexity of constitutive models, composed by several branches and internal variables that cannot 
be obtained experimentally, additional methods are used in order to characterize the material. One of the most used 
method is based on genetic algorithms, as presented by Fernández et al. (2018) for fitting parameters in elastomeric 
material model, and by Colak and Cakir (2019) in modelling strain and temperature dependent behavior of epoxy resin. 

Many methods for evaluating damage mechanisms are based on Griffith (1921) theory, which introduced the 
concept of energy release rate as the responsible for the onset of crack. 

This approach, with limitations in predicting crack paths and new crack nucleations, was later improved by others 
researchers in order to understand damage evolution, fatigue and fracture in materials, such as Lemaitre and Desmorat 
(2006), Kanninen, McEvily and Popelar (1986) and Anderson (2017). 

An important variant of Griffith method was proposed by Francfort and Marigo (1998), in which the crack initiation, 
propagation and ramification process is driven by minimization of an energy functional, in terms of displacement field 
and crack surface. Considering that crack surface is unknown in the beginning of the process, it is replaced by a 
continuous scalar field, named phase-field, which interpolates smoothly between undamaged and broken material. 

Due to these new techniques, more attention has been given to the phase-field methodology as a promising way to 
deal with modelling of material damage. Originally applied to problems related to separation of fluids by Cahn and Hilliard 
(1958), these models have been also used in a great variety of multiphase problems such as in the study of tumor growth 
by Silva (2009), vesicle-fluid iteration by Du, Li and Liu (2007), solidification by Allen and Cahn (1972) and fluid–structure 
interation problems by Sun, Xu and Zhang (2014). In addition to these categories, many fracture and crack initiation 
problems are solved using the Ginsburg–Landau free-energy functional in order to predict the phase-field evolution in 
continuum mechanics and solid materials, as described by Fabrizio, Giorgi and Morro (2006) and Amendola, Fabrizio and 
Golden (2016). In the sequence of these advances in phase-field for fracture and fatigue, Boldrini et al. (2016) presented a 
general thermodynamically consistent, non-isothermal, nonlocal framework under the hypothesis of small deformation. 

Concerning papers considering aspects more closely related to the ones of the present work, we mention the following. 
SCHÄNZEL (2015) and Miehe, Schaenzel and Ulmer (2015) published a phase-field model for evaluating crazing-induced 
brittle fracture of glassy polymers. The use of driving force for damage evolution, however, is not thermodynamically 
consistent. In order to improve this aspect, Narayan and Anand (2021) developed a new gradient-damage theory, able to 
describe deformation and failure of amorphous polymers in thermodynamic consistent way. However, Narayan and Anand 
(2021) did not consider the important infuence of the temperature on the polymer behavior. Srivastava et al. (2010) 
considered this infuence of temperature, but did include the possibility of material damage. 

To advance the knowledge about the infuence of temperature and damage on polymer behavior, in this work we 
present a new phase-field model by extending the work of Srivastava et al. (2010) and including in a thermodynamically 
consistent way the possibility of material damage. This done by using a framework similar to the one of Boldrini et al. 
(2016). Moreover, the results of numerical simulations with our model were compared to experiments with the 
polytetrafluorethylene (PTFE) polymer in a rather large range of temperatures with good results. We think that this shows 
the relevance of the presented model. 

3 PTFE STRUCTURE 

Polymers containing fluorine present advantages related to improved mechanical, electrical, chemical and friction 
wear resistance. According to Brown et al. (2004), the most used fluorocarbon polymer in applications is the 
Polytetrafluorethylene (PTFE) commonly known under the trade name Teflon, which has a complex microstructure with 
different crystalline phases in terms of temperature at ambient pressure. These phases influence the mechanical 
behavior, including the resistance to fracture. 
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PTFE is a semi-crystalline polymer with amorphous and crystalline phases whose proportions depend on the 
parameters of the production process, such as cooling rate of the sintering temperature. 

Amorphous phase, according to Calleja et al. (2013), is composed by two distinct regions. The first one is called 
mobile amorphous fraction (MAF), whose relaxation process occurs at low temperatures (T = -103°C). The other one is 
at the interface between crystalline and MAF domains and called rigid amorphous fraction (RAF). Its relaxation process 
occurs at highers temperatures (T = 116°C) and strongly depends on the degree of crystallinity. 

As discussed by Brown and Dattelbaum (2005), the crystalline phase of PTFE depends on temperature and pressure. 
Experimentally, it is observed four different phases. Three of them (I, II and IV) exist at ambient pressure with transition 
temperatures at 19°C and 30°C, which makes predictions on the PTFE behaviour in this range more important as they 
are closer to the ambient temperature. In terms of microstructure, transition at 19°C (from phase II to phase IV) 
represents an unraveling of helical conformation, given by a well ordered triclinic structure (13 atoms/180 turn) to a 
partial ordered hexagonal structure (15 atoms/turn). After 30°C, more disorder is included in crystalline structures and 
phase I has a pseudohexagonal arrange. 

4 DERIVATION OF THE GENERAL BALANCE EQUATIONS 

The main purpose of this section is to derive a one-dimensional non-local damage and fracture phase-field model 
for polymers, adapted from Boldrini et al. (2016), based on continuum mechanics and thermodynamics balance laws. In 
this context, a review of basic concepts of kinematics and stress-strain theories under large displacement is first 
considered. The multiplicative decomposition of the deformation gradient 𝐹𝐹 is used, as in Anand and Ames (2006). 

4.1 Kinematics 

Consider a bar of length 𝐿𝐿0 in a given one-dimensional reference configuration at time 𝑡𝑡 = 0, whose arbitrary 
material point is denoted by 𝑋𝑋 and boundaries, denoted by 𝛤𝛤, given by the two points at the bar ends, with normals with 
values -1 and 1. The motion of the bar, denoted by 𝜒𝜒(𝑋𝑋, 𝑡𝑡), maps the undeformed to the current configuration with 
spatial points indicated by 𝑥𝑥 and length 𝐿𝐿, as illustrated in Figure 1. 

The motion of each particle is described by a smooth one-to-one mapping 𝑥𝑥 = 𝛘𝛘(𝑋𝑋, 𝑡𝑡), in which 𝛘𝛘(𝑋𝑋, 𝑡𝑡) = 𝑋𝑋 +
𝑢𝑢(𝑋𝑋, 𝑡𝑡), where 𝑢𝑢 is the displacement field. The deformation gradient, which maps the material infinitesimal fibre 𝑑𝑑𝑋𝑋 at 
point 𝑋𝑋 to the spatial infinitesimal fibre 𝑑𝑑𝑥𝑥 at point 𝑥𝑥, velocity and velocity gradient in spatial description are given, 
respectively, by 

𝐹𝐹(𝑋𝑋, 𝑡𝑡) = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,
𝑣𝑣(𝑥𝑥, 𝑡𝑡) = �̇�𝛘(𝜒𝜒−1(𝑥𝑥, 𝑡𝑡), 𝑡𝑡),
𝐿𝐿(𝑥𝑥, 𝑡𝑡) = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= �̇�𝐹𝐹𝐹−1.

  (1) 

 
Figure 1: Bar in reference configuration at t = 0 and arbitrary material point X mapped to the current (deformed) configuration at point x. 

For an elasto-viscoplastic finite strain model, used in this work, the Kroner-Lee multiplicative decomposition (Lee 
(1969)) is considered in terms of the elastic 𝐹𝐹𝑒𝑒 and plastic 𝐹𝐹𝑝𝑝 parts of 𝐹𝐹 as 

𝐹𝐹 = 𝐹𝐹𝑒𝑒𝐹𝐹𝑝𝑝.  (2) 

This hypothesis considers the complete separation between the elastic deformation due to stretch and the plastic 
deformation due to flow of defects, both in the microscopic structure. 
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Due to the microscopical complexity, a general and accurate polymer response including thermo-structural 
behaviour, requires multiple structural mechanisms. In this sense, the classical Kroner-Lee decomposition is replaced by 
the generalized Zener multi-mechanism model, with the following decomposition of the deformation gradient: 

𝐹𝐹 = 𝐹𝐹𝑒𝑒
(𝛼𝛼)𝐹𝐹𝑝𝑝

(𝛼𝛼),  (3) 

where 𝛼𝛼 indicates a mechanism. 
Figure 2 illustrates the generalized Zener model with 𝑀𝑀 mechanisms. A more detailed material description including, 

for example, stress-relaxation and creep, requires larger number of mechanisms and, consequently, more experimental 
parameters must be obtained. For this reason, the lowest number of mechanisms 𝛼𝛼 should be considered, since finding 
the correct material parameters become an important aspect of these phenomenological continuum-level models. 

 
Figure 2: Generalized Zener model. Adapted from Anand and Ames (2006). 

Each branch of the rheological model comprises an elastic part described by a spring in series with a set composed 
of a dissipative dashpot term (driven by plastic deformation 𝐹𝐹𝑝𝑝

(𝛼𝛼) and internal variables 𝜉𝜉(𝛼𝛼)) in parallel with an energy 
storage mechanism associated to plastic deformation (driven by 𝐴𝐴(𝛼𝛼)). 

Physically, 𝐹𝐹𝑒𝑒
(𝛼𝛼) represents an elastic deformation, such as stretching and rotation of intermolecular bonds and 

polymer chains. 𝐹𝐹𝑝𝑝
(𝛼𝛼) is a local inelastic deformation at 𝑋𝑋, due to mechanisms such as slippage of polymer molecules. This 

last transformation takes material coordinates to a coherent structure in the relaxed space 𝑀𝑀𝜕𝜕, being 𝑀𝑀𝜕𝜕 the range of 
𝐹𝐹𝑝𝑝

(𝛼𝛼), as shown in Figure 3. 

 
Figure 3: Reference spaces including structural space given by the Kroner-Lee decomposition. 

This relaxed space, also called sometimes intermediate or structural space, is defined as the output of the linear 
transformation 𝐹𝐹𝑝𝑝

(𝛼𝛼) and the input of the linear transformation 𝐹𝐹𝑒𝑒
(𝛼𝛼). Thus, 𝑀𝑀𝜕𝜕 is not related to a real physical space, but 

to a mathematical construction based on the Kroner-Lee transformation. Quantities in this space will be represented 
with a bar over the variable symbol. 

Applying the Kroner-Lee decomposition for the velocity gradient, Eq. (1)(iii) is then rewritten as 
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𝐿𝐿 = 𝐿𝐿𝑒𝑒
(𝛼𝛼) + 𝐹𝐹𝑒𝑒

(𝛼𝛼)𝐿𝐿𝑝𝑝
(𝛼𝛼) �𝐹𝐹𝑒𝑒

(𝛼𝛼)�
−1

,  (4) 

with 

𝐿𝐿𝑒𝑒
(𝛼𝛼) = �̇�𝐹𝑒𝑒

(𝛼𝛼) �𝐹𝐹𝑒𝑒
(𝛼𝛼)�

−1
,

𝐿𝐿𝑝𝑝
(𝛼𝛼)

= �̇�𝐹𝑝𝑝
(𝛼𝛼) �𝐹𝐹𝑝𝑝

(𝛼𝛼)�
−1

,
  (5) 

where 𝐿𝐿𝑝𝑝
(𝛼𝛼)

 is the inelastic velocity gradient in the intermediate configuration and 𝐹𝐹𝑒𝑒
(𝛼𝛼)𝐿𝐿𝑝𝑝

(𝛼𝛼)
�𝐹𝐹𝑒𝑒

(𝛼𝛼)�
−1

 its counterpart in 
the current configuration. 

In an one-dimensional configuration, there is no rotation. Consequently, the decomposition of velocity gradient in 
a symmetric (stretching) and skew-symmetric (spin) parts is given by 

𝐿𝐿𝑒𝑒
(𝛼𝛼) = 𝐷𝐷𝑒𝑒

(𝛼𝛼),

𝐿𝐿𝑝𝑝
(𝛼𝛼)

= 𝐷𝐷𝑝𝑝
(𝛼𝛼)

.
  (6) 

Analogously, polar decompositions of 𝐹𝐹𝑒𝑒
(𝛼𝛼) and 𝐹𝐹𝑝𝑝

(𝛼𝛼) provide 

𝐹𝐹𝑒𝑒
(𝛼𝛼) = 𝑈𝑈𝑒𝑒

(𝛼𝛼) = 𝑉𝑉𝑒𝑒
(𝛼𝛼),

𝐹𝐹𝑝𝑝
(𝛼𝛼) = 𝑈𝑈𝑝𝑝

(𝛼𝛼) = 𝑉𝑉𝑝𝑝
(𝛼𝛼),

  (7) 

with 𝑈𝑈𝑒𝑒
(𝛼𝛼), 𝑈𝑈𝑝𝑝

(𝛼𝛼), 𝑉𝑉𝑒𝑒
(𝛼𝛼) and 𝑉𝑉𝑝𝑝

(𝛼𝛼) being variables describing deformations. 
The right and left Cauchy-Green deformations, for both elastic and plastic cases, are given, respectively, by 

𝐶𝐶𝑒𝑒
(𝛼𝛼)

= �𝐹𝐹𝑒𝑒
(𝛼𝛼)�

𝑇𝑇
𝐹𝐹𝑒𝑒

(𝛼𝛼),𝐵𝐵𝑒𝑒
(𝛼𝛼) = 𝐹𝐹𝑒𝑒

(𝛼𝛼) �𝐹𝐹𝑒𝑒
(𝛼𝛼)�

𝑇𝑇
,  (8) 

𝐶𝐶𝑝𝑝
(𝛼𝛼) = �𝐹𝐹𝑝𝑝

(𝛼𝛼)�
𝑇𝑇
𝐹𝐹𝑝𝑝

(𝛼𝛼),𝐵𝐵𝑝𝑝
(𝛼𝛼)

= 𝐹𝐹𝑝𝑝
(𝛼𝛼) �𝐹𝐹𝑝𝑝

(𝛼𝛼)�
𝑇𝑇

.  (9) 

We define also 

𝐽𝐽(𝑋𝑋) = det�𝐹𝐹(𝑋𝑋)�, (10) 

which for 1D problems is equal to 𝐹𝐹(𝑋𝑋) in the case of compressibility and equal to one in case of incompressibility. 

4.2 Governing equations 

Consider, initially, the spatial reference frame and the respective variables for obtaining the governing equations 
through the principle of virtual power (PVP). 

Following the arguments given in Frémond and Nedjar (1996), there is in addition to the standard velocity 𝑣𝑣, a 
microscopic velocity (𝑐𝑐) referring to the time rate of change of phase-field 𝜑𝜑 used here to describe the failure of the 
material. In this context, the phase-field is considered a dynamical variable with microscopic bulk forces and stresses. In 
this work, analogously to Boldrini (2018), it is assumed that microscopic acceleration forces are zero, which implies in a 
purely dissipative evolution for the structures described by 𝜑𝜑. 

Applying the PVP, consider that the external power comes from the macroscopic stresses 𝑡𝑡 on the bar ends and the 
axial distributed loads 𝑏𝑏(𝑥𝑥) per unit of mass along the bar length. Moreover, it is considered a density of energy, 𝑎𝑎, 
supplied by exterior to evolving structures (such as phase-field describing damage in material) and a surface density of 
energy given by flux 𝑡𝑡ℎ. Virtual macroscopic and microscopic velocities are denoted by 𝑣𝑣� and �̂�𝑐, respectively. Based on 
the previous definitions, the expression of the external virtual power is given by 

𝒫𝒫𝑒𝑒(𝑣𝑣�, �̂�𝑐) = ∫ 𝜌𝜌𝐿𝐿0 𝑏𝑏𝑣𝑣� 𝑑𝑑𝑥𝑥 + 𝑡𝑡(0)𝑣𝑣�(0) + 𝑡𝑡(𝐿𝐿)𝑣𝑣�(𝐿𝐿) + ∫ 𝜌𝜌𝐿𝐿0 𝑎𝑎�̂�𝑐 𝑑𝑑𝑥𝑥 + 𝑡𝑡ℎ(0)�̂�𝑐(𝐿𝐿) + 𝑡𝑡ℎ(𝐿𝐿)�̂�𝑐(𝐿𝐿).  (11) 

Considering the internal power, due to the existence of elastic and plastic stresses (𝑇𝑇𝑒𝑒
(𝛼𝛼) and 𝑇𝑇𝑝𝑝

(𝛼𝛼)) for each branch, 

the expression must be split in terms of virtual rates 𝐿𝐿�𝑒𝑒 and 𝐿𝐿�𝑝𝑝. Analogously to the external power, microscopic terms 
𝑏𝑏𝜑𝜑 and ℎ are considered, representing, respectively, the volumetric density of energy exchanged by variation of a unit of 
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𝜑𝜑 and the flux of energy associated to the spatial variation of a unit of 𝜑𝜑 in a unit of time. Based on previous definitions, 
the expression of the internal virtual power for a material with 𝑀𝑀 mechanisms is given by 

𝒫𝒫𝑖𝑖 �𝐿𝐿�𝑝𝑝
(𝛼𝛼)

, 𝐿𝐿�𝑒𝑒(𝛼𝛼), �̂�𝑐� = ∫ [𝐿𝐿0 ∑ �−𝑇𝑇𝑝𝑝
(𝛼𝛼) �𝐹𝐹𝑒𝑒

(𝛼𝛼)𝐿𝐿�𝑝𝑝
(𝛼𝛼)

�𝐹𝐹𝑒𝑒
(𝛼𝛼)�

−1
� − 𝑇𝑇𝑒𝑒

(𝛼𝛼)𝐿𝐿�𝑒𝑒
(𝛼𝛼)�𝑀𝑀

𝛼𝛼=1

− �𝑏𝑏𝜑𝜑�̂�𝑐 + ℎ 𝑑𝑑𝑐𝑐̂
𝑑𝑑𝜕𝜕𝑡𝑡
�]𝑑𝑑𝑥𝑥.

  (12) 

The virtual power of the inertia (acceleration) loads is expressed as follows 

𝒫𝒫𝑎𝑎(𝑣𝑣�, �̂�𝑐) = ∫ 𝜌𝜌𝐿𝐿0 �̇�𝑣𝑣𝑣� 𝑑𝑑𝑥𝑥.  (13) 

Given the previous expressions, the PVP is written as follows: 

𝒫𝒫𝑎𝑎(𝑣𝑣�, �̂�𝑐) = 𝒫𝒫𝑖𝑖 �𝐿𝐿�𝑝𝑝
(𝛼𝛼)

, 𝐿𝐿�𝑒𝑒(𝛼𝛼), �̂�𝑐� + 𝒫𝒫𝑒𝑒(𝑣𝑣�, �̂�𝑐).  (14) 

Substituting Eqs.(11), (12) and (13) in Eq.(14), we have 

∫ 𝜌𝜌𝐿𝐿0 �̇�𝑣𝑣𝑣� 𝑑𝑑𝑥𝑥 = ∫ 𝜌𝜌𝐿𝐿0 𝑏𝑏𝑣𝑣� 𝑑𝑑𝑥𝑥 + 𝑡𝑡(0)𝑣𝑣�(0) + 𝑡𝑡(𝐿𝐿)𝑣𝑣�(𝐿𝐿) + ∫ 𝜌𝜌𝐿𝐿0 𝑎𝑎�̂�𝑐 𝑑𝑑𝑥𝑥 + 𝑡𝑡ℎ(0)�̂�𝑐(𝐿𝐿) + 𝑡𝑡ℎ(𝐿𝐿)�̂�𝑐(𝐿𝐿) +

+∫ [𝐿𝐿0 ∑ �−𝑇𝑇𝑝𝑝
(𝛼𝛼) �𝐹𝐹𝑒𝑒

(𝛼𝛼)𝐿𝐿�𝑝𝑝
(𝛼𝛼)

�𝐹𝐹𝑒𝑒
(𝛼𝛼)�

−1
� − 𝑇𝑇𝑒𝑒

(𝛼𝛼)𝐿𝐿�𝑒𝑒
(𝛼𝛼)�𝑀𝑀

𝛼𝛼=1 − �𝑏𝑏𝜑𝜑�̂�𝑐 + ℎ 𝑑𝑑𝑐𝑐̂
𝑑𝑑𝜕𝜕𝑡𝑡
�]𝑑𝑑𝑥𝑥.

  (15) 

To obtain the dynamic equations, consider that 𝑉𝑉� = �𝑣𝑣�, 𝐿𝐿�𝑒𝑒 , 𝐿𝐿�𝑝𝑝
(𝛼𝛼)

, �̂�𝑐� is arbitrary and set 𝐿𝐿�𝑝𝑝
(𝛼𝛼)

 and �̂�𝑐 to zero. Therefore, 

∫ 𝜌𝜌𝐿𝐿0 �̇�𝑣𝑣𝑣� 𝑑𝑑𝑥𝑥 = −∫ ∑ �𝑇𝑇𝑒𝑒
(𝛼𝛼) 𝑑𝑑𝜕𝜕�

𝑑𝑑𝜕𝜕
�𝑀𝑀

𝛼𝛼=1
𝐿𝐿
0 𝑑𝑑𝑥𝑥 + 𝑡𝑡(0)𝑣𝑣�(0) + 𝑡𝑡(𝐿𝐿)𝑣𝑣�(𝐿𝐿) + ∫ 𝜌𝜌𝐿𝐿0 𝑏𝑏𝑣𝑣� 𝑑𝑑𝑥𝑥.  (16) 

Applying integration by parts in the first term on the right hand side and rearranging terms, the following equations 
are obtained: 

𝜌𝜌�̇�𝑣 = ∑ 𝑑𝑑𝑇𝑇𝑒𝑒
(𝛼𝛼)

𝑑𝑑𝜕𝜕
𝑀𝑀
𝛼𝛼=1 + 𝜌𝜌𝑏𝑏,

𝑡𝑡(0) = −∑ 𝑇𝑇𝑒𝑒
(𝛼𝛼)𝑀𝑀

𝛼𝛼=1 (0),
𝑡𝑡(𝐿𝐿) = ∑ 𝑇𝑇𝑒𝑒

(𝛼𝛼)𝑀𝑀
𝛼𝛼=1 (𝐿𝐿).

  (17) 

It can be noticed that 𝑇𝑇𝑒𝑒 = ∑ (𝑀𝑀
𝛼𝛼=1 𝑇𝑇𝑒𝑒

(𝛼𝛼)) works as Cauchy stress for the problem. 
Next, to find an expression for 𝑇𝑇𝑝𝑝 = ∑ 𝑇𝑇𝑝𝑝

(𝛼𝛼)𝑀𝑀
𝛼𝛼=1 , set 𝑣𝑣� and �̂�𝑐 to zero, and from Eq. (4) 

𝐿𝐿�𝑒𝑒
(𝛼𝛼) = −𝐹𝐹𝑒𝑒

(𝛼𝛼)𝐿𝐿�𝑝𝑝
(𝛼𝛼)

�𝐹𝐹𝑒𝑒
(𝛼𝛼)�

−1
= −𝐿𝐿�𝑝𝑝

(𝛼𝛼)
.  (18) 

Equation (15) reduces to 

∫ ∑ �−𝑇𝑇𝑝𝑝
(𝛼𝛼)𝐿𝐿�𝑝𝑝

(𝛼𝛼)
− 𝑇𝑇𝑒𝑒

(𝛼𝛼)𝐿𝐿�𝑒𝑒
(𝛼𝛼)�𝑀𝑀

𝛼𝛼=1
𝐿𝐿
0 𝑑𝑑𝑥𝑥 = 0,  (19) 

and therefore, 

𝑇𝑇𝑒𝑒
(𝛼𝛼) = 𝑇𝑇𝑝𝑝

(𝛼𝛼).  (20) 

Similarly to the cases above, let 𝑣𝑣�, 𝐿𝐿�𝑝𝑝
(𝛼𝛼)

 and 𝐿𝐿�𝑒𝑒
(𝛼𝛼) be zero. In this case, applying integration by parts and rearranging 

the terms, we obtain 

𝑑𝑑ℎ
𝑑𝑑𝜕𝜕
− 𝑏𝑏𝜑𝜑 + 𝜌𝜌𝑎𝑎 = 0,

𝑡𝑡ℎ(0) = −ℎ(0),
𝑡𝑡ℎ(𝐿𝐿) = ℎ(𝐿𝐿).

  (21) 
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Next, the principle of energy conservation is considered to obtain the balance of energy in the bar. This principle 
describes the evolution of internal energy, given that a thermomechanical system can store kinetic (𝒦𝒦) and internal (𝑒𝑒) 
energies. 

Balance of energy states that the total energy rate is equal to the sum of the external power (𝒫𝒫𝑒𝑒) and the heat flux. 
Therefore, 

𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ 𝜌𝜌𝐿𝐿0 𝑒𝑒 𝑑𝑑𝑥𝑥 + 𝑑𝑑

𝑑𝑑𝑑𝑑
𝒦𝒦(𝑣𝑣) = 𝒫𝒫𝑒𝑒(𝑣𝑣, 𝑐𝑐) + ∫ 𝜌𝜌𝐿𝐿0 𝑔𝑔 𝑑𝑑𝑥𝑥 − [𝑞𝑞(𝐿𝐿) − 𝑞𝑞(0)],  (22) 

where the kinetic energy 𝒦𝒦 does not consider microscopical velocities and is given by 𝒦𝒦(𝑣𝑣) = 1
2 ∫ 𝜌𝜌𝐿𝐿0 𝑣𝑣𝑣𝑣 𝑑𝑑𝑥𝑥. 

Moreover, 𝑔𝑔 is the specific heat source density; 𝑒𝑒 is the specific internal energy density, and 𝑞𝑞 is the heat flux (all in 
Eulerian coordinates). 

Previous expression of the balance of energy, combined with the balance of mechanical work, which is obtained 
from Eq.(15) by taking 𝑣𝑣� = 𝑣𝑣 and �̂�𝑐 = �̇�𝜑, gives the reduced form of the balance of energy in the integral form, given by 

𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ 𝜌𝜌𝐿𝐿0 𝑒𝑒 𝑑𝑑𝑥𝑥 = −𝒫𝒫𝑖𝑖 �𝐿𝐿𝑝𝑝

(𝛼𝛼)
, 𝐿𝐿𝑒𝑒

(𝛼𝛼), �̇�𝜑� + ∫ 𝜌𝜌𝐿𝐿0 𝑔𝑔 𝑑𝑑𝑥𝑥 − [𝑞𝑞(𝐿𝐿) − 𝑞𝑞(0)].  (23) 

Due to the conservation of mass, we have 𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ 𝜌𝜌𝐿𝐿0 𝑒𝑒 𝑑𝑑𝑥𝑥 = ∫ 𝜌𝜌𝐿𝐿0 �̇�𝑒 𝑑𝑑𝑥𝑥, and, using also the divergence theorem, we obtain 

𝜌𝜌�̇�𝑒 = −𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕

+ 𝜌𝜌𝑔𝑔 + ∑ �𝑇𝑇𝑝𝑝
(𝛼𝛼)𝐿𝐿𝑝𝑝

(𝛼𝛼)
+ 𝑇𝑇𝑒𝑒

(𝛼𝛼)𝐿𝐿𝑒𝑒
(𝛼𝛼)�𝑀𝑀

𝛼𝛼=1 + 𝑏𝑏𝜑𝜑�̇�𝜑 + ℎ 𝑑𝑑�̇�𝜑
𝑑𝑑𝜕𝜕

.  (24) 

Next, the second law of thermodynamics is given in local form of the Clausius-Duhem inequality by 

𝜌𝜌�̇�𝜂 ≥ −𝑑𝑑𝑑𝑑𝜂𝜂
𝑑𝑑𝜕𝜕

+ 𝜌𝜌𝑔𝑔𝜂𝜂,  (25) 

with 𝜂𝜂 the possible specific entropy density, 𝑞𝑞𝜂𝜂 the entropy flux and 𝑔𝑔𝜂𝜂 the specific density of sources and sinks of 
entropy, which is also called entropy production term. Entropy flux and production terms are given, respectively, by 

𝑞𝑞𝜂𝜂 = 𝑑𝑑
𝜃𝜃

,𝑔𝑔𝜂𝜂 = 𝑔𝑔
𝜃𝜃

,  (26) 

where 𝜃𝜃 is the absolute temperature. 
Inequality (25) used with the Coleman-Noll procedure is fundamental for obtaining constitutive relations for stresses 

in terms of the Helmholtz free-energy, 𝛹𝛹, which is given in Eulerian coordinates by 

𝛹𝛹 = 𝑒𝑒 − 𝜃𝜃𝜂𝜂.  (27) 

Using the balance of energy and the Helmholtz free energy definition, dissipation inequality can be rewritten as 

−𝜌𝜌�̇�𝜓 − 𝜌𝜌𝜂𝜂�̇�𝜃 + ∑ �𝑇𝑇𝑝𝑝
(𝛼𝛼)𝐿𝐿𝑝𝑝

(𝛼𝛼)
+ 𝑇𝑇𝑒𝑒

(𝛼𝛼)𝐿𝐿𝑒𝑒
(𝛼𝛼)�𝑀𝑀

𝛼𝛼=1 + 𝑏𝑏𝜑𝜑�̇�𝜑 + ℎ 𝑑𝑑�̇�𝜑
𝑑𝑑𝜕𝜕
− 𝑑𝑑𝜃𝜃

𝑑𝑑𝜕𝜕
𝑞𝑞𝜂𝜂 ≥ 0.  (28) 

Collecting the previous results, the basic governing equations in the spatial reference frame are 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
�̇�𝑢 = 𝑣𝑣,

𝜌𝜌�̇�𝑣 =   ∑ 𝑑𝑑𝑇𝑇𝑒𝑒
(𝛼𝛼)

𝑑𝑑𝜕𝜕
𝑀𝑀
𝛼𝛼=1 + 𝜌𝜌𝑏𝑏,

𝑑𝑑ℎ
𝑑𝑑𝜕𝜕
− 𝑏𝑏𝜑𝜑 + 𝜌𝜌𝑎𝑎 = 0,

𝜌𝜌�̇�𝑒 = −𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕

+ 𝜌𝜌𝑔𝑔 + ∑ �𝑇𝑇𝑝𝑝
(𝛼𝛼)𝐿𝐿𝑝𝑝

(𝛼𝛼)
+ 𝑇𝑇𝑒𝑒

(𝛼𝛼)𝐿𝐿𝑒𝑒
(𝛼𝛼)�𝑀𝑀

𝛼𝛼=1 + 𝑏𝑏𝜑𝜑�̇�𝜑 + ℎ 𝑑𝑑�̇�𝜑
𝑑𝑑𝜕𝜕

,

−𝜌𝜌�̇�𝜓 − 𝜌𝜌𝜂𝜂�̇�𝜃 + ∑ �𝑇𝑇𝑝𝑝
(𝛼𝛼)𝐿𝐿𝑝𝑝

(𝛼𝛼)
+ 𝑇𝑇𝑒𝑒

(𝛼𝛼)𝐿𝐿𝑒𝑒
(𝛼𝛼)�𝑀𝑀

𝛼𝛼=1 + 𝑏𝑏𝜑𝜑�̇�𝜑 + ℎ 𝑑𝑑�̇�𝜑
𝑑𝑑𝜕𝜕
− 𝑑𝑑𝜃𝜃

𝑑𝑑𝜕𝜕
𝑞𝑞𝜂𝜂 ≥ 0,

𝐹𝐹(𝛼𝛼) = 𝐹𝐹𝑒𝑒
(𝛼𝛼)𝐹𝐹𝑝𝑝

(𝛼𝛼),

𝑇𝑇𝑒𝑒
(𝛼𝛼) = 𝑇𝑇𝑝𝑝

(𝛼𝛼).

  (29) 

The dynamic equations obtained are now written in terms of material coordinates. The terms in this configuration 
are denoted with the subscript (. )0. However, their physical meaning remain unchanged. 

The balance of linear momentum in the material configuration is expressed by 
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𝜌𝜌0�̈�𝑢0 = ∑ 𝑑𝑑𝑃𝑃(𝛼𝛼)

𝑑𝑑𝜕𝜕
𝑀𝑀
𝛼𝛼=1 + 𝜌𝜌0𝑏𝑏0,

𝑇𝑇0
(𝛼𝛼)(0) = −𝑃𝑃(𝛼𝛼)(0),

𝑇𝑇0
(𝛼𝛼)(𝐿𝐿0) = −𝑃𝑃(𝛼𝛼)(𝐿𝐿0),

  (30) 

with the Cauchy stress 𝑇𝑇𝑒𝑒
(𝛼𝛼) replaced by the first Piola-Kirchhoff stress 𝑃𝑃(𝛼𝛼). They are related as 

𝑃𝑃(𝛼𝛼) = 𝐽𝐽𝑇𝑇𝑒𝑒
(𝛼𝛼)𝐹𝐹−𝑇𝑇 ,

𝜌𝜌0 = 𝜌𝜌𝐽𝐽.
  (31) 

The microscopical balance of Eq. (21) is given now by 

𝑑𝑑ℎ0
𝑑𝑑𝜕𝜕

− 𝑏𝑏𝜑𝜑0 + 𝜌𝜌0𝑎𝑎0 = 0,
𝑡𝑡ℎ0(0) = −ℎ0(0),
𝑡𝑡ℎ0(𝐿𝐿) = ℎ0(𝐿𝐿),

  (32) 

with 

ℎ0 = 𝐽𝐽ℎ𝐹𝐹−𝑇𝑇 .  (33) 

Rewriting the balance of energy of Eq. (24) in material reference leads to following equation: 

𝜌𝜌0�̇�𝑒0 = −𝑑𝑑𝑑𝑑0
𝑑𝑑𝜕𝜕

+ 𝜌𝜌0𝑔𝑔0 + ∑ (𝑀𝑀
𝛼𝛼=1 𝐽𝐽𝑇𝑇𝑝𝑝

(𝛼𝛼)𝐿𝐿𝑝𝑝
(𝛼𝛼)

+ 𝐽𝐽𝑇𝑇𝑒𝑒
(𝛼𝛼)𝐿𝐿𝑒𝑒

(𝛼𝛼)) + 𝑏𝑏𝜑𝜑0�̇�𝜑 + ℎ0
𝑑𝑑�̇�𝜑
𝑑𝑑𝜕𝜕

,  (34) 

With 

𝑞𝑞0 = 𝐽𝐽𝑞𝑞𝐹𝐹−𝑇𝑇 .  (35) 

For describing the dissipation inequality it is convenient to use the Clausius-Duhem and the Helmholtz free-energy 
definitions both in material reference. Therefore, 

𝜌𝜌0�̇�𝜂0 ≥ −𝑑𝑑𝑑𝑑𝜂𝜂0
𝑑𝑑𝜕𝜕

+ 𝜌𝜌0𝑔𝑔𝜂𝜂0,
𝛹𝛹0 = 𝑒𝑒0 − 𝜃𝜃𝜂𝜂0,

  (36) 

and again the classical choices for the entropy flux and production terms are considered 

𝑞𝑞𝜂𝜂0 = 𝑑𝑑0
𝜃𝜃

,𝑔𝑔𝜂𝜂0 = 𝑔𝑔0
𝜃𝜃

,  (37) 

resulting in 

−𝜌𝜌0�̇�𝜓0 − 𝜌𝜌0𝜂𝜂0�̇�𝜃 + ∑ (𝑀𝑀
𝛼𝛼=1 𝐽𝐽𝑇𝑇𝑝𝑝

(𝛼𝛼)𝐿𝐿𝑝𝑝
(𝛼𝛼)

+ 𝐽𝐽𝑇𝑇𝑒𝑒
(𝛼𝛼)𝐿𝐿𝑒𝑒

(𝛼𝛼)) + 𝑏𝑏𝜑𝜑0�̇�𝜑 + ℎ0
𝑑𝑑�̇�𝜑
𝑑𝑑𝜕𝜕
− 𝑑𝑑𝜃𝜃

𝑑𝑑𝜕𝜕
𝑑𝑑0
𝜃𝜃
≥ 0.  (38) 

It is useful to rewrite the term 𝐽𝐽𝑇𝑇𝑝𝑝
(𝛼𝛼)𝐿𝐿𝑝𝑝

(𝛼𝛼)
+ 𝐽𝐽𝑇𝑇𝑒𝑒

(𝛼𝛼)𝐿𝐿𝑒𝑒
(𝛼𝛼) of Eq.(38) without variables in the spatial reference. For this 

purpose, partial right Cauchy-Green 𝐶𝐶𝑒𝑒
(𝛼𝛼)

 and 𝐶𝐶𝑝𝑝
(𝛼𝛼) and partial Green-Lagrange 𝐸𝐸𝑒𝑒

(𝛼𝛼)
 and 𝐸𝐸𝑝𝑝

(𝛼𝛼) strains are used and defined 
as 

𝐸𝐸𝑒𝑒
(𝛼𝛼)

= 1
2
�𝐶𝐶𝑒𝑒

(𝛼𝛼)
− 1� ,𝐸𝐸𝑝𝑝

(𝛼𝛼) = 1
2
�𝐶𝐶𝑝𝑝

(𝛼𝛼) − 1� .  (39) 

The derivatives of the previous expressions are given by 

�̇�𝐶𝑒𝑒
(𝛼𝛼)

= 2�̇�𝐸𝑒𝑒
(𝛼𝛼)

= 2 �𝐹𝐹𝑒𝑒
(𝛼𝛼)�

𝑇𝑇
𝐷𝐷𝑒𝑒

(𝛼𝛼)𝐹𝐹𝑒𝑒
(𝛼𝛼),

�̇�𝐶𝑝𝑝
(𝛼𝛼) = 2�̇�𝐸𝑝𝑝

(𝛼𝛼) = 2 �𝐹𝐹𝑝𝑝
(𝛼𝛼)�

𝑇𝑇
𝐷𝐷𝑝𝑝

(𝛼𝛼)
𝐹𝐹𝑝𝑝

(𝛼𝛼).
  (40) 

Using these definitions and remembering that 𝐷𝐷𝑒𝑒
(𝛼𝛼) and 𝐷𝐷𝑝𝑝

(𝛼𝛼)
 are the symmetric parts of 𝐿𝐿𝑒𝑒

(𝛼𝛼) and 𝐿𝐿𝑝𝑝
(𝛼𝛼)

, respectively, 
and using also the fact that 𝑇𝑇𝑒𝑒

(𝛼𝛼) is symmetric, results in the following identity: 
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𝑇𝑇𝑒𝑒
(𝛼𝛼)𝐿𝐿𝑒𝑒

(𝛼𝛼) = 𝑇𝑇𝑒𝑒
(𝛼𝛼)𝐷𝐷𝑒𝑒

(𝛼𝛼) = 𝑇𝑇𝑒𝑒
(𝛼𝛼) ��𝐹𝐹𝑒𝑒

(𝛼𝛼)�
−𝑇𝑇
�̇�𝐸𝑒𝑒

(𝛼𝛼) �𝐹𝐹𝑒𝑒
(𝛼𝛼)�

−1
� = 𝑇𝑇�𝑒𝑒

(𝛼𝛼)�̇�𝐸𝑒𝑒
(𝛼𝛼) = 1

2
𝑇𝑇�𝑒𝑒

(𝛼𝛼)�̇�𝐶𝑒𝑒
(𝛼𝛼),  (41) 

with 

𝑇𝑇�𝑒𝑒
(𝛼𝛼) = �𝐹𝐹𝑒𝑒

(𝛼𝛼)�
−1
𝑇𝑇𝑒𝑒

(𝛼𝛼) �𝐹𝐹𝑒𝑒
𝑒𝑒(𝛼𝛼)�

−𝑇𝑇
= 𝐽𝐽−1𝑆𝑆𝑒𝑒

(𝛼𝛼),  (42) 

where 𝑆𝑆𝑒𝑒
(𝛼𝛼) is the elastic second Piola-Kirchhoff stress. 

Considering the Kroner-Lee decomposition of Eq.(2), the first Piola-Kirchhoff stress is expressed by 

𝑃𝑃(𝛼𝛼) = 𝐽𝐽𝐹𝐹(𝛼𝛼) �𝐹𝐹𝑝𝑝
(𝛼𝛼)�

−1
𝑇𝑇�𝑒𝑒

(𝛼𝛼) �𝐹𝐹𝑝𝑝
(𝛼𝛼)�

−𝑇𝑇
,  (43) 

or, equivalently, 

𝑃𝑃(𝛼𝛼) = 𝐽𝐽𝐹𝐹𝑒𝑒
(𝛼𝛼)𝑇𝑇�𝑒𝑒

(𝛼𝛼) �𝐹𝐹𝑒𝑒
(𝛼𝛼)�

𝑇𝑇
�𝐹𝐹(𝛼𝛼)�

−𝑇𝑇
.  (44) 

Thus, the motion equation in Lagrangian coordinates is given by 

𝜌𝜌0�̈�𝑢0 = ∑
𝑑𝑑�𝐽𝐽𝐹𝐹𝑒𝑒

(𝛼𝛼)𝑇𝑇�𝑒𝑒
(𝛼𝛼)�𝐹𝐹𝑒𝑒

(𝛼𝛼)�
𝑇𝑇
�𝐹𝐹(𝛼𝛼)�

−𝑇𝑇
�

𝑑𝑑𝜕𝜕
𝑀𝑀
𝛼𝛼=1 + 𝜌𝜌0𝑏𝑏0.  (45) 

After simplifications, we obtain for the plastic term that 

𝑇𝑇𝑝𝑝
(𝛼𝛼)𝐹𝐹𝑒𝑒

(𝛼𝛼)𝐿𝐿𝑝𝑝
(𝛼𝛼) �𝐹𝐹𝑒𝑒

(𝛼𝛼)�
−1

= 𝑇𝑇𝑝𝑝
(𝛼𝛼)𝐿𝐿𝑝𝑝

(𝛼𝛼).  (46) 

Given that the skew-symmetric part of the gradient of velocity 𝑊𝑊𝑝𝑝 is zero because there are no rotations, we have that 

𝑇𝑇𝑝𝑝
(𝛼𝛼)𝐷𝐷𝑝𝑝

(𝛼𝛼) = 𝑇𝑇𝑝𝑝
(𝛼𝛼) ��𝐹𝐹𝑝𝑝

(𝛼𝛼)�
−𝑇𝑇
�̇�𝐸𝑝𝑝

(𝛼𝛼) �𝐹𝐹𝑝𝑝
(𝛼𝛼)�

−1
� = 𝑇𝑇�𝑝𝑝

(𝛼𝛼)�̇�𝐸𝑝𝑝
(𝛼𝛼),  (47) 

with 

𝑇𝑇�𝑝𝑝
(𝛼𝛼) = �𝐹𝐹𝑝𝑝

(𝛼𝛼)�
−1
𝑇𝑇𝑝𝑝

(𝛼𝛼) �𝐹𝐹𝑝𝑝
(𝛼𝛼)�

−𝑇𝑇
.  (48) 

It is possible, then, to rewrite the dissipation inequality as 

−𝜌𝜌0�̇�𝜓0 − 𝜌𝜌0𝜂𝜂0�̇�𝜃 + ∑ (𝑀𝑀
𝛼𝛼=1 𝐽𝐽𝑇𝑇�𝑝𝑝

(𝛼𝛼)�̇�𝐸𝑝𝑝
(𝛼𝛼) + 1

2
𝐽𝐽𝑇𝑇�𝑒𝑒

(𝛼𝛼)�̇�𝐶𝑒𝑒
(𝛼𝛼)) + 𝑏𝑏𝜑𝜑0�̇�𝜑 + ℎ0

𝑑𝑑�̇�𝜑
𝑑𝑑𝜕𝜕
− 𝑑𝑑𝜃𝜃

𝑑𝑑𝜕𝜕
𝑑𝑑0
𝜃𝜃
≥ 0.  (49) 

Finally, from Eqs.(42) and (48), the relation 𝑇𝑇𝑒𝑒
(𝛼𝛼) = 𝑇𝑇𝑝𝑝

(𝛼𝛼) obtained in the deformed configuration is then redefined 
in the Lagrangian frame of reference as follows 

𝐹𝐹𝑝𝑝
(𝛼𝛼)𝑇𝑇�𝑝𝑝

(𝛼𝛼) �𝐹𝐹𝑝𝑝
(𝛼𝛼)�

𝑇𝑇
= 𝐶𝐶𝑒𝑒

(𝛼𝛼)𝑇𝑇�𝑒𝑒
(𝛼𝛼).  (50) 

Collecting the previous results, the basic governing equations in the material reference frame are 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
�̇�𝑢0 = 𝑣𝑣,

𝜌𝜌0�̈�𝑢0 = ∑
𝑑𝑑�𝐽𝐽𝐹𝐹𝑒𝑒

(𝛼𝛼)𝑇𝑇�𝑒𝑒
(𝛼𝛼)�𝐹𝐹𝑒𝑒

(𝛼𝛼)�
𝑇𝑇
�𝐹𝐹(𝛼𝛼)�

−𝑇𝑇
�

𝑑𝑑𝜕𝜕
𝑀𝑀
𝛼𝛼=1 + 𝜌𝜌0𝑏𝑏0,

𝑑𝑑ℎ0
𝑑𝑑𝜕𝜕

− 𝑏𝑏𝜑𝜑0 + 𝜌𝜌0𝑎𝑎0 = 0,

𝜌𝜌0�̇�𝑒0 = −𝑑𝑑𝑑𝑑0
𝑑𝑑𝜕𝜕

+ 𝜌𝜌0𝑔𝑔0 + ∑ (𝑀𝑀
𝛼𝛼=1 𝐽𝐽𝑇𝑇�𝑝𝑝

(𝛼𝛼)�̇�𝐸𝑝𝑝
(𝛼𝛼) + 1

2
𝐽𝐽𝑇𝑇�𝑒𝑒

(𝛼𝛼)�̇�𝐶𝑒𝑒
(𝛼𝛼)) + 𝑏𝑏𝜑𝜑0�̇�𝜑 + ℎ0

𝑑𝑑�̇�𝜑
𝑑𝑑𝜕𝜕

,

−𝜌𝜌0�̇�𝜓0 − 𝜌𝜌0𝜂𝜂0�̇�𝜃 + ∑ (𝑀𝑀
𝛼𝛼=1 𝐽𝐽𝑇𝑇�𝑝𝑝

(𝛼𝛼)�̇�𝐸𝑝𝑝
(𝛼𝛼) + 1

2
𝐽𝐽𝑇𝑇�𝑒𝑒

(𝛼𝛼)�̇�𝐶𝑒𝑒
(𝛼𝛼)) + 𝑏𝑏𝜑𝜑0�̇�𝜑 + ℎ0

𝑑𝑑�̇�𝜑
𝑑𝑑𝜕𝜕
− 𝑑𝑑𝜃𝜃

𝑑𝑑𝜕𝜕
𝑑𝑑0
𝜃𝜃
≥ 0,

𝐹𝐹(𝛼𝛼) = 𝐹𝐹𝑒𝑒
(𝛼𝛼)𝐹𝐹𝑝𝑝

(𝛼𝛼),

𝐹𝐹𝑝𝑝
(𝛼𝛼)𝑇𝑇�𝑝𝑝

(𝛼𝛼) �𝐹𝐹𝑝𝑝
(𝛼𝛼)�

𝑇𝑇
= 𝐶𝐶𝑒𝑒

(𝛼𝛼)𝑇𝑇�𝑒𝑒
(𝛼𝛼).

  (51) 
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4.3 Constitutive model 

The balance laws obtained in the previous sections are not enough to fully characterize the physical response of a 
given body. The material properties must be considered from the constitutive equation. As mentioned earlier, due to 
complex elasto-viscoplastic response of polymers, a set of internal variables are used and different free energies are 
applied to each branch of the rheological model. 

In order to obtain thermodynamically consistent expressions for constitutive relations, we follow in this section 
arguments similar to the ones introduced by Truesdell and Noll (1965). 

From the dissipation inequality and free-energy density, a set of constitutive equation is defined as 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧𝜓𝜓 = ∑ 𝜓𝜓(𝛼𝛼)𝑀𝑀

𝛼𝛼=1 (𝛤𝛤), with 𝛤𝛤 = �𝜃𝜃,𝜑𝜑,𝛻𝛻𝜃𝜃,𝛻𝛻𝜑𝜑,𝐶𝐶𝑒𝑒
(𝛼𝛼),𝐴𝐴(𝛼𝛼)� ,

𝑇𝑇�𝑒𝑒
(𝛼𝛼) = 𝑇𝑇�𝑒𝑒

(𝛼𝛼) �𝐶𝐶𝑒𝑒
(𝛼𝛼),𝜃𝜃,𝜑𝜑� ,

𝑇𝑇𝑝𝑝
(𝛼𝛼) = 𝑇𝑇𝑝𝑝

(𝛼𝛼) �𝐷𝐷𝑝𝑝
(𝛼𝛼),𝛬𝛬(𝛼𝛼)� , with 𝛬𝛬(𝛼𝛼) = 𝛬𝛬(𝛼𝛼) �𝐶𝐶𝑒𝑒

(𝛼𝛼),𝐵𝐵𝑝𝑝
(𝛼𝛼),𝐴𝐴(𝛼𝛼), 𝛏𝛏(𝛼𝛼),𝜃𝜃� ,

𝜉𝜉�̇�𝑖
(𝛼𝛼) = ℎ𝑖𝑖

(𝛼𝛼) �𝐷𝐷𝑝𝑝
(𝛼𝛼),𝛬𝛬(𝛼𝛼)� − 𝑅𝑅𝑖𝑖

(𝛼𝛼)�𝛬𝛬(𝛼𝛼)�,

𝐴𝐴(𝛼𝛼)̇ = 𝐷𝐷𝑝𝑝
(𝛼𝛼)𝐴𝐴(𝛼𝛼) + 𝐴𝐴(𝛼𝛼)𝐷𝐷𝑝𝑝

(𝛼𝛼) − 𝐺𝐺(𝛼𝛼)�𝛬𝛬(𝛼𝛼)�𝑑𝑑𝑝𝑝
(𝛼𝛼) − 𝐺𝐺𝑠𝑠𝑑𝑑𝑎𝑎𝑑𝑑𝑖𝑖𝑐𝑐

(𝛼𝛼) �𝛬𝛬(𝛼𝛼)�, with 𝑑𝑑𝑝𝑝
(𝛼𝛼) : = �𝐷𝐷𝑝𝑝

(𝛼𝛼)� ,

  (52) 

where 𝐴𝐴(𝛼𝛼) is an internal variable and 𝜉𝜉 = (𝜉𝜉1, 𝜉𝜉2, … , 𝜉𝜉𝑚𝑚) represents the internal and hidden state variables, whose 
evolution depends on the dynamic term ℎ𝑖𝑖

(𝛼𝛼) and the static recovery 𝑅𝑅𝑖𝑖. These variables are related to the microstructural 
resistance to plastic flow. 

For metals, the Bauschinger-effect is related to decrease in the yield strength when a body is submitted to a certain 
amount of axial extension into the plastic range and, subsequently, compressed. Due to different microstructural 
mechanisms in polymers, the same effect can be noticed (even before chain locking in large strains, as described by 
Hasan and Boyce (1995)). 

For taking into account energy storage mechanisms due to plastic deformation, an internal back-stress describes 
Bauschinger-like phenomena on unloading and reverse loading. For this reason, Anand et al. (2009) introduced variable 
𝐴𝐴(𝛼𝛼) and its evolution equation, which is the same as Eq.(52.v). This variable represents a dimensionless squared stretch-
like quantity, whose evolution considers static (𝐺𝐺𝑠𝑠𝑑𝑑𝑎𝑎𝑑𝑑𝑖𝑖𝑐𝑐

(𝛼𝛼) ) and dynamic (𝐺𝐺(𝛼𝛼)) recovery terms. 

Similarly to Frémond and Shitikova (2002), 𝑇𝑇�𝑒𝑒, 𝑇𝑇𝑝𝑝, 𝑏𝑏𝜑𝜑0, ℎ0 and 𝑞𝑞0 are split in their reversible (non-dissipative) and 
irreversible (dissipative) parts, which are indicated, respectively, by the superscripts (. )(𝑟𝑟) and (. )(𝑖𝑖𝑟𝑟) as below 

𝑇𝑇�𝑒𝑒 = 𝑇𝑇�𝑒𝑒
(𝑟𝑟) + 𝑇𝑇�𝑒𝑒

(𝑖𝑖𝑟𝑟),
𝑇𝑇𝑝𝑝 = 𝑇𝑇𝑝𝑝

(𝑟𝑟) + 𝑇𝑇𝑝𝑝
(𝑖𝑖𝑟𝑟),

𝑏𝑏𝜑𝜑0 = 𝑏𝑏𝜑𝜑0
(𝑟𝑟) + 𝑏𝑏𝜑𝜑0

(𝑖𝑖𝑟𝑟),

ℎ0 = ℎ0
(𝑟𝑟) + ℎ0

(𝑖𝑖𝑟𝑟),
𝑞𝑞0 = 𝑞𝑞0

(𝑟𝑟) + 𝑞𝑞0
(𝑖𝑖𝑟𝑟).

  (53) 

Non-dissipative (reversible) parts may, in general, depend on 𝛤𝛤, while the dissipative (irreversible) parts may depend 
both on 𝛤𝛤 and some of their derivatives in time or space. The non-dissipative terms are expected to give no contribution 
to entropy increasing, while dissipative terms necessarily contribute to it. 

For simplicity, as Frémond and Shitikova (2002), we assume that dissipation (irreversibility) appears only due to �̇�𝜑 
and 𝛻𝛻𝜃𝜃 in Eq.(49), and that the heat flux is purely dissipative (irreversible). Thus, we consider 

ℎ0
(𝑖𝑖𝑟𝑟) ≡ 0,  (54) 

𝑞𝑞0
(𝑟𝑟) ≡ 0.  (55) 

The expressions for terms in Eqs.(53) must be found such that the entropy condition is satisfied for any admissible process. 

Considering the chain rule for 𝜓𝜓(𝛼𝛼) and using the evolution law of 𝐴𝐴(𝛼𝛼) given in Eq.(52.v), we obtain 
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�̇�𝜓(𝛼𝛼)(𝛤𝛤) = 𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝐶𝐶𝑒𝑒
(𝛼𝛼) �̇�𝐶𝑒𝑒

(𝛼𝛼) + 𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝐴𝐴(𝛼𝛼) �̇�𝐴(𝛼𝛼) + 𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝜃𝜃(𝛼𝛼) �̇�𝜃(𝛼𝛼)

+ 𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝜕𝜕𝜃𝜃(𝛼𝛼) 𝛻𝛻�̇�𝜃(𝛼𝛼) + 𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝜑𝜑(𝛼𝛼) �̇�𝜑(𝛼𝛼) + 𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝜕𝜕𝜑𝜑(𝛼𝛼) 𝛻𝛻�̇�𝜑(𝛼𝛼),
  (56) 

with 

∂ψ(α)

∂𝐴𝐴(𝛼𝛼) �̇�𝐴(𝛼𝛼) =  2 ∂ψ(α)

𝐴𝐴(𝛼𝛼) 𝐴𝐴(𝛼𝛼)𝐷𝐷p
(𝛼𝛼) −  ∂ψ

(𝛼𝛼)

∂𝐴𝐴(𝛼𝛼)  𝐺𝐺(𝛼𝛼)dp
(𝛼𝛼) − ∂ψ(𝛼𝛼)

∂𝐴𝐴(𝛼𝛼) 𝐺𝐺{static}
(𝛼𝛼)   (57) 

The entropy inequality (written in terms of the free-energy), after some manipulation and collecting similar terms 
is rewritten as 

−𝜌𝜌0 �𝜂𝜂0 + 𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝜃𝜃(𝛼𝛼)� �̇�𝜃 + �−𝜌𝜌0
𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝜑𝜑(𝛼𝛼) + 𝑏𝑏𝜑𝜑0
(𝑟𝑟) + 𝑏𝑏𝜑𝜑0

(𝑖𝑖𝑟𝑟)� �̇�𝜑 − �𝜌𝜌0
𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝜕𝜕𝜑𝜑(𝛼𝛼) − ℎ0
(𝑟𝑟)�𝛻𝛻�̇�𝜑

+ �1
2
𝐽𝐽𝑇𝑇�𝑒𝑒

(𝑟𝑟) + 1
2
𝐽𝐽𝑇𝑇�𝑒𝑒

(𝑖𝑖𝑟𝑟) − 𝜌𝜌0  
𝜕𝜕𝜓𝜓(𝛼𝛼)

𝐶𝐶𝑒𝑒
(𝛼𝛼) � �̇�𝐶𝑒𝑒

(𝛼𝛼) + �𝐽𝐽𝑇𝑇𝑝𝑝
(𝑟𝑟) − 2𝜌𝜌0

𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝐴𝐴(𝛼𝛼) 𝐴𝐴(𝛼𝛼) �𝐷𝐷𝑝𝑝
(𝛼𝛼)

−𝜌𝜌0
𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝜕𝜕𝜃𝜃(𝛼𝛼) 𝛻𝛻�̇�𝜃 − 𝜌𝜌0 �
𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝐴𝐴(𝛼𝛼) 𝐺𝐺�𝑑𝑑𝑝𝑝
(𝛼𝛼) + 𝐽𝐽𝑇𝑇𝑝𝑝

(𝑖𝑖𝑟𝑟)𝐷𝐷𝑝𝑝
(𝛼𝛼) − 1

𝜃𝜃
𝑞𝑞(𝑖𝑖𝑟𝑟) 𝑑𝑑𝜃𝜃

𝑑𝑑𝜕𝜕
≥ 0.

  (58) 

Next, we choose the reversible terms of the last inequality such that they do not contribute to the increase of 
entropy for any admissible process, that is, 

−𝜌𝜌0 �𝜂𝜂0 + 𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝜃𝜃(𝛼𝛼)� �̇�𝜃 + �−𝜌𝜌0
𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝜑𝜑(𝛼𝛼) + 𝑏𝑏𝜑𝜑0
(𝑟𝑟)� �̇�𝜑 − �𝜌𝜌0

𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝜕𝜕𝜑𝜑(𝛼𝛼) − ℎ0
(𝑟𝑟)� 𝛻𝛻�̇�𝜑

+ �1
2
𝐽𝐽𝑇𝑇�𝑒𝑒

(𝑟𝑟) − 𝜌𝜌0  
𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝐶𝐶𝑒𝑒
(𝛼𝛼)� �̇�𝐶𝑒𝑒

(𝛼𝛼) + �𝐽𝐽𝑇𝑇𝑝𝑝
(𝑟𝑟) − 2𝜌𝜌0

𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝐴𝐴(𝛼𝛼) 𝐴𝐴(𝛼𝛼) �𝐷𝐷𝑝𝑝
(𝛼𝛼) − 𝜌𝜌0

𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝜕𝜕𝜃𝜃(𝛼𝛼) 𝛻𝛻�̇�𝜃 = 0.
  (59) 

Since in Eq.(59) we can give any values to �̇�𝜃, 𝛻𝛻�̇�𝜃, �̇�𝜑, 𝛻𝛻�̇�𝜑, �̇�𝐶𝑒𝑒 and �̇�𝐷𝑝𝑝 their coefficients can be set to zero. Thus, 

𝜂𝜂0 = −𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝜃𝜃(𝛼𝛼) ,  (60) 

𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝜕𝜕𝜃𝜃(𝛼𝛼) = 0,  (61) 

𝑏𝑏𝜑𝜑0
(𝑟𝑟) = 𝜌𝜌0

𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝜑𝜑(𝛼𝛼),  (62) 

𝑇𝑇�𝑒𝑒
(𝑟𝑟) = 2𝐽𝐽−1𝜌𝜌0  

𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝐶𝐶𝑒𝑒
(𝛼𝛼) ,  (63) 

𝑇𝑇𝑝𝑝
(𝑟𝑟) = 2𝐽𝐽−1𝜌𝜌0  

𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝐴𝐴(𝛼𝛼) 𝐴𝐴(𝛼𝛼),  (64) 

ℎ0 = ℎ0
(𝑟𝑟) = 𝜌𝜌0

𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝜕𝜕𝜑𝜑(𝛼𝛼).  (65) 

By using the previous results, Eq.(58) is reduced to 

𝑏𝑏𝜑𝜑0
(𝑖𝑖𝑟𝑟)�̇�𝜑 + 1

2
𝐽𝐽𝑇𝑇�𝑒𝑒

(𝑖𝑖𝑟𝑟)�̇�𝐶𝑒𝑒
(𝛼𝛼) + 𝜌𝜌0 �

𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝐴𝐴(𝛼𝛼) 𝐺𝐺�𝑑𝑑𝑝𝑝 + 𝐽𝐽𝑇𝑇𝑝𝑝
(𝑖𝑖𝑟𝑟)𝐷𝐷𝑝𝑝

(𝛼𝛼) − 1
𝜃𝜃
𝑞𝑞(𝑖𝑖𝑟𝑟) 1

𝜃𝜃
𝑑𝑑𝜃𝜃
𝑑𝑑𝜕𝜕
≥ 0.  (66) 

The dissipation inequality above is, then, split into four inequalities, being the first related to the mechanical 
dissipation 

𝑌𝑌𝑝𝑝
(𝛼𝛼)𝐷𝐷𝑝𝑝

(𝛼𝛼) + 𝜌𝜌0 �
𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝐴𝐴(𝛼𝛼) 𝐺𝐺�𝑑𝑑𝑝𝑝
(𝛼𝛼) ≥ 0,  (67) 

with 

𝑌𝑌𝑝𝑝
(𝛼𝛼) = 𝑇𝑇𝑝𝑝

(𝛼𝛼) − 2𝐽𝐽−1𝜌𝜌0
𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝐴𝐴(𝛼𝛼) 𝐴𝐴(𝛼𝛼),  (68) 

representing the dissipative part of 𝑇𝑇𝑝𝑝
(𝛼𝛼). Thus, it can be noticed that the plastic stress 𝑇𝑇𝑝𝑝

(𝛼𝛼), conjugated to 𝐷𝐷𝑝𝑝
(𝛼𝛼), is 

composed by a dissipative and a reversible (energetic) terms as 
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𝑇𝑇𝑝𝑝
(𝛼𝛼) �𝐷𝐷𝑝𝑝

(𝛼𝛼),𝛬𝛬(𝛼𝛼)� = 𝑌𝑌𝑝𝑝
(𝛼𝛼) �𝐷𝐷𝑝𝑝

(𝛼𝛼),𝛬𝛬(𝛼𝛼)� + �2𝐽𝐽−1𝜌𝜌0
𝜕𝜕𝜓𝜓(𝛼𝛼)

𝜕𝜕𝐴𝐴(𝛼𝛼) 𝐴𝐴(𝛼𝛼)�.  (69) 

The energetic part is also called back-stress, and given by 

𝑀𝑀𝑏𝑏𝑎𝑎𝑐𝑐𝑏𝑏
(𝛼𝛼) = 2𝐽𝐽−1𝜌𝜌0 �

𝜕𝜕𝜓𝜓(𝛼𝛼)�𝐶𝐶𝑒𝑒
(𝛼𝛼),𝐴𝐴(𝛼𝛼),𝜃𝜃�

𝜕𝜕𝐴𝐴(𝛼𝛼) 𝐴𝐴(𝛼𝛼)�.  (70) 

Proceeding with the analysis of the dissipation inequality, the last term in Eq.(66) is the heat conduction inequality, 
whose positiveness is imposed by 

𝑞𝑞(𝑖𝑖𝑟𝑟) = −�̃�𝑐 1
𝜃𝜃
𝑑𝑑𝜃𝜃
𝑑𝑑𝜕𝜕

,  (71) 

with �̃�𝑐 a non-negative coefficient. 
Analogously, the first term in Eq.(66) corresponds to the microscopic energy inequality, whose positiveness is 

imposed by 

𝑏𝑏𝜑𝜑0
(𝑖𝑖𝑟𝑟) = 𝛾𝛾��̇�𝜑,  (72) 

with 𝛾𝛾� a non-negative coefficient. 
For this work, the irreversible part of 𝑇𝑇�𝑒𝑒 to ensure positiveness is 

𝑇𝑇�𝑒𝑒
(𝑖𝑖𝑟𝑟) = 2𝑏𝑏�𝑑𝑑�̇�𝐶𝑒𝑒

(𝛼𝛼).  (73) 

An important hypothesis, to be used for the specific constitutive models in next sections, is that the free energy can 
be separated in three independent terms for each branch 𝛼𝛼, being the first one an elastic energy (isotropic with relation 
to 𝐶𝐶𝑒𝑒

(𝛼𝛼)), the second a defect energy (isotropic with relation to 𝐴𝐴(𝛼𝛼)), associated to plastic flow, and the third related to 
damage. Therefore, 

𝜓𝜓 = 𝜓𝜓𝑒𝑒
(𝛼𝛼) �𝐶𝐶𝑒𝑒

(𝛼𝛼),𝜃𝜃,𝜑𝜑� + 𝜓𝜓𝑝𝑝
(𝛼𝛼)�𝐴𝐴(𝛼𝛼),𝜃𝜃� + 𝜓𝜓𝑑𝑑

(𝛼𝛼)(𝜑𝜑,𝛻𝛻𝜑𝜑).  (74) 

For evaluation of stresses in plastic flow, considering that 𝑀𝑀𝑒𝑒
(𝛼𝛼) is the Mandel stress and defined as 𝑀𝑀𝑒𝑒

(𝛼𝛼) =
𝐽𝐽𝐶𝐶𝑒𝑒

(𝛼𝛼)𝑇𝑇�𝑒𝑒
(𝑟𝑟)(𝛼𝛼), the effective Mandel stress 𝑀𝑀(𝑒𝑒𝑒𝑒𝑒𝑒)

(𝛼𝛼)  is given by 

𝑀𝑀(𝑒𝑒𝑒𝑒𝑒𝑒)
(𝛼𝛼) = 𝑀𝑀𝑒𝑒

(𝛼𝛼) −𝑀𝑀𝑏𝑏𝑎𝑎𝑐𝑐𝑏𝑏
(𝛼𝛼) .  (75) 

From the constitutive relation given in Eq.(69) follows the definition: 

𝑀𝑀(𝑒𝑒𝑒𝑒𝑒𝑒)
𝑒𝑒(𝛼𝛼) = 𝑌𝑌𝑝𝑝(𝛼𝛼) �𝐷𝐷𝑝𝑝

(𝛼𝛼),𝛬𝛬(𝛼𝛼)�,  (76) 

with 𝑌𝑌 being a scalar flow strength of the material for each 𝛼𝛼. 
Given the relation for 𝐷𝐷𝑝𝑝

(𝛼𝛼), using 𝑁𝑁𝑝𝑝
(𝛼𝛼) as the direction for plastic flow for each 𝛼𝛼 (remembering that in 1D domain 

it is the sign of driving stress), the flow rule is given by 

�̇�𝐹𝑝𝑝
(𝛼𝛼) = 𝐷𝐷𝑝𝑝

(𝛼𝛼)𝐹𝐹𝑝𝑝
(𝛼𝛼),

𝐷𝐷𝑝𝑝
(𝛼𝛼) = 𝑑𝑑𝑝𝑝

(𝛼𝛼)𝑁𝑁𝑝𝑝
(𝛼𝛼),

𝑁𝑁𝑝𝑝
(𝛼𝛼) =

�𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒
(𝛼𝛼) �

��𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒
(𝛼𝛼) ��

= sign �𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒
𝑒𝑒(𝛼𝛼)� .

  (77) 

5 CONSTITUTIVE MODEL FOR POLYMERS 

A large number of constitutive models for polymers, specially for amorphous, can be found in the literature. Most 
of these models, for simplicity reasons, make assumptions in order to reduce material parameters, many of them being 
difficult to be predicted or collected through experimental tests. 
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Considering the PTFE features, with its large dependence on temperature due to internal micromechanisms, it is 
crucial to evaluate constitutive models in order to be able to predict mechanical behaviour under a broader range of 
temperature, despite the elevated number of constants to be found. 

Earlier studies considering polymer hardening in finite deformation were performed by Boyce, Parks and Argon 
(1988) and Boyce, Parks and Argon (1989) , which considered the same behaviour originally modelled for rubbers. These 
models use an analogy of entropic spring as polymer branches. 

Models for amorphous polymers take into consideration important changes in mechanical properties next to 𝑇𝑇𝑔𝑔, 
considering that from this temperature on, constrained polymer chains acquire rotational and translational movement. 
Being PTFE (semi-crystalline material) our focus, however, adapting and understanding the validity of these models turns 
out to be essential. 

This work uses a constitutive model able to reproduce polymer behaviour in a broad range of temperatures, 
proposed by Srivastava et al. (2010). It will be described briefly here in the uniaxial context, trying to expose only 
fundamental topics for their understanding. For a deeper explanation on the derivation of all equations, it is suggested 
to read the original paper. This model uses the multimechanism concept, where each one has a specific deformation 
nature, aiming to represent different sources of resistance in polymers (intramolecular and intermolecular), as suggested 
earlier by Haward and Thackray (1968). The dependence of the free energy on the phase-field used to describe damage 
is not included yet; it will be added to the model in next sections. 

Srivastava et al. (2010) proposed a model composed by three branches, as shown in Fig. 4. In the first, there is a 
non-linear spring representing elastic resistance to intermolecular energetic bond-stretching and a dashpot representing 
thermally-activated plastic flow due to inelastic mechanisms, such as chain-segment rotation and relative slippage of the 
polymer chains between neighboring mechanical cross-linkage points. There is also another non-linear spring in parallel 
with the dashpot, representing energy storage mechanism caused by the viscoplastic flow mechanisms. 

Branches 2 and 3 represent responses under and above 𝑇𝑇𝑔𝑔, respectively, given the abrupt changes in the behaviour 
of the material. Both branches are composed by non-linear springs in series with dashpots. Non-linear springs represent 
resistances due to changes in the free energy upon stretching of the molecular chains between the mechanical cross-
links and dashpots represent thermally-activated plastic flow due to slippage of the mechanical cross-links. 

The free energies of the three branches, and their specificities, for this model are described next. 

 
Figure 4: Esquematic model of the amorphous constitutive model by Srivastava et al. (2010). 

5.1 Free energy and stresses for branch 1 

Consider a bar subjected to an incompressible deformation. The focus of one-dimensional analysis is on effects in 
longitudinal direction of the domain and, thus, only 𝐹𝐹11 = 𝜆𝜆 is considered in the model. Moreover, given the Kroner-Lee 
decomposition (Eq.(3)) with simplification given in Eq.(7), we have 

𝐹𝐹(𝛼𝛼) = 𝜆𝜆𝑒𝑒
(𝛼𝛼)𝜆𝜆𝑝𝑝

(𝛼𝛼).  (78) 

In the first branch, the elastic free energy is given by 

𝜓𝜓
𝑒𝑒(1)

= 1
2
𝐸𝐸(𝐸𝐸𝑒𝑒

(1))2 − 𝐸𝐸𝛼𝛼𝑑𝑑ℎ(𝜃𝜃 − 𝜃𝜃0)(𝐸𝐸𝑒𝑒
(1)),  (79) 
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with 𝐸𝐸𝑒𝑒
(1) being the elastic logarithmic strain measure, 𝐸𝐸 is the Young modulus, 𝛼𝛼𝑑𝑑ℎ is the coefficient of thermal expansion 

and 𝜃𝜃0 is the reference temperature. 
The dependence on temperature of 𝐸𝐸 (following Dupaix and Boyce (2007)) is given by 𝐸𝐸(𝜃𝜃) = 1

2
�𝐸𝐸𝑔𝑔𝑔𝑔 + 𝐸𝐸𝑟𝑟� −

1
2
�𝐸𝐸𝑔𝑔𝑔𝑔 − 𝐸𝐸𝑟𝑟�tanh �1

𝛥𝛥
�𝜃𝜃 − 𝜃𝜃𝑔𝑔�� − 𝑀𝑀�𝜃𝜃 − 𝜃𝜃𝑔𝑔�, with 𝐸𝐸𝑔𝑔𝑔𝑔 and 𝐸𝐸𝑟𝑟 being the Young modulus in glassy and rubbery regions, 

respectively. Parameter 𝛥𝛥 is related to size of transition close to 𝜃𝜃𝑔𝑔, and 𝑀𝑀 represents slope of the shear modulus in 
terms of temperature, being divided in two regions (pre and post 𝜃𝜃𝑔𝑔). 

The defect free energy in the first branch is 

𝜓𝜓
𝑝𝑝(1)

= 1
4
𝐵𝐵(𝜃𝜃)[(ln 𝑎𝑎1)2 + (ln 𝑎𝑎2)2 + (ln 𝑎𝑎3)2],

𝐵𝐵(𝜃𝜃) = 𝑋𝑋(𝜃𝜃 − 𝜃𝜃0) for 𝜃𝜃 < 𝜃𝜃0

  (80) 

with 𝑎𝑎𝑖𝑖  (𝑖𝑖 = 1,2,3) given under uniaxial conditions by 𝑎𝑎1 = 𝐴𝐴(1), and 𝑎𝑎2 = 𝑎𝑎3 = �𝐴𝐴(1)�
−1/2

, in accordance with 
Anand et al. (2009). Parameter 𝐵𝐵(𝜃𝜃) is the backstress modulus, assumed to be a linearly decreasing function of 
temperature with slope 𝑋𝑋 (to be defined as material coefficient), when 𝜃𝜃 < 𝜃𝜃𝑔𝑔. This backstress modulus is assumed zero 
when 𝜃𝜃 ≥ 𝜃𝜃𝑔𝑔. 

The Mandel stress is defined as 

𝑀𝑀𝑒𝑒
(1) = 𝐸𝐸 �𝐸𝐸0

(1)� − 𝐸𝐸𝛼𝛼𝑑𝑑ℎ(𝜃𝜃 − 𝜃𝜃0).  (81) 

The constitutive relation of Eq.(70) is used to define the backstress and the defect free-energy expression of 
Eq.(80.(i)). After some simplification and rearranging terms, we obtain 

𝑀𝑀𝑏𝑏𝑎𝑎𝑐𝑐𝑏𝑏 = 3
2
𝐵𝐵 ln�𝐴𝐴(1)�. (82) 

Finally, the driving stress for plastic flow is given by the difference between Mandel stress and backstress as 𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑀𝑀𝑒𝑒

(1) −𝑀𝑀𝑏𝑏𝑎𝑎𝑐𝑐𝑏𝑏 . 

5.2 Free energies and stresses for branches 2 and 3 

The free energies for branches 2 and 3 are similar and based on the free energy. Therefore, 

𝜓𝜓
𝑒𝑒(2)

= −1
2
𝜇𝜇(2)𝐼𝐼𝑚𝑚

(2)ln �1 − 𝐼𝐼1
(2)−3

𝐼𝐼𝑚𝑚
(2) � ,  (83) 

𝜓𝜓
𝑒𝑒(3)

= −1
2
𝜇𝜇(3)𝐼𝐼𝑚𝑚

(3)ln �1 − 𝐼𝐼1
(3)−3

𝐼𝐼𝑚𝑚
(3) � ,  (84) 

with 𝜇𝜇(𝛼𝛼) representing the ground state rubbery shear modulus of the material and 𝐼𝐼𝑚𝑚
(𝛼𝛼) is the maximum value of 

�𝐼𝐼1
(𝛼𝛼) − 3�, associated with the limited extensibility of the polymer chains. The term 𝐼𝐼1

(𝛼𝛼) is given by 

𝐼𝐼1
(𝛼𝛼) = (𝜆𝜆𝑒𝑒

(𝛼𝛼))2 + 2

𝜆𝜆𝑒𝑒
(𝛼𝛼),  (85) 

where 𝜆𝜆𝑒𝑒
(𝛼𝛼) is given by Eq.(78). 

The stresses for branches 2 and 3 can be simplified to 

𝑇𝑇(𝛼𝛼) = 𝜇𝜇(𝛼𝛼) �1 − 𝐼𝐼1
(𝛼𝛼)−3

𝐼𝐼𝑚𝑚
(𝛼𝛼) �

−1
�(𝜆𝜆𝑒𝑒

(𝛼𝛼))2 − (𝜆𝜆𝑒𝑒
(𝛼𝛼))−1�,  (86) 

with 𝛼𝛼=2 or 3. 

5.3 Flow rules 

The evolution equation in the first branch is given by 

�̇�𝐹𝑝𝑝
(1) = 𝐷𝐷𝑝𝑝

(1)𝐹𝐹𝑝𝑝
(1),  (87) 
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with 𝐷𝐷𝑝𝑝
(1) given by 

𝐷𝐷𝑝𝑝
(1) = 𝜈𝜈𝑝𝑝(1) = �

0 if 𝜏𝜏𝑒𝑒(1) ≤ 0,

𝜈𝜈0
(1)exp �− 𝑄𝑄

𝑏𝑏𝑏𝑏𝜃𝜃
� �sinh �𝜏𝜏𝑒𝑒

(1)𝑉𝑉
2𝑏𝑏𝑏𝑏𝜃𝜃

��
1/𝑚𝑚1

if 𝜏𝜏𝑒𝑒(1) > 0,
   (88) 

with 𝜈𝜈𝑝𝑝(1) the equivalent plastic shear strain rate; 𝜏𝜏𝑒𝑒(1) is the equivalent shear stress, given by 

𝜏𝜏𝑒𝑒(1) = 𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒 − �𝑆𝑆𝑏𝑏 + 𝛼𝛼𝑝𝑝𝑝𝑝�,

𝑝𝑝 = −1
3

tr𝑀𝑀𝑒𝑒
(1).

  (89) 

In Eq.(88), several material parameters must be calibrated, since their physical meaning are not easily extracted 
from experiments. 𝜈𝜈0

(1) is a pre-exponential factor, 𝑄𝑄 is an activation energy, 𝑘𝑘𝑏𝑏 is the Boltzmann constant, 𝑉𝑉 is activation 
volume, 𝑚𝑚1 is a strain-rate sensivity parameter and 𝛼𝛼𝑝𝑝 is the pressure sensivity of plastic flow. 

The term 𝑆𝑆𝑏𝑏 in Eq.(89) is the dissipative resistance to plastic flow, used to model hardening at large strains, 
considering the friction among polymeric chains. This term avoids an excessive elastic recovery, after the unloading in 
large strains. Its evolution is given by the differential equation 

�̇�𝑆𝑏𝑏 = ℎ𝑏𝑏�𝜆𝜆 − 1�(𝑆𝑆𝑏𝑏∗ − 𝑆𝑆𝑏𝑏)𝜈𝜈𝑝𝑝(1),

𝑆𝑆𝑏𝑏∗ = 1
2
�𝑆𝑆𝑔𝑔𝑔𝑔 + 𝑆𝑆𝑟𝑟� −

1
2
�𝑆𝑆𝑔𝑔𝑔𝑔 − 𝑆𝑆𝑟𝑟�tanh �1

𝛥𝛥
�𝜃𝜃 − 𝜃𝜃𝑔𝑔�� ,

  (90) 

which has others material parameters (ℎ𝑏𝑏, 𝑆𝑆𝑔𝑔𝑔𝑔, 𝑆𝑆𝑟𝑟) to be defined and 𝜆𝜆 given by 

𝜆𝜆 = �1
3
�𝜆𝜆𝑒𝑒2 + 2

𝜆𝜆𝑒𝑒
�.  (91) 

Still in branch 1, the evolution of 𝐴𝐴 is given by 

�̇�𝐴(1) = 𝐷𝐷𝑝𝑝
(1)𝐴𝐴(1) + 𝐴𝐴(1)𝐷𝐷𝑝𝑝

(1) − 𝛾𝛾𝐴𝐴(1)�ln𝐴𝐴(1)�𝜈𝜈𝑝𝑝
(1),  (92) 

with 𝛾𝛾 being a parameter driving the dynamic recovery of 𝐴𝐴. 
The flow rules for branches 2 and 3 are given by the followin simple power laws, respectively: 

𝜈𝜈𝑝𝑝(2) = 1
2
𝜈𝜈0

(2) �𝜏𝜏
(2)

𝑆𝑆(2)�
1/𝑚𝑚2

�1 + tanh� 1
𝛥𝛥𝑥𝑥
�𝜃𝜃 − 𝜃𝜃𝑔𝑔���,  (93) 

𝜈𝜈𝑝𝑝(3) = 1
2
𝜈𝜈0

(3) �𝜏𝜏
(3)

𝑆𝑆(3)�
1/𝑚𝑚3

�1 + tanh� 1
𝛥𝛥𝑥𝑥
�𝜃𝜃 − 𝜃𝜃𝑔𝑔���,  (94) 

with 𝜈𝜈0
(𝛼𝛼) being the reference plastic shear strain rate and 𝑚𝑚(𝛼𝛼) the positive-valued strain-rate sensitivity parameter. 

𝑆𝑆(2) is a positive-valued shear resistance. In branch 3, which is linked to behavior in temperatures above 𝑇𝑇𝑔𝑔, the internal 
variable 𝑆𝑆(3) is related to a dissipative resistance during molecules movement, known as reptation movement. Its 
evolution is given by the following rule: 

�̇�𝑆(3) = ℎ3�𝜆𝜆 − 1�𝜈𝜈𝑝𝑝(3),  (95) 

with 𝜆𝜆 given in Eq.(91) and the initial conditions for 𝑆𝑆(3) and parameter ℎ3 given by 

𝑆𝑆(3) = 𝑆𝑆𝑔𝑔
(3)exp �−𝑌𝑌�𝜃𝜃 − 𝜃𝜃𝑔𝑔�� ,

ℎ3 = ℎ3𝑔𝑔exp �−𝑍𝑍�𝜃𝜃 − 𝜃𝜃𝑔𝑔�� ,
  (96) 

where 𝑌𝑌 and 𝑍𝑍 are parameters to be found in the calibration process. 
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6 FREE ENERGY DENSITIES INCLUDING DAMAGE 

The free energy of the material including the phase-field damage variable is 

𝜓𝜓(𝜑𝜑,𝛻𝛻𝜑𝜑,𝐶𝐶𝑒𝑒 ,𝐴𝐴,𝐶𝐶) = 𝜓𝜓𝑒𝑒(1) �𝜑𝜑,𝐶𝐶𝑒𝑒
(1)� + 𝜓𝜓𝑝𝑝

(1)(𝐴𝐴) + 𝜓𝜓𝑒𝑒
(𝛼𝛼)(𝐶𝐶) + 𝒥𝒥�𝜑𝜑,𝛻𝛻𝑝𝑝𝜑𝜑�,  (97) 

with 𝛼𝛼 being 2 or 3, depending on the constitutive model considered. 
The free energy related to elasticity corresponds to the first term on the right hand side of Eq. (97), expressed by a 

degradation term (𝐷𝐷(𝜙𝜙)) and an energetic term (𝜓𝜓0
𝑒𝑒(1)) as 

𝜓𝜓𝑒𝑒
(1)(𝜑𝜑,𝐶𝐶𝑒𝑒) = 𝐷𝐷(𝜑𝜑)𝜓𝜓0

𝑒𝑒(1) �𝜃𝜃,𝐶𝐶𝑒𝑒
(1)�.  (98) 

The energetic terms were already defined for the two constitutive models described in previous sections. The 
degradation function, for reproducing the experimental behaviour, must induce the failure in an abrupt manner. Its graph 
is shown in Fig. 5, and it is defined as 

𝐷𝐷(𝜑𝜑) = (𝜑𝜑2 − 1)2 − 𝑎𝑎𝜑𝜑(𝜑𝜑 − 1)2,  (99) 

where 𝑎𝑎 > 0 is related to the damage rate for the virgin material that is, when 𝜑𝜑 = 0. In Fig. 5, we show the graph of 
this function for several values of 𝑎𝑎; in this work, we take 𝑎𝑎 = 0.001. 

Further explanation about why we choose (99) as the degradation function can be found in Section 9. 

 
Figure 5: Degradation function for different values of parameter a. 

The free energy related to damage is 

𝒥𝒥(𝜑𝜑,𝛻𝛻𝜑𝜑) = 𝑔𝑔𝑐𝑐 �
𝛾𝛾
2
�𝑑𝑑𝜑𝜑
𝑑𝑑𝜕𝜕
�
2

+ 𝑐𝑐
𝛾𝛾
ℋ(𝜑𝜑)�,  (100) 

where 𝑔𝑔𝑐𝑐 is the Griffith’s critical energy release rate, 𝛾𝛾 a positive constant related to fracture layer width and 𝑐𝑐 a (small) 
positive constant equal to 0.001 in this work. The expression for the potential ℋ is given by 

ℋ(𝜑𝜑) = �

1
2
𝜑𝜑2 for 0 ≤ 𝜑𝜑 ≤ 1,

1 for 𝜑𝜑 > 1,
0 for 𝜑𝜑 < 0.

   (101) 

Further explanation about the choice of expression (101) for the damage energy can be found in Section 10. 
The considered degradation function and the damage free energy are able to correctly describe an abrupt rupture 

of the material under tension, as noticed, for instance, in experimental results at -10°C by Gamboni et al. (2016). 

7 FINITE ELEMENT APPROXIMATION 

7.1 Approximation of damage equation 

Using the constitutive relations for variables ℎ0, 𝑏𝑏𝜑𝜑0 and 𝑎𝑎0 = 0 from Eq.(51.(iii)) and applying the free energy 
defined in Eq. (97), the damage equation is rewritten as 
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�̇�𝜑 = 𝛾𝛾𝑔𝑔𝑐𝑐
𝜆𝜆�
𝛥𝛥𝜑𝜑 − 1

𝜆𝜆�
(𝜑𝜑 − 1)(𝑎𝑎 + 4𝜑𝜑 − 3𝑎𝑎𝜑𝜑 + 4𝜑𝜑2)𝜓𝜓0

𝑒𝑒(1) − 𝑔𝑔𝑐𝑐𝑐𝑐
𝜆𝜆�𝛾𝛾
ℋ′(𝜑𝜑).  (102) 

The previous expression is multiplied by a test function 𝑤𝑤 at both sides and integrated in the bar length 𝐿𝐿0. After 
integrating by parts, the first term on the right-hand side, we have 

∫ �̇�𝜑𝐿𝐿0
𝑤𝑤 𝑑𝑑𝐿𝐿0 = −∫ 𝛾𝛾𝑔𝑔𝑐𝑐

𝜆𝜆�𝐿𝐿0
𝑑𝑑𝜑𝜑
𝑑𝑑𝜕𝜕

𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕

 𝑑𝑑𝐿𝐿0 − ∫ 1
𝜆𝜆�𝐿𝐿0

(𝜑𝜑 − 1)(𝑎𝑎 + 4𝜑𝜑 − 3𝑎𝑎𝜑𝜑 + 4𝜑𝜑2)𝜓𝜓0
𝑒𝑒(1)𝑤𝑤 𝑑𝑑𝐿𝐿𝑜𝑜

−∫ 𝑔𝑔𝑐𝑐𝑐𝑐
𝜆𝜆�𝛾𝛾𝐿𝐿0
ℋ′(𝜑𝜑)𝑤𝑤 𝑑𝑑𝐿𝐿0 + 𝛾𝛾𝑔𝑔𝑐𝑐

𝜆𝜆�
�𝑑𝑑𝜑𝜑
𝑑𝑑𝜕𝜕

(𝐿𝐿0)𝑤𝑤(𝐿𝐿0) − 𝑑𝑑𝜑𝜑
𝑑𝑑𝜕𝜕

(0)𝑤𝑤(0)� .
  (103) 

The functions with non-linear terms in 𝜑𝜑, indicated generically as 𝑓𝑓(𝜑𝜑), and the test functions 𝑤𝑤 are approximated 
in a generic element 𝑒𝑒 of the mesh, respectively, by 

𝑓𝑓(𝑒𝑒)(𝜑𝜑) = ∑ 𝑁𝑁𝑖𝑖
(𝑒𝑒)𝑃𝑃+1

𝑖𝑖=1 (𝜉𝜉)𝑓𝑓𝑖𝑖
(𝑒𝑒)(𝜑𝜑) = �𝐍𝐍(𝑒𝑒)�{𝛗𝛗(𝑒𝑒)},

𝑤𝑤(𝑒𝑒) = ∑ 𝑁𝑁𝑖𝑖
(𝑒𝑒)𝑃𝑃+1

𝑖𝑖=1 (𝜉𝜉)𝑤𝑤𝑖𝑖
(𝑒𝑒) = �𝐍𝐍(𝑒𝑒)�{𝐰𝐰(𝑒𝑒)},

  (104) 

where 𝑁𝑁𝑖𝑖
(𝑒𝑒) are the element shape functions, 𝑃𝑃 is the polynomial order and 𝑃𝑃 + 1 is the number of nodes of the element. 

The approximation of the derivatives of 𝜑𝜑 and 𝑤𝑤 are given, respectively, by 

𝛻𝛻𝜑𝜑(𝑒𝑒) = ∑ 𝑁𝑁𝑖𝑖,𝜉𝜉
(𝑒𝑒)𝑃𝑃+1

𝑖𝑖=1 (𝜉𝜉)𝜑𝜑𝑖𝑖
(𝑒𝑒)  = ∑ 𝐵𝐵𝑖𝑖

(𝑒𝑒)𝑃𝑃+1
𝑖𝑖=1 (𝜉𝜉)𝜑𝜑𝑖𝑖

(𝑒𝑒) = �𝐁𝐁(𝑒𝑒)�{𝛗𝛗(𝑒𝑒)},

𝛻𝛻𝑤𝑤(𝑒𝑒) = ∑ 𝑁𝑁𝑖𝑖,𝜉𝜉
(𝑒𝑒)𝑃𝑃+1

𝑖𝑖=1 (𝜉𝜉)𝑤𝑤𝑖𝑖
(𝑒𝑒)  = ∑ 𝐵𝐵𝑖𝑖

(𝑒𝑒)𝑃𝑃+1
𝑖𝑖=1 (𝜉𝜉)𝑤𝑤𝑖𝑖

(𝑒𝑒) = �𝐁𝐁(𝑒𝑒)�{𝐰𝐰(𝑒𝑒)},
  (105) 

where 𝐵𝐵𝑖𝑖
(𝑒𝑒)(𝜉𝜉) are the global derivatives of the element shape functions. 

Using the Galerking method, we have 

∫ [𝐿𝐿𝑒𝑒0
𝐍𝐍(𝑒𝑒)]𝑇𝑇[𝐍𝐍(𝑒𝑒)]{�̇�𝛗(𝑒𝑒)} 𝑑𝑑𝐿𝐿0 = −∫ 𝛾𝛾𝑔𝑔𝑐𝑐

𝜆𝜆�𝐿𝐿𝑒𝑒0
[𝐁𝐁(𝑒𝑒)]𝑇𝑇[𝐁𝐁(𝑒𝑒)]{𝛗𝛗(𝑒𝑒)} 𝑑𝑑𝐿𝐿0

−∫ 1
𝜆𝜆�𝐿𝐿𝑒𝑒0

(−𝑎𝑎[𝐍𝐍(𝑒𝑒)]𝑇𝑇 + (4𝑎𝑎 − 4)[𝐍𝐍(𝑒𝑒)]𝑇𝑇[𝐍𝐍(𝑒𝑒)]{𝛗𝛗(𝑒𝑒)}

−3𝑎𝑎[𝐍𝐍(𝑒𝑒)]𝑇𝑇[𝐍𝐍(𝑒𝑒)]{𝛗𝛗(𝑒𝑒)}2 + 4[𝐍𝐍(𝑒𝑒)]𝑇𝑇[𝐍𝐍(𝑒𝑒)]{𝛗𝛗(𝑒𝑒)}3)𝜓𝜓0
𝑒𝑒(1) 𝑑𝑑𝐿𝐿𝑜𝑜 − ∫ 𝑔𝑔𝑐𝑐𝑐𝑐

𝜆𝜆�𝛾𝛾𝐿𝐿𝑒𝑒0
�[𝐍𝐍(𝑒𝑒)]𝑇𝑇[𝐍𝐍(𝑒𝑒)]{𝛗𝛗(𝑒𝑒)}� 𝑑𝑑𝐿𝐿0.

  (106) 

Grouping terms and rearranging, the previous equation is rewritten as 

�𝐌𝐌(𝑒𝑒)��̇�𝛗(𝑒𝑒) = [𝐊𝐊1
(𝑒𝑒)]{𝛗𝛗(𝑒𝑒)} + [𝐊𝐊2

(𝑒𝑒)]{𝛗𝛗(𝑒𝑒)}2 + [𝐊𝐊3
(𝑒𝑒)]{𝛗𝛗(𝑒𝑒)}3 + [𝐊𝐊4

(𝑒𝑒)],  (107) 

with 

�𝐌𝐌(𝑒𝑒)� = ∫ [𝐿𝐿𝑒𝑒0
𝐍𝐍(𝑒𝑒)]𝑇𝑇�𝐍𝐍(𝑒𝑒)�,  (108) 

[𝐊𝐊1
(𝑒𝑒)] = −∫ 𝛾𝛾𝑔𝑔𝑐𝑐

𝜆𝜆�𝐿𝐿𝑒𝑒0
[𝐁𝐁(𝑒𝑒)]𝑇𝑇[𝐁𝐁(𝑒𝑒)] + (4𝑎𝑎−4)

𝜆𝜆�
[𝐍𝐍(𝑒𝑒)]𝑇𝑇[𝐍𝐍(𝑒𝑒)]𝜓𝜓0

𝑒𝑒(1)  + 𝑔𝑔𝑐𝑐𝑐𝑐
𝜆𝜆�𝛾𝛾

[𝐍𝐍(𝑒𝑒)]𝑇𝑇[𝐍𝐍(𝑒𝑒)]𝑑𝑑𝐿𝐿0,  (109) 

[𝐊𝐊2
(𝑒𝑒)] = ∫ 3𝑎𝑎

𝜆𝜆�𝐿𝐿𝑒𝑒0
[𝐍𝐍(𝑒𝑒)]𝑇𝑇[𝐍𝐍(𝑒𝑒)]𝜓𝜓0

𝑒𝑒(1) 𝑑𝑑𝐿𝐿0,  (110) 

[𝐊𝐊3
(𝑒𝑒)] = −∫ 4

𝜆𝜆�𝐿𝐿𝑒𝑒0
[𝐍𝐍(𝑒𝑒)]𝑇𝑇[𝐍𝐍(𝑒𝑒)]𝜓𝜓0

𝑒𝑒(1) 𝑑𝑑𝐿𝐿0,  (111) 

[𝐊𝐊4
(𝑒𝑒)] = ∫ 𝑎𝑎

𝜆𝜆�𝐿𝐿𝑒𝑒0
[𝐍𝐍(𝑒𝑒)]𝑇𝑇 𝑑𝑑𝐿𝐿0.  (112) 

The global equations are obtained using the standard assembly procedure of the element operators given in 
Eq.(107). 

The time integration uses the implicit Euler algorithm. Thus, the Eq.(107) is rewritten as follows: 

𝑔𝑔(𝜑𝜑) = −𝛗𝛗𝑏𝑏+1
(𝑒𝑒) + 𝛗𝛗𝑏𝑏

(𝑒𝑒) + 𝛥𝛥𝑡𝑡�𝐌𝐌(𝑒𝑒)�
−1
�[𝐊𝐊1

(𝑒𝑒)]{𝛗𝛗𝑏𝑏+1
(𝑒𝑒) } + [𝐊𝐊2

(𝑒𝑒)]{𝛗𝛗𝑏𝑏+1
(𝑒𝑒) }2 + [𝐊𝐊3

(𝑒𝑒)]{𝛗𝛗𝑏𝑏+1
(𝑒𝑒) }3 + [𝐊𝐊4

(𝑒𝑒)]�,  (113) 

with 𝛥𝛥𝑡𝑡 the time step and 𝑘𝑘 the step number. 
The starting value for 𝜑𝜑𝑏𝑏+1

(0)  is given by converged values in last step 𝜑𝜑𝑏𝑏. The updated values in step 𝑘𝑘 + 1 are given 
iteratively by 



A thermodynamically consistent elastoviscoplastic phase-field framework for structural damage in PTFE Fabiano Fumes et al. 

Latin American Journal of Solids and Structures, 2023, 20(6), e504 19/31 

𝜑𝜑𝑏𝑏+1
(𝑛𝑛+1) = 𝜑𝜑𝑏𝑏+1

(𝑛𝑛) − �
𝑑𝑑𝑔𝑔�𝜑𝜑𝑘𝑘+1

(𝑛𝑛) �

𝑑𝑑𝜑𝜑𝑘𝑘+1
(𝑛𝑛) �

−1

.𝑔𝑔 �𝜑𝜑𝑏𝑏+1
(𝑛𝑛) �.  (114) 

7.2 Approximation of motion equation 

Based on the motion equation of Eq.(17.i) and given that the second Piola-Kirchhoff stress 𝑆𝑆 is work conjugate to 
the virtual Green-Lagrange strain 𝛿𝛿𝐸𝐸, the following expression for the virtual internal work is valid 

𝛿𝛿𝑊𝑊𝑖𝑖 = ∫ 𝑆𝑆(𝛼𝛼)𝐿𝐿0
0  𝛿𝛿𝐸𝐸𝐴𝐴0𝑑𝑑𝑋𝑋.  (115) 

The expression for the virtual external work, for any virtual material axial displacement 𝛿𝛿𝑢𝑢, is 

𝛿𝛿𝑊𝑊𝑒𝑒 = 𝑃𝑃(𝛼𝛼)(0)𝛿𝛿𝑢𝑢(0) + 𝑃𝑃(𝛼𝛼)(𝐿𝐿0)𝛿𝛿𝑢𝑢(𝐿𝐿) + ∫ 𝜌𝜌0
𝐿𝐿𝑝𝑝
0 𝑏𝑏0 𝛿𝛿𝑢𝑢 𝑑𝑑𝑋𝑋.  (116) 

The virtual work 𝛿𝛿𝑊𝑊𝑎𝑎 for the inertia load is given by 

𝛿𝛿𝑊𝑊𝑎𝑎 = −∫ 𝜌𝜌0
𝐿𝐿0
0 �̈�𝑢 𝛿𝛿𝑢𝑢 𝐴𝐴0 𝑑𝑑𝑋𝑋.  (117) 

The Principle of Virtual Work, given by 𝛿𝛿𝑊𝑊𝑒𝑒 + 𝛿𝛿𝑊𝑊𝑎𝑎 = 𝛿𝛿𝑊𝑊𝑖𝑖 is, then written as 

∫ 𝑆𝑆(𝛼𝛼)𝐿𝐿0
0  𝛿𝛿𝐸𝐸𝐴𝐴0𝑑𝑑𝑋𝑋 = −∫ 𝜌𝜌0

𝐿𝐿0
0 �̈�𝑢 𝛿𝛿𝑢𝑢 𝐴𝐴0 𝑑𝑑𝑋𝑋 + ∫ 𝜌𝜌0

𝐿𝐿0
0 𝑏𝑏0 𝛿𝛿𝑢𝑢 𝑑𝑑𝑋𝑋 + 𝑃𝑃(𝛼𝛼)(0)𝛿𝛿𝑢𝑢(0)  + 𝑃𝑃(𝛼𝛼)(𝐿𝐿0)𝛿𝛿𝑢𝑢(𝐿𝐿0) = 0.  (118) 

The Newmark method employs the following time approximations for velocity and acceleration: 

𝑣𝑣𝑛𝑛+1 = 𝜒𝜒4(𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛) + 𝜒𝜒5𝑣𝑣𝑛𝑛 + 𝜒𝜒6�̇�𝑣𝑛𝑛,
�̇�𝑣𝑛𝑛+1 = 𝜒𝜒1(𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛) − 𝜒𝜒2𝑣𝑣𝑛𝑛 − 𝜒𝜒3�̇�𝑣𝑛𝑛,  (119) 

with 

𝜒𝜒1 = 1
𝛽𝛽𝑁𝑁𝛥𝛥𝑑𝑑2

,  𝜒𝜒2 = 1
𝛽𝛽𝑁𝑁𝛥𝛥𝑑𝑑

,  𝜒𝜒3 = 1
2𝛽𝛽𝑁𝑁

− 1,

𝜒𝜒4 = 𝛾𝛾𝑁𝑁
𝛽𝛽𝑁𝑁𝛥𝛥𝑑𝑑

,  𝜒𝜒5 = 1 − 𝛾𝛾𝑁𝑁
𝛽𝛽𝑁𝑁

,  𝜒𝜒6 = �1 − 𝛾𝛾𝑁𝑁
2𝛽𝛽𝑁𝑁

� 𝛥𝛥𝑡𝑡,
  (120) 

where 𝛾𝛾𝑁𝑁 and 𝛽𝛽𝑁𝑁 are the Newmark constants. 
The expression for the global residue of the motion equation, 𝑟𝑟𝑚𝑚, is obtained as 

𝑟𝑟𝑚𝑚 = ∫ 𝜌𝜌0
𝐿𝐿0
0 (𝜒𝜒1(𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛) − 𝜒𝜒2𝑣𝑣𝑛𝑛 − 𝜒𝜒3�̇�𝑣𝑛𝑛)𝛿𝛿𝑢𝑢 𝐴𝐴0 𝑑𝑑𝑋𝑋 + ∫ 𝑆𝑆𝑛𝑛+1

𝐿𝐿0
0 𝛿𝛿𝐸𝐸𝑛𝑛+1 𝐴𝐴0 𝑑𝑑𝑋𝑋

−∫ 𝜌𝜌0
𝐿𝐿0
0 𝑏𝑏0𝑛𝑛+1𝛿𝛿𝑢𝑢 𝑑𝑑𝑋𝑋 −  𝑃𝑃(𝛼𝛼)(0)𝛿𝛿𝑢𝑢(0)  −  𝑃𝑃(𝛼𝛼)(𝐿𝐿0)𝛿𝛿𝑢𝑢(𝐿𝐿0).

  (121) 

The solution of the equation of motion requires the linearization of the PVW for the application of the Newton-
Raphson method. The directional derivative of residue 𝐷𝐷𝛥𝛥𝛥𝛥[𝑟𝑟𝑚𝑚] in the direction of displacement increment, 𝛥𝛥𝑢𝑢, 
considering that the forces are not dependent on the displacement field, is given by 

DΔu[rm] = ∫ ρ0χ1un+1 A0 dXL0
0 + ∫ DΔu[Sn+1]δEn+1A0

L0
0   dX + ∫ Sn+1DΔu[δEn+1]A0

L0
0   dX.  (122) 

We have the following identities for the Green-Lagrange strain: 

𝛿𝛿𝐸𝐸𝑛𝑛+1 = 𝐹𝐹𝑛𝑛+1
𝑑𝑑(𝛿𝛿𝛥𝛥)
𝑑𝑑𝜕𝜕

,  (123) 

𝐷𝐷𝛥𝛥𝛥𝛥[𝛿𝛿𝐸𝐸𝑛𝑛+1] = 𝑑𝑑(𝛿𝛿𝛥𝛥)
𝑑𝑑𝜕𝜕

𝑑𝑑(𝛥𝛥𝛥𝛥)
𝑑𝑑𝜕𝜕

,  (124) 

𝐷𝐷𝛥𝛥𝛥𝛥[𝑆𝑆𝑛𝑛+1] = 𝒞𝒞𝑛𝑛+1𝐷𝐷𝛥𝛥𝛥𝛥[𝐸𝐸𝑛𝑛+1],  (125) 

𝐷𝐷𝛥𝛥𝛥𝛥[𝐸𝐸𝑛𝑛+1] = 𝐹𝐹𝑛𝑛+1
𝑑𝑑(𝛥𝛥𝛥𝛥)
𝑑𝑑𝜕𝜕

.  (126) 

𝒞𝒞 is the constitutive function, also called tangent modulus, given by 

𝒞𝒞𝑛𝑛+1 = 𝜕𝜕𝑆𝑆𝑛𝑛+1
𝜕𝜕𝐸𝐸𝑛𝑛+1

.  (127) 
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The residual expression, therefore, is rewritten as 

𝐷𝐷𝛥𝛥𝛥𝛥[𝑟𝑟𝑚𝑚] = ∫ 𝜌𝜌0
𝐿𝐿0
0 𝜒𝜒1𝑢𝑢𝑛𝑛+1𝛿𝛿𝑢𝑢 𝐴𝐴0 𝑑𝑑𝑋𝑋 + ∫ 𝐹𝐹𝑛𝑛+1

𝐿𝐿0
0

𝑑𝑑(𝛿𝛿𝛥𝛥)
𝑑𝑑𝜕𝜕

𝒞𝒞𝑛𝑛+1𝐹𝐹𝑛𝑛+1
𝑑𝑑(𝛥𝛥𝛥𝛥)
𝑑𝑑𝜕𝜕

𝐴𝐴0 𝑑𝑑𝑋𝑋 + ∫ 𝑆𝑆𝑛𝑛+1
𝐿𝐿0
0  𝑑𝑑(𝛿𝛿𝛥𝛥)

𝑑𝑑𝜕𝜕
𝑑𝑑(𝛥𝛥𝛥𝛥)
𝑑𝑑𝜕𝜕

𝐴𝐴0 𝑑𝑑𝑋𝑋.  (128) 

The final expression after the linearisation of the PVW is 

∫ 𝜌𝜌0
𝐿𝐿0
0 𝜒𝜒1𝑢𝑢𝑛𝑛+1𝛿𝛿𝑢𝑢 𝐴𝐴0 𝑑𝑑𝑋𝑋 + ∫ 𝐹𝐹𝑛𝑛+1

𝐿𝐿0
0

𝑑𝑑(𝛿𝛿𝛥𝛥)
𝑑𝑑𝜕𝜕

𝒞𝒞𝑛𝑛+1𝐹𝐹𝑛𝑛+1
𝑑𝑑(𝛥𝛥𝛥𝛥)
𝑑𝑑𝜕𝜕

𝐴𝐴0 𝑑𝑑𝑋𝑋

+∫ 𝑆𝑆𝑛𝑛+1
𝐿𝐿0
0

𝑑𝑑(𝛿𝛿𝛥𝛥)
𝑑𝑑𝜕𝜕

𝑑𝑑(𝛥𝛥𝛥𝛥)
𝑑𝑑𝜕𝜕

 𝐴𝐴0 𝑑𝑑𝑋𝑋 = ∫ 𝜌𝜌0
𝐿𝐿0
0 (𝜒𝜒1(𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛) − 𝜒𝜒2𝑣𝑣𝑛𝑛 − 𝜒𝜒3�̇�𝑣𝑛𝑛)𝛿𝛿𝑢𝑢 𝐴𝐴0 𝑑𝑑𝑋𝑋

+∫ 𝑆𝑆𝑛𝑛+1
𝐿𝐿0
0 𝐹𝐹𝑛𝑛+1

𝑑𝑑(𝛿𝛿𝛥𝛥)
𝑑𝑑𝜕𝜕

 𝐴𝐴0 𝑑𝑑𝑋𝑋 − ∫ 𝜌𝜌0
𝐿𝐿0
0 𝑏𝑏0𝑛𝑛+1𝛿𝛿𝑢𝑢 𝑑𝑑𝑋𝑋 −  𝑃𝑃(𝛼𝛼)(0)𝛿𝛿𝑢𝑢(0)  −  𝑃𝑃(𝛼𝛼)(𝐿𝐿0)𝛿𝛿𝑢𝑢(𝐿𝐿0).

  (129) 

Analogously to the damage equations, the approximation of the material coordinate, in an element 𝑒𝑒, using the 
local normalized coordinate system 𝜉𝜉 is given by 

𝑋𝑋(𝜉𝜉) = ∑ 𝑁𝑁𝑖𝑖𝑒𝑒𝑃𝑃+1
𝑖𝑖=1 (𝜉𝜉)𝑋𝑋𝑖𝑖 = �𝐍𝐍(𝑒𝑒)(𝜉𝜉)�{𝑋𝑋(𝑒𝑒)},  (130) 

where 𝑋𝑋𝑖𝑖  are the nodal coordinates of the initial mesh, 𝑁𝑁𝑖𝑖
(𝑒𝑒)(𝜉𝜉) are the element shape functions, 𝑃𝑃 is the polynomial 

order and 𝑃𝑃 + 1 is the number of nodes of the element. 
For an isoparametric element, the material axial displacement and strain are interpolated as 

𝑢𝑢(𝜉𝜉) = ∑ 𝑁𝑁𝑖𝑖
(𝑒𝑒)𝑃𝑃+1

𝑖𝑖=1 (𝜉𝜉)𝑢𝑢𝑖𝑖 = �𝐍𝐍(𝑒𝑒)(𝜉𝜉)�{𝑢𝑢(𝑒𝑒)},  (131) 

𝑑𝑑𝛥𝛥(𝜉𝜉)
𝑑𝑑𝜕𝜕

= ∑ 𝑁𝑁𝑖𝑖,𝜉𝜉
(𝑒𝑒)𝑃𝑃+1

𝑖𝑖=1 (𝜉𝜉)𝑢𝑢𝑖𝑖  = ∑ 𝐵𝐵𝑖𝑖
(𝑒𝑒)𝑃𝑃+1

𝑖𝑖=1 (𝜉𝜉)𝑢𝑢𝑖𝑖  = [𝐁𝐁𝑒𝑒(𝜉𝜉)]{𝑢𝑢𝑖𝑖
(𝑒𝑒)},  (132) 

where 𝐵𝐵𝑖𝑖
(𝑒𝑒)(𝜉𝜉) are the global derivatives of the element shape functions. 

The virtual axial displacement and the infinitesimal normal strain are obtained deriving the previous expressions to 
each nodal coordinate 𝑢𝑢𝑖𝑖

(𝑒𝑒), as follows 

𝛿𝛿𝑢𝑢(𝜉𝜉) = [𝐍𝐍(𝑒𝑒)(𝜉𝜉)]𝑇𝑇 ,
𝑑𝑑�𝛿𝛿𝛥𝛥(𝜉𝜉)�

𝑑𝑑𝜕𝜕
= [𝐁𝐁(𝑒𝑒)(𝜉𝜉)]𝑇𝑇 ,

  (133) 

Finally, the displacement increment 𝛥𝛥𝑢𝑢 and its derivative are interpolated as 

𝛥𝛥𝑢𝑢(𝜉𝜉) = �𝐍𝐍(𝑒𝑒)(𝜉𝜉)�{𝛥𝛥𝑢𝑢(𝑒𝑒)},
𝑑𝑑�𝛥𝛥𝛥𝛥(𝜉𝜉)�

𝑑𝑑𝜕𝜕
= [𝐁𝐁𝑒𝑒(𝜉𝜉)]{𝛥𝛥𝑢𝑢𝑖𝑖

(𝑒𝑒)},
  (134) 

where {𝛥𝛥𝑢𝑢𝑖𝑖
(𝑒𝑒)} is the vector of nodal displacement increments in the material configuration. 

Replacing the approximations in the Eq. (129), we have the residue and Jacobian for each element given, 
respectively, by 

𝑟𝑟𝑚𝑚 = ∫ 𝜌𝜌0𝐿𝐿𝑒𝑒0
[𝐍𝐍(𝑒𝑒)]𝑇𝑇[𝐍𝐍(𝑒𝑒)] 𝐴𝐴0 𝑑𝑑𝑋𝑋 �𝜒𝜒1 �𝑢𝑢𝑛𝑛+1

(𝑒𝑒) − 𝑢𝑢𝑛𝑛
(𝑒𝑒)� − 𝜒𝜒2𝑣𝑣𝑛𝑛

(𝑒𝑒) − 𝜒𝜒3�̇�𝑣𝑛𝑛
(𝑒𝑒)� +

∫ [𝐿𝐿𝑒𝑒0
𝐁𝐁(𝑒𝑒)]𝑇𝑇𝐹𝐹𝑛𝑛+1

(𝑒𝑒) 𝑆𝑆𝑛𝑛+1
(𝑒𝑒) 𝐴𝐴0 𝑑𝑑𝑋𝑋 − ∫ 𝜌𝜌0𝐿𝐿𝑒𝑒0

[𝐍𝐍(𝑒𝑒)]𝑇𝑇[𝐍𝐍(𝑒𝑒)] 𝑏𝑏0𝑛𝑛+1
(𝑒𝑒)  𝑑𝑑𝑋𝑋 − {𝑃𝑃0

(𝑒𝑒)𝑃𝑃𝐿𝐿
(𝑒𝑒)}𝑇𝑇 ,

  (135) 

𝐽𝐽𝑚𝑚
(𝑒𝑒) = 𝜒𝜒1 ∫ 𝜌𝜌0𝐿𝐿𝑒𝑒0

[𝐍𝐍(𝑒𝑒)]𝑇𝑇[𝐍𝐍(𝑒𝑒)] 𝑑𝑑𝑋𝑋 + ∫ �[𝐁𝐁(𝑒𝑒)]𝑇𝑇𝑆𝑆𝑛𝑛+1
(𝑒𝑒) [𝐁𝐁(𝑒𝑒)] + [𝐁𝐁(𝑒𝑒)]𝑇𝑇𝐹𝐹𝑛𝑛+1

(𝑒𝑒) ℂ𝑛𝑛+1
(𝑒𝑒) 𝐹𝐹𝑛𝑛+1

(𝑒𝑒) [𝐁𝐁(𝑒𝑒)]�𝐿𝐿𝑒𝑒0
 𝑑𝑑𝑋𝑋.  (136) 

Again, the global equations are obtained from the assembling procedure of the element operators. 

8 RESULTS 

8.1 Parameter fitting 

Defining material parameters for complex rheological models requires an extensive effort, since most of the terms 
are not obtained directly from experiments. For this reason, it is necessary to apply optimization techniques, in order to 
adjust the material model response to the results of stress-strain curves available in the literature. 
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The parameter fitting requires hundreds of runs of simulation. For this reason and considering that experimental data 
gives stress-strain values, it considers the constitutive model applied to a single integration point, in order to run the model 
faster. Moreover, since the damage occurs abruptly and just before the fracture, it is not included in this fitting procedure. 

An genetic algorithm, based on the principle of natural selection, was used for parameter fitting. This technique, as 
shown in Fig. 6, allows the evolution of an initial population of by several individuals to a final population which maximizes 
(or minimizes) a given cost function after various generations. 

 
Figure 6: Steps of the inverse problem solved by genetic algorithm. 

For the current problem, each individual is the simulation of the constitutive model for a given initial state of 
parameters. After each generation, the cost function is evaluated comparing the result of the simulation to the 
experimental stress-strain curve of the PTFE. The cost function to be minimized is given by 

For the current problem, each individual is the simulation of the constitutive model for a given initial state of 
parameters. After each generation, the cost function is evaluated comparing the result of the simulation to the 
experimental stress-strain curve of the PTFE. The cost function to be minimized is given by 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = ∑ �(𝑇𝑇𝑚𝑚𝑜𝑜𝑑𝑑𝑒𝑒𝑔𝑔(𝑖𝑖) − 𝑇𝑇𝑒𝑒𝜕𝜕𝑝𝑝𝑒𝑒𝑟𝑟𝑖𝑖𝑚𝑚𝑒𝑒𝑛𝑛𝑑𝑑(𝑖𝑖)
)2𝑆𝑆𝑑𝑑𝑒𝑒𝑝𝑝𝑠𝑠

𝑖𝑖=0 ,  (137) 

with 𝑇𝑇 being the stresses evaluated at each time step of the simulation and from experiment. 
The starting parameters were taken from Marin et al. (2007) and Srivastava et al. (2010). The experimental results 

for the stress-strain were obtained from Rae and Brown (2005). In this reference, the values of the Young modulus for 
several temperatures, obtained directly from the experiments, were used in the model without the need to be fitted 
with the genetic algorithm. 

The genetic algorithm used in this work is called eaSimple, from the Python library DEAP (Distributed evolutionary 
algorithms in Python). The population size was set to 200, evaluated in 50 generations. Others internal parameters 
required for this algorithm are the crossover, individual mutation and gene mutation, whose probability values were set 
to 90%, 20% and 5%, respectively. 

The optimization process is used for each one of the 7 values of temperature available. Consequently, an optimum 
solution is found for each temperature and 7 completely different sets of parameters are determined. Due to this, a 
second and tedious part of analysis is needed, aiming to keep the largest number of parameters constant through the 
entire range of temperatures (and, if possible, eliminating unnecessary coefficients). After this manual stage, certain 
parameters still cannot be kept constant. 

The parameters with constant values for all temperatures are: 𝐸𝐸𝑔𝑔𝑔𝑔 = 650 MPa, 𝐸𝐸𝑟𝑟 = 550 MPa, 𝑀𝑀𝑔𝑔𝑔𝑔 = 31 MPa.K−1, 𝑀𝑀𝑟𝑟 = 
4.3 MPa.K−1, 𝛥𝛥 = 11 K, ℎ𝑏𝑏 = 10.9, 𝛼𝛼𝑝𝑝 = 0.3, 𝜈𝜈0

(1) = 8.20 × 1012 s−1, 𝑑𝑑 = 1.50 × 10−2K−1, 𝜁𝜁𝑔𝑔𝑔𝑔 = 0.17, 𝑉𝑉 = 8.00 × 10−28 m3, 
𝑚𝑚(1) = 0.15, 𝛾𝛾 = 100, 𝑟𝑟 = 4.50 × 104, 𝑆𝑆𝑟𝑟 = 0.1 MPa, 𝐼𝐼𝑚𝑚

(2) = 24, 𝜈𝜈(2) = 3.70 × 10−4 s−1, 𝑆𝑆𝑔𝑔𝑔𝑔
(2) = 25 MPa, 𝑆𝑆𝑟𝑟

(2) = 1.10 × 104 Pa, 

𝑚𝑚(2) = 0.3, 𝐼𝐼𝑚𝑚
(3) = 24, 𝜈𝜈0

(3) = 9.00 × 10−3 s−1, 𝑚𝑚(3) = 0.18, 𝑆𝑆𝑔𝑔
(3) = 6 MPa, ℎ3𝑔𝑔 = 9.50 × 102 MPa, 𝑌𝑌 = 0 K−1 and 𝑍𝑍 = 0 K−1. 

The parameters listed in Table 1 are dependent on temperature. 

Table 1: Final values of parameters of the non-isothermal material model. 

Parameter 
Temperature 

-50°C -15°C 15°C 25°C 50°C 100°C 150°C 

𝑄𝑄𝑔𝑔𝑔𝑔[𝐽𝐽] 1.49 × 10−19 1.41 × 10−19 1.30 × 10−19 1.22 × 10−19 1.22 × 10−19 1.22 × 10−19 1.22 × 10−19 

𝑄𝑄𝑟𝑟[𝐽𝐽] 1.49 × 10−19 1.41 × 10−19 1.30 × 10−19 1.22 × 10−19 1.22 × 10−19 1.22 × 10−19 1.22 × 10−19 

𝑆𝑆𝑔𝑔𝑔𝑔[𝑃𝑃𝑎𝑎] 9.00 × 107 8.20 × 107 1.00 × 107 1.00 × 105 1.00 × 105 1.00 × 105 1.00 × 105 
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The parameters 𝜇𝜇𝑔𝑔
(2) and 𝜇𝜇(3) not listed in Table 1 are also temperature dependent, since their values are given by 

𝜇𝜇𝑔𝑔
(2) = 𝜇𝜇(3) = 𝑊𝑊 −𝑄𝑄 tanh � 1

0.5(𝑇𝑇2−𝑇𝑇1)
�𝜃𝜃 − 𝑇𝑇2+𝑇𝑇1

2
�� exp �𝑎𝑎 ��𝜃𝜃 − 𝑇𝑇2+𝑇𝑇1

2
��� ,  (138) 

where W = 3×106, Q = 3.15×105, a = 0.001, T1 = 19°C (transition from phase II to IV), and T1 = 30°C (transition from phase IV to I). 

Eq.(138) plotted in Fig.(7) looks reproducing typical shape of storage modulus (𝐸𝐸′) of PTFE, with different behaviour 
due to phase change, between 19°C and 30°C, which represent transitions in crystallyne phases. 

 

Figure 7: Behaviour of μg
(2) and μ(3), inspired in the storage modulus from Tóth, Baets and Szebényi (2020). 

8.2 Constitutive model without damage 

The first simulation uses the previously adjusted parameters in a single integration point of the constitutive model 
of a non-damaged PTFE model, under temperatures from -50°C to 150°C, and the resulting stress-strain curves are shown 
in Fig. 8. Strain rates for model and experiment are both set to 5 × 10−3𝐶𝐶−1. 

Experimental curves were obtained from Rae and Brown (2005). There is a good fit for all temperatures, except for 
25°C, where there is overestimation of results for mid-strains, representing a higher stiffness of material in this region. 

It is important to highlight that the last strain value considered in the simulation for each temperature is set in 
accordance with the end values from experimental results. 

Fig. 9 shows the influence of the branches according to the temperature. In negative temperatures, the main 
influence is given by branch one. After increasing from 25°C, there is higher influence of branch 3 as noticed from Fig. 9. 



A thermodynamically consistent elastoviscoplastic phase-field framework for structural damage in PTFE Fabiano Fumes et al. 

Latin American Journal of Solids and Structures, 2023, 20(6), e504 23/31 

 

Figure 8: Adjusted stress-strain curves for the 3-branches constitutive model for the PTFE at several temperatures. 

 

Figure 9: Influence of stresses from each branch for PTFE at several temperatures. 

8.3 Relaxation test model 

In order to verify the behaviour of PTFE under relaxation cycle, the 3-branch constitutive model is now simulated 
under the strain loading profiles shown in Fig. 10. Taking a proportional value to the maximum strain in each temperature 
under analysis as reference, a sequence of five steps is considered, composed by alternate cycles of strain loading 
followed by steady strain. 
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Figure 10: Alternate cycles of strain loading followed by steady strain for PTFE. 

The results for these load profiles are presented in Fig. 11. As can be noticed, after a period of steady strain, the 
stresses present relaxation and, after a loading restart, the stresses resume their evolution from the point where the 
relaxation started. This behaviour is in accordance with experimental results from Khan and Zhang (2001). 

 
Figure 11: Relaxation results in terms of strain for different temperatures. 

8.4 Fracture damage evolution 

After calibrating the constitutive model, uniaxial simulation of damage using the finite element model is performed. 
According to Rae and Brown (2005), it is noticed an increase of the failure strain from -50°C to 25°C C. From 25°C 

on, a constant failure strain is reached, with a small decrease near 150°C. On the other hand, the failure stresses reach a 
limit value in 25°C, where crystalline structure of PTFE is in phase IV. 

Considering this profile of fracture depending on temperature, the model should present an abrupt failure in 
accordance with the stress-strain curves. 

To simulate the fracture of the bar under different temperature conditions, the constitutive model described in 
Section 5 is used, in order to capture all the differences in microstructural behavior. In addition, parameter �̃�𝜆 representing 
fracture onset is adjusted in order to represent different responses to failure in all temperature range. 

Results of the stress-strain curves for temperatures from -50°C to 150°C are shown in Fig.12. All strain rates are set 
to 5 × 10−3 to be compliant with experiments described by Rae and Brown (2005). 
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Figure 12: Stress-strain curve for PTFE, including fracture at different temperatures. 

Another influence on polymer response is the strain-rate. For PTFE, however, this variable has a lower influence 
when compared to temperature, with an almost insensibility to different strain rates. For the evaluation of the proposed 
adjusted model, a simulation was run for different strain rates at 25°C. The simulation results are shown in Fig.13. The 
results are quantitatively similar to experiments described in Nunes, Dias and Mattos (2011) and Rae and Brown (2005), 
mainly for lower strain rates. 

 
Figure 13: Stress-strain curves from model response for of different strain rates, T = 25 C for all cases. 

9 CONSIDERATIONS ABOUT THE DEGRADATION FUNCTION 𝑫𝑫(𝝋𝝋) 

The degradation function 𝐷𝐷(𝜑𝜑) describes the influence of the phase-field on the possible decreasing of the elastic 
response of the material and, therefore, its choice is very important. 
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Since degradation involves changes in the microstructure, 𝐷𝐷(𝜑𝜑) may depend on the material being considered 
because different materials may have several different degradation mechanisms; for instance, the appearance of voids 
and microcracks are important degradation mechanisms in metals and ceramics; degradation in polymers are more 
complex and may occur due to sliding, tangling or breaking of polymeric chains and also due to crazing. 

Also, these several degradation mechanisms may be described in different details according to the material model 
being developed. This means that the effects in the degradation of the elastic response of the material, described by 
𝐷𝐷(𝜑𝜑), may also depend on how the the model being developed describes the degradation mechanisms presented by the 
material being considered. 

In most of the cases, the several different degradation mechanisms are not individually described. The phase-field 
considered in the model is viewed as the mean damaged state of the material, due to changes in the material 
microstructure resulting maybe from several degradation mechanism; the corresponding degradation function must 
then give the mean effect in the corresponding elastic properties. This is so because it is in general difficult to describe 
in detail and in a realist way each of the degradation mechanisms and their cross influence; moreover, when this is done, 
several material parameters, which are difficult to measure or estimated, are introduced in the material model making 
it more difficult to validate by comparison with experiments. 

Models that view the phase-field as a mean damage state of the material usually obtain the corresponding 
degradation function in a phenomenological way; that is, 𝐷𝐷(𝜑𝜑) is chosen to fit to the observed material response. The 
importance of the choice of 𝐷𝐷(𝜑𝜑) to obtain correct results has been discussed along the years, as one can see, for 
instance, in Borden et al. (2016), Haveroth et al. (2020) and Costa-Haveroth et al. (2022) and the references cited there 
in. The model of the present work is of this kind, and so the expression given in (99) was chosen to fit the experimental 
PTFE material response. 

However, the previous considerations may raise the question whether a simpler expression, like the more standard 
𝐷𝐷(𝜑𝜑) = (1 − 𝜑𝜑)2 could be used also to fit the experimental results if the material parameters were suitably chosen. The 
answer is no, as we show in the following numerical simulations varying the material parameters and using 𝐷𝐷(𝜑𝜑) =
(1 − 𝜑𝜑)2 instead of (99). 

Figure 14 plots the stress-strain curves considering, respectively, the variation of one of the parameters 𝑐𝑐, 𝛾𝛾, 1
𝜆𝜆�

,𝑔𝑔𝑐𝑐  of the 

damage equation. The values of these parameters when they not changed are 𝑐𝑐 = 10−2, 𝛾𝛾 = 10−2, 1
𝜆𝜆�

= 1
105

,  𝑔𝑔𝑐𝑐 = 1000. 

 
Figure 14: Stress-strain curves of the 1D finite element model at -15 oC using D(ϕ) = (1− 𝜑𝜑)2. For each plot above, only one of the 

parameters of the damage equation (𝑐𝑐, 𝛾𝛾, 1
𝜆𝜆�

,𝑔𝑔𝑐𝑐) is changed, to verify its impact in the response. 
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As we can see from the previous numerical simulations, by using 𝐷𝐷(𝜑𝜑) = (1 − 𝜑𝜑)2 in our model, we did not obtain 
an abrupt failure. We think that is because 𝐷𝐷(𝜑𝜑) = (1 − 𝜑𝜑)2 degrades too much the elastic response at rather small 
values of 𝜑𝜑; so, the material softens and the failure becomes slower. Thus, to obtain the correct failure behavior, 𝐷𝐷(𝜑𝜑) 
should have a slow decay for rather small values of 𝜑𝜑 as in Fig. 5. 

A final remark is that Narayan and Anand (2021) were able to obtain abrupt failure by using the degradation function 
𝐷𝐷(𝜑𝜑) = (1 − 𝜑𝜑)2 because they include an explict modelling of the degradation mechanism of crazing which is very rele-
vant to the material they are considering. In the present work, the degradation function (99) implicitly includes the effects 
of all degradation mechanisms. 

10 CONSIDERATIONS ABOUT THE DAMAGE ENERGY 𝓘𝓘(𝝋𝝋,𝜵𝜵𝝋𝝋) 

One may wonder why the expression (100) used in the present work for the damage energy ℐ(𝜑𝜑,𝛻𝛻𝜑𝜑) is quite 
different from the classical AT1 and AT2 phase-field formulations. Before we answer this, we must briefly explain the 
differences between the two phase-field methodologies. 

Both AT1 and AT2 formulations are derived as follows: starting by assuming that the phase-field is a diffusive 
approximation (diffusive representation) of a discontinuous crack, a specific form for such approximation is chosen 
around a crack. Next, a suitable equation, having that approximation as solution is considered and it is assumed that the 
phase-field variable must satisfy a variant of that chosen equation. 

For instance, in the AT1 one dimension formulation, the chosen approximation around a crack located at the origin 
is 𝑑𝑑(𝑥𝑥)  = (|𝑥𝑥|/(2𝑔𝑔𝑐𝑐)  −  1)2, for |𝑥𝑥| ≤ 2𝑔𝑔𝑐𝑐  and 𝑑𝑑(𝑥𝑥)  =  0 for |𝑥𝑥| > 2𝑔𝑔𝑐𝑐, with 𝑔𝑔𝑐𝑐  a given length scale parameter, while in 
the AT2 formulation the corresponding approximation is 𝑑𝑑(𝑥𝑥)  =  𝑒𝑒−|𝜕𝜕|/𝑔𝑔𝑐𝑐. For a brief description of these formulations, 
see for instance, Molnár et al. (2022). In those cases, it is then observed that there is a “damage energy” expression 
associated to the proposed equation in the sense that it is the corresponding Euler-Lagrange equation associated to the 
minimum of that damage energy. 

This approach to the derivation of the phase-field equation is known as the diffusive approximation methodology. 
However, there are several difficulties with this approach: (1) the diffusive profile around the crack, which gives the 

damage distribution around it, is a priori chosen, which raises the question about why one approximation is preferable 
than others; (2) it is the “damage energy” expression that depends on the chosen form of the approximation, while the 
opposite is physically expected; that is, the basic physical laws and the expressions of the several energies, including a 
meaningful damage energy, should imply the damage profile around the crack (the diffusive approximation); (3) the view 
that the phase-field equation is the Euler-Lagrange equation associated to the minimum of the damage energy usually 
leads to a stationary (elliptic) equation, which forces the use of the notion of the pseudo-time to obtain the damage 
evolution; (4) it is doubtful whether models obtained using this approach are really thermodynamically consistent in the 
strict sense; in particular, this is certainly so in the cases where the temperature is involved. 

To avoid such difficulties, the entropy methodology was developed; it reverses the arguments of the diffusive 
approximation methodology. That is, instead of trying to obtain an a priori equation for the phase-field variable, it is 
treated at the same level as the other physical state variables; that is, it is not just seen as an approximation, but a state 
variable that must be coherent with the basic physical laws and the thermodynamic restrictions. 

Then, to obtain the model equations, one proceeds as follows: the principle of virtual powers is used to derive the 
basic dynamical equations for all the state variables; next, assuming that the expressions for the Helmholtz free energy 
and the pseudo-potential of dissipation of the system are given, the Coleman-Noll approach is used to obtain the 
necessary constitutive equations in terms of the free energy and the pseudo-potential of dissipation to guarantee that 
the entropy inequality (dissipation inequality) is actually satisfied. The derived basic dynamical equations, the balance of 
energy equation and the derived constitutive equations give then the general form of the system to be solved. 

In any particular case, one then proposes reasonable specific expressions for all the involved energies, including the 
damage energy, and also for the pseudo-potentials of dissipation to specialize those equations and finally obtain the 
mathematical model associated to that case. This includes the equation for the phase-field, which is now a dynamical 
equation, depending thus on the true time, not on a pseudo-time; then, it can be used to obtain the time evolution of 
the damage. Moreover, the damage profile around cracks is now not a priori chosen, but something that is derived from 
the involved energies, as physically expected. Also, the coupling with temperature appearing in the model is 
thermodynamically sound. 

This approach is much more general and physically sound than the diffusive approximation methodology and does 
not have the previously mentioned difficulties. The entropy approach is the one used to build the framework proposed 
in Boldrini et al. (2016) and in the present work. 
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We remark that, for sure, the quality of the final mathematical model derived using the entropy approach depends on 
the quality of the chosen free-energy and pseudo-potential of dissipation, but this is also true for the other approaches. 

About the damage energy proposed in this work, we observe that, since our approach does not a priori choose the 
form of the diffusive approximation, which fixes the form of the associated damage energy, we now have more freedom 
to choose its expression. For this, we observe that the damage energy may accumulate in the bulk of the material or on 
the faces of cracks. In terms of the phase-field, the bulk damage energy depends on the phase-field itself, while the 
damage energy accumulated on the faces of cracks depend on the gradient of the phase-field; that is, on the transition 
layers of the phase-field. 

This explains why the expression (100) for the total damage energy ℐ(𝜑𝜑,𝛻𝛻𝜑𝜑) has two parts: the bulk damage energy 

whose expression is 𝑔𝑔𝑐𝑐
𝑐𝑐
𝛾𝛾
ℋ(𝜑𝜑) and the damage energy at the faces of the smeared cracks: 𝑔𝑔𝑐𝑐

𝛾𝛾
2
�𝑑𝑑𝜑𝜑
𝑑𝑑𝜕𝜕
�
2

. Here 𝑐𝑐 is a material 

parameter that weights how much of the damage energy is accumulated in the bulk instead of on the faces of the cracks. 
This means that, when it is small, most of the damage energy tends to accumulate on the faces of the cracks, which 
implies that 𝑐𝑐 has a rather large influence on the velocity of the crack propagation. The value of the material parameter 
𝑐𝑐 used in this work was the most adequate to fit the experimental results. 

We finally observe that, since the diffusive approximation methodology a priori chooses the form of the diffusive 
approximation, fixing thus the form of the associated damage energy, it also a priori fixes the relation between the bulk 
and crack faces damage energies. 

11 CONCLUSIONS 

In this work, it was presented an one-dimensional finite element model along with a phase-field approach for 
describing fracture behaviour of polymers, specifically for the polytetrafluoroethylene (PTFE). The model was able to 
accurately capture the material response over a wide temperature range (-50°C to 150°C), with good agreement between 
simulation and experimental data including the abrupt behaviour of fracture evolution. 

One contribution of this work is the parameter fitting that was performed to model the PTFE through a genetic 
algorithm. This is particularly important given the amount of material parameters. In addition, the model was able to 
reproduce relaxation test and the influence of strain rate in stress-strain test, with good results for low and medium strains. 

The implementation of this model provides a tool for understanding and predicting the fracture behaviour of PTFE 
and potentially other polymeric materials. The phase-field approach used in this work can be extended to more 
dimensions, enabling more accurate and efficient modelling of fracture in a variety of applications. 

Overall, this work demonstrates the potential of the phase-field approach for modelling fracture in polymer 
materials and can help to inform the design of more resilient and fracture-resistant polymer materials, with potential 
applications in a range of industries. 
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