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Abstract 
It is well known that boundary integral equations are exact mathematical representations of the governing 
differential equations of a boundary value problem when the integrals are written over a closed-shape 
boundary representation (B-representation) of the domain, usually reffered to as a watertight B-
representation. However, practical geometric design technics (namely, NURBS surfaces) often do not render 
a watertight B-representation. Non-watertight geometric models with small gaps and overlaps are often 
generated in the design stage of projects. Based on a proposed surface-independent discretization approach, 
the present study investigates how unsought gaps affect the response of boundary element models of linear 
elasticity problems. The developed surface-independent discretization is applied to discretize multiple-
patches NURBS B-representation geometries. Linear triangular and quadrilateral elements are adopted to 
discretize the independent surfaces. Generalized discontinuous elements at the edges of the visible areas of 
the NURBS parametric spaces are detected by a Level Set function. An offset collocation strategy is adopted 
for the nodes at the edges of the visible part of the parametric spaces. Thus, singularities and near singularities 
due to collocation are avoided in the BEM equations. The influence of gaps in the convergence of the L2-norm 
of boundary displacement error is verified in a 3D example with an available analytical solution. A second 
example with available numerical solution is analyzed with a non-watertight BEM discretization for qualitative 
boundary field validation. Finally, a non-watertight B-representation geometry of a crane hook is analyzed. 
The obtained results have pointed out that, as long as the gaps (and overlaps) are small enough, BEM models 
built up from non-watertight geometries may produce valuable solutions for practical purposes. 
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1 INTRODUCTION 

Linear structural analyses of mechanical components used for various purposes are vital to ensure the structural 
safety in the design phase. To improve safety, engineers spend a significant amount of time designing, modeling, and 
analyzing each component. The geometric models of the mechanical components are first developed by designers in 
computer-aided design (CAD) software. Then, numerical methods, such as the finite or boundary element methods (FEM 
or BEM) (Zienkiewicz and Taylor, 1967; Brebbia et al., 1984), are employed to build discrete analysis models from suitable 
CAD models. Solvers are then employed to perform the numerical analysis, and the results are visualized in a pos-
processing stage. A suitable geometric model must be provided from CAD software to be able to fast generate the 
discrete analysis models (Cottrell et al., 2009, Bazilevs et al., 2010). The most common solid geometric models are built 
as a set of independent parametric surfaces, which describes the boundary of the domain. Such models are known in the 
literature as boundary-representation (B-representation) models (Sederberg and Parry, 1986). Usually, B-representation 
models must be converted into analysis-suitable models. This involves several intermediate steps (Coll et al., 2014). The 
first step is to obtain a B-representation without gaps and overlaps in the intersections of the independent surfaces. 
Then, a closed-shape surface mesh with conforming surface-to-surface discretization must be obtained. For domain-
based methods, i.e., finite elements, the last step required is to generate a standard volumetric mesh for finite element 
analysis purposes. 

Problems often arise in ensuring no gaps or overlaps in the surface intersections. With the standard CAD 
technologies, namely Non-Uniform Rational B-splines (NURBS) surfaces (Piegl and Tiller, 1995; Roger, 2001), small gaps 
are generally inevitable (Sederberg et al., 2003, Bazilevs et al., 2010). If small gaps exist in a B-representation model, it is 
called a non-watertight geometric model. Non-watertight models are usually avoided in the design-through-analysis 
process, since for the standard analysis technology, namely the finite element method (Zienkiewicz and Taylor, 1967) 
and other domain and meshless methods (Belytschko et al., 1994; Strouboulis et al., 2001), the existence of gaps prevents 
the standard volumetric mesh (or regularly distributed internal points) generation. This issue is by far a nontrivial task 
for complex geometric engineering designs, as Cottrell et al. (2009) pointed out. The conversion of geometric models to 
analysis suitable models have been studied by Ted Blacker, Manager of Simulation Sciences, Sandia National 
Laboratories, and usually takes around 80% of the whole design-through-analysis process time (Hugues et al., 2005). 
Linear differential equations governing a given boundary value problem can be rewritten as boundary integral equations 
when the fundamental solution is known (Hsiao and Wendland, 2008). The boundary integral equations of linear 
elasticity are well-established nowadays and can be properly solved by the Boundary Element Method (BEM) (Aliabadi, 
2002). The main characteristic of BEM is that domain meshes are avoided and the discretization is required only at the 
boundaries of the solids. This feature makes the construction of discrete BEM models from CAD geometries largely 
attractive because both CAD and BEM are based on the B-representation of the solids. Based on the so-called 
isogeometric concept (Cottrell et al., 2009), the construction of BEM models directly from CAD geometries for numerical 
analysis purposes has been reported in several works in the literature (Simpson et al., 2012, Simpson et al., 2013, 
Lian, et al., 2013; Scott et al., 2013, Marussig et al. 2015, Peng et al. 2017, Oliveira et al. 2020). The boundary integral 
equations are exact mathematical representations of the problem if they are written over closed-shape B-
representations (watertight B-representations). If only a non-watertight B-representation is available, the boundary 
integral equations are only approximately true in the best case. Since integrals can be understood as infinity summations, 
the contributions that will not appear or appear spuriously in the integral equations due to the gaps or overlaps will 
introduce errors in the previously mathematically exact boundary integral equations. However, as reported by 
Daumas et al. (2022) for 2D analysis, if the gaps (and overlaps) in the non-watertight B-representations are small enough, 
such errors will be small, and the boundary integral equations written over the non-watertight B-representations can still 
be solved by the BEM. 

In the present work, a surface-independent discretization scheme is developed for the discrete BEM model 
generation from NURBS-based B-representation geometries. Generalized discontinuous elements are adopted at the 
edges of the NURBS parametric spaces to allow the study of discrete models with very small gaps between surfaces 
without resulting singularities due to close-collocation points. The influence of the gaps in the numerical results of linear 
elasticity problems are verified in three examples reported. 

2 NURBS BASED B-REPRESENTATION GEOMETRIC MODELS 

The B-representation geometric models assume that the boundary 𝚪𝚪 of a given domain can be described by the 
union of a set of independent curves 𝑪𝑪𝑖𝑖 (for 2D geometries) or surfaces 𝑺𝑺𝑖𝑖  (for 3D geometries): 
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𝚪𝚪 = ⋃ 𝑪𝑪𝑖𝑖𝐼𝐼
𝑖𝑖=1  or 𝚪𝚪 = ⋃ 𝑺𝑺𝑖𝑖𝐼𝐼

𝑖𝑖=1  (1) 

Figure 1a illustrates a B-representation 2D geometric model of a spanner while Figure 1b illustrates a B-
representation 3D geometric model of a propeller. 

 
Figure 1 B-representation geometric models: a) 2D model (Simpson et al., 2012). b) 3D model (Scott et al., 2013). 

In general, the boundary of a 3D geometric object cannot be exactly described by a set of surfaces using the standard 
CAD technologies, namely NURBS surfaces. Gaps and overlaps in the surfaces intersections may occur for B-
representations of topologically complex objects (Marussig & Hugues, 2018). For non-closed surface models, i.e., non-
watertight B-representations, the union of the parametric surfaces is just an approximation 𝚪𝚪�  of the real boundary 𝚪𝚪 

𝚪𝚪 = �𝚪𝚪� ⋃𝚪𝚪𝑔𝑔𝑔𝑔𝑔𝑔�⋂𝚪𝚪𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (2) 

where 𝚪𝚪𝑔𝑔𝑔𝑔𝑔𝑔 are missing boundaries due to gaps and 𝚪𝚪𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 the spurious boundary due to overlaps. Even though CAD 
technologies such as B-splines and NURBS surfaces are the standard CAD technologies and represent billions of dollars 
in investment, Non-watertight NURBS B-representations are inevitable in general CAD geometric modeling, limiting the 
design-through-analysis process, as domain mesh generation for FEM analysis requires watertight geometric models 
(Bazilevs et al., 2010). 

2.1 Geometric mapping of B-splines curves 

The geometric mappings of B-splines curves from their parametric spaces into the Cartesian space, i.e., ℝ⟶ ℝ2, 
are performed by linear combinations of basis functions and a polygonal of control points in ℝ2. The univariate basis 
functions 𝑁𝑁𝑖𝑖,𝑔𝑔(𝜉𝜉) are constructed from a vector Ξ = �𝜉𝜉1, 𝜉𝜉2,⋯ , 𝜉𝜉𝑛𝑛+𝑔𝑔+1� of parametric coordinates 𝜉𝜉𝑖𝑖  in ℝ. This vector is 
usually referred to as the knot vector, in which 𝑛𝑛 is the number of basis functions of order 𝑝𝑝 that can be constructed 
from the knot vector Σ. For 𝑝𝑝 = 0, the B-spline basis functions are 

𝑁𝑁𝑖𝑖,0(𝜉𝜉) = �10  for 𝜉𝜉𝑖𝑖 ≤ 𝜉𝜉 ≤ 𝜉𝜉𝑖𝑖+1
other wise

  (3) 

For polynomial orders higher than zero, the basis functions are defined recursively from the Cox-de-Boor formula 

𝑁𝑁𝑖𝑖,𝑔𝑔(𝜉𝜉) = 𝜉𝜉−𝜉𝜉𝑖𝑖
𝜉𝜉𝑖𝑖+𝑝𝑝−𝜉𝜉𝑖𝑖

𝑁𝑁𝑖𝑖,𝑔𝑔−1(𝜉𝜉) + 𝜉𝜉𝑖𝑖+𝑝𝑝+1−𝜉𝜉
𝜉𝜉𝑖𝑖+𝑝𝑝+1−𝜉𝜉𝑖𝑖+1

𝑁𝑁𝑖𝑖+1,𝑔𝑔−1(𝜉𝜉) (4) 

The knot vectors are either uniform, i.e. equally spaced into the parametric coordinates, or non-uniform, in which 
the parametric coordinates are not equally spaced. The B-splines constructed from non-uniform knot vectors are referred 
to as non-uniform B-splines. For non-uniform knot vectors, repeated knot values may occur, i.e. multiplicity of knots. The 
multiplicity decreases the continuity of the geometric entities. Therefore, non-closed NURBS geometric entities adopt 
the multiplicity in their knot vectors to ensure the ends of the geometric entity. These entities are the most common 
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case in CAD models. They are constructed from open knot vectors, i.e., knot vectors with multiplicity 𝑘𝑘 = 𝑝𝑝 + 1 at the 
first and at the last values. 

The B-spline curve 𝑪𝑪(𝜉𝜉) is constructed from the definition of the knot vector Ξ = �𝜉𝜉1, 𝜉𝜉2,⋯ , 𝜉𝜉𝑛𝑛+𝑔𝑔+1�, a polynomial 
order 𝑝𝑝 for the basis and control points 𝑩𝑩𝑖𝑖, 𝑖𝑖 = 1,⋯ ,𝑛𝑛 in ℝ2. The B-spline curve mapping 𝑪𝑪(𝜉𝜉) is defined by the linear 
combination of the basis functions 𝑁𝑁𝑖𝑖,𝑔𝑔(𝜉𝜉) and the control points 𝑩𝑩𝑖𝑖 

𝑪𝑪(𝜉𝜉) = ∑ 𝑁𝑁𝑖𝑖,𝑔𝑔(𝜉𝜉)𝑛𝑛
𝑖𝑖=1 𝑩𝑩𝑖𝑖 (5) 

2.2 Geometric mapping of B-splines surfaces 

The geometric mappings of B-splines surfaces from their parametric spaces into the Cartesian space, i.e., ℝ2 ⟶ ℝ3, 
are performed by linear combinations of bivariate basis functions and a net of control points in ℝ3. The bivariate basis 
functions 𝑁𝑁𝑖𝑖𝑖𝑖,𝑔𝑔𝑝𝑝(𝜉𝜉, 𝜂𝜂) = 𝑁𝑁𝑖𝑖,𝑔𝑔(𝜉𝜉)𝑁𝑁𝑖𝑖,𝑝𝑝(𝜂𝜂) are obtained from the tensor product of the univariate basis functions 𝑁𝑁𝑖𝑖,𝑔𝑔(𝜉𝜉) 
and 𝑁𝑁𝑖𝑖,𝑝𝑝(𝜂𝜂) of orders 𝑝𝑝 and 𝑞𝑞, constructed from knot vectors Ξ = �𝜉𝜉1, 𝜉𝜉2,⋯ , 𝜉𝜉𝑛𝑛+𝑔𝑔+1� and Η = �𝜂𝜂1, 𝜂𝜂2,⋯ , 𝜂𝜂𝑚𝑚+𝑝𝑝+1�, 
respectively. The parametric space of the surface is defined by the tensor product Ξ⊗ Η. The regular B-spline surface 
mapping 𝑺𝑺(𝜉𝜉) is defined by the linear combination of the basis functions 𝑁𝑁𝑖𝑖𝑖𝑖,𝑔𝑔𝑝𝑝(𝜉𝜉, 𝜂𝜂) and a net of control points 𝑩𝑩𝑖𝑖𝑖𝑖, 𝑖𝑖 =
1,⋯ ,𝑛𝑛, 𝑗𝑗 = 1,⋯ ,𝑚𝑚 in ℝ3. 

𝑺𝑺(𝜉𝜉) = ∑ ∑ 𝑁𝑁𝑖𝑖,𝑔𝑔(𝜉𝜉)𝑁𝑁𝑖𝑖,𝑝𝑝(𝜂𝜂)𝑚𝑚
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 𝑩𝑩𝑖𝑖𝑖𝑖 = ∑ ∑ 𝑁𝑁𝑖𝑖𝑖𝑖,𝑔𝑔𝑝𝑝(𝜉𝜉, 𝜂𝜂)𝑚𝑚

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1 𝑩𝑩𝑖𝑖𝑖𝑖 (6) 

2.3 NURBS curves and surfaces 

The Non-Uniform Rational B-Splines (NURBS) curves and surfaces in ℝ𝑛𝑛 are achieved by a projective transformation 
of primitive B-splines curves and surfaces, respectively, in ℝ𝑛𝑛+1. From the algebraic point of view, the NURBS curves and 
surfaces may be presented in a similar way as presented for the B-Splines entities. Consequently, the NURBS curves are 
obtained by the linear combination of univariate rational basis functions and control points coordinates 𝑩𝑩𝑖𝑖, whereas the 
NURBS surfaces are defined by the linear combination of the bivariate rational basis functions and a control net 𝑩𝑩𝑖𝑖𝑖𝑖 

𝑪𝑪(𝜉𝜉) = ∑ 𝑅𝑅𝑖𝑖(𝜉𝜉)𝑛𝑛
𝑖𝑖=1 𝑩𝑩𝑖𝑖 (7) 

𝑺𝑺(𝜉𝜉, 𝜂𝜂) = ∑ ∑ 𝑅𝑅𝑖𝑖𝑖𝑖(𝜉𝜉, 𝜂𝜂)𝑚𝑚
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 𝑩𝑩𝑖𝑖𝑖𝑖 (8) 

in which 𝑅𝑅𝑖𝑖 and 𝑅𝑅𝑖𝑖𝑖𝑖 are, respectively, the NURBS univariate and bivariate rational basis functions. These functions are 
defined by a rational weighting of the B-Splines basis functions 𝑁𝑁𝑖𝑖,𝑔𝑔 (for curves) and 𝑁𝑁𝑖𝑖𝑖𝑖,𝑔𝑔𝑝𝑝 (for surfaces). The 𝑑𝑑 + 1 
components of the primitive B-spline control points are the weights, i.e., (𝑩𝑩𝑖𝑖)d+1 = ω𝑖𝑖  for curves and �𝑩𝑩𝑖𝑖𝑖𝑖�d+1 = ω𝑖𝑖𝑖𝑖  
for surfaces. The NURBS basis functions are defined as 

𝑅𝑅𝑖𝑖(𝜉𝜉) = 𝑁𝑁𝑖𝑖,𝑝𝑝(𝜉𝜉)ω𝑖𝑖

∑ 𝑁𝑁�̂�𝚤,𝑝𝑝(𝜉𝜉)ω�̂�𝚤
𝑛𝑛
�̂�𝚤=1

 (9) 

𝑅𝑅𝑖𝑖𝑖𝑖(𝜉𝜉, 𝜂𝜂) = 𝑁𝑁𝑖𝑖,𝑝𝑝(𝜉𝜉)𝑀𝑀𝑗𝑗,𝑞𝑞(𝜂𝜂)ω𝑖𝑖𝑗𝑗

∑ ∑ 𝑁𝑁�̂�𝚤,𝑝𝑝(𝜉𝜉)𝑀𝑀𝚥𝚥�,𝑞𝑞(𝜂𝜂)ω�̂�𝚤𝚥𝚥�
𝑚𝑚
𝚥𝚥�=1

𝑛𝑛
�̂�𝚤=1

 (10) 

2.4 Triming curves and trimmed NURBS surfaces 

The NURBS curves are also largely utilized together with the NURBS surfaces for the Boundary-representation of 
three-dimensional CAD models. These curves are utilized for the intersection definition between NURBS surfaces. To 
represent arbitrary boundaries of NURBS surfaces, trimming procedures must be applied. A trimmed NURBS surface is 
defined by a regular NURBS surfaces plus a set of trimming curves, 𝑪𝑪𝑡𝑡(𝑢𝑢), defined in the NURBS parametric space in ℝ2, 
which result into closed loops that may or may not account for the boundary of the parametric space. The trimming 
curves are generally NURBS or B-splines entities, defined as 

𝑪𝑪𝑡𝑡(𝑢𝑢) =  �𝜉𝜉
𝑡𝑡(𝑢𝑢)
𝜂𝜂𝑡𝑡(𝑢𝑢)� = ∑ 𝑅𝑅𝑖𝑖(𝑢𝑢)𝑛𝑛

𝑖𝑖=1 𝒃𝒃𝑖𝑖  (11) 
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where 𝑢𝑢 ∈ ℝ is the coordinates of the parametric space of the trimming curves and 𝒃𝒃𝑖𝑖 ∈ ℝ2 are the control points 
defined in the parametric space of the NURBS surface 𝑺𝑺(𝜉𝜉, 𝜂𝜂). The loops defined by the sets of trimming curves define 
the visible parts of the parametric space Ξ⊗ Η of the regular NURBS, which are mapped into the Cartesian space ℝ3 
and displayed in the CAD visualization tools. The resulting surface is the trimmed NURBS surface. Figure 2 illustrates the 
processes of converting a regular B-spline surface into a trimmed one by defining the visible area 𝓐𝓐𝑜𝑜 in the parameter 
space of the regular surface through a trimming curve 𝑪𝑪𝑡𝑡. 

 

Figure 2 Trimmed tensor product surface: a) regular surface. b) trimmed parameter space where a loop of trimming curves (thick 
line) specifies the visible aera 𝓐𝓐𝑜𝑜. c) resulting trimmed surface. (Marussig & Hugues, 2018). 

3 BOUNDARY ELEMENT MODELS 

Unlikely finite element models, boundary element models provide numerical solutions for boundary value problems 
with a reduced-dimension for spatial discretization, i.e., only the surface boundaries must be discretized. This is achieved 
by rewriting the governing domain differential equations into Boundary Integral Equations (BIEs). The boundary integral 
equations can be deduced from the knowledge of the fundamental solution of the differential operator and integration 
by parts operations starting from a weighted integral form of the domain differential equations (Brebbia et al. 1984). The 
displacement BIE of linear elasticity is presented in the following, together with the numerical procedure for its solution 
based on the collocation version of the boundary element method. 

3.1 Boundary integral equations of linear elasticity 

The displacement balance equations of a given linear elastic solid with domain 𝛀𝛀 and boundary 𝚪𝚪, such as the one 
illustrated in Figure 3a, can be represented in terms of the BIEs. For general mixed boundary value problems, the 
boundary is decomposed into two complementary parts 𝚪𝚪 = 𝚪𝚪𝒟𝒟 ⋃𝚪𝚪𝒩𝒩, 𝚪𝚪𝒟𝒟 ⋂𝚪𝚪𝒩𝒩 = ∅, where 𝚪𝚪𝒟𝒟 is the part where Dirichlet 
boundary conditions are prescribed, i.e., the displacements are known, and 𝚪𝚪𝒩𝒩  is the part where Neumann boundary 
conditions are prescribed, i.e., the tractions are known. 

The displacement BIE can be derived from the Navier-Cauchy equations of elasticity and, in the absence of body 
forces, results 

𝐂𝐂(𝐱𝐱′)𝐮𝐮(𝐱𝐱′) = ∫ 𝐔𝐔(𝐱𝐱′, 𝐱𝐱)𝐭𝐭(𝐱𝐱)𝚪𝚪 dΓ − 𝒞𝒞 ∫ 𝐓𝐓(𝐱𝐱′, 𝐱𝐱)𝐮𝐮(𝐱𝐱)𝚪𝚪 dΓ, (12) 

where 𝐗𝐗′ and 𝐗𝐗 indicates the source and field points, respectively (see Fig. 3b). 𝐮𝐮(𝐗𝐗′) is the displacement at 𝐗𝐗′, while 
𝐮𝐮(𝐗𝐗) and 𝐭𝐭(𝐗𝐗) are the displacements and tractions boundary fields, i.e., for boundary field points 𝐗𝐗 ∈ 𝚪𝚪. 
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Figure 3 Problem definition: a) boundary value problem. b) boundary source and field points. 

The Kelvin fundamental solution for displacements 𝐔𝐔(𝐗𝐗′,𝐗𝐗) and tractions 𝐓𝐓(𝐗𝐗′,𝐗𝐗) are given by 

𝐔𝐔(𝐱𝐱′, 𝐱𝐱) = U𝑖𝑖𝑖𝑖(𝐱𝐱′, 𝐱𝐱) 𝐞𝐞𝑖𝑖 ⊗ 𝐞𝐞𝑖𝑖  𝐓𝐓(𝐱𝐱′, 𝐱𝐱) = T𝑖𝑖𝑖𝑖(𝐱𝐱′, 𝐱𝐱) 𝐞𝐞𝑖𝑖 ⊗ 𝐞𝐞𝑖𝑖 , (13) 

in which the components U𝑖𝑖𝑖𝑖 and T𝑖𝑖𝑖𝑖 of the fundamental solution for the Navier-Cauchy equations in ℝ3 are 

U𝑖𝑖𝑖𝑖(𝐱𝐱′, 𝐱𝐱) = 1
16𝜋𝜋𝜋𝜋(1−𝜈𝜈)𝑜𝑜

�(3 − 4𝜈𝜈)𝛿𝛿𝑖𝑖𝑖𝑖 + 𝜕𝜕𝑜𝑜
𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝑜𝑜
𝜕𝜕𝑥𝑥𝑗𝑗
� (14) 

T𝑖𝑖𝑖𝑖(𝐱𝐱′, 𝐱𝐱) = −1
8𝜋𝜋(1−𝜈𝜈)𝑜𝑜2

�𝜕𝜕𝑜𝑜
𝜕𝜕𝑛𝑛
�(1 − 2𝜈𝜈)𝛿𝛿𝑖𝑖𝑖𝑖 + 3 𝜕𝜕𝑜𝑜

𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝑜𝑜
𝜕𝜕𝑥𝑥𝑗𝑗
� − (1 − 2𝜈𝜈) �𝑛𝑛𝑖𝑖

𝜕𝜕𝑜𝑜
𝜕𝜕𝑥𝑥𝑖𝑖

− 𝑛𝑛𝑖𝑖
𝜕𝜕𝑜𝑜
𝜕𝜕𝑥𝑥𝑗𝑗
��. (15) 

In Eqs (14) and (15), 𝑟𝑟 = ‖𝐫𝐫‖ = ‖𝐱𝐱 − 𝐱𝐱′‖ is the distance between the source and the field point, 𝑛𝑛𝑖𝑖  stands for the 
components of the normal outward vector 𝒏𝒏(𝐱𝐱) and 𝜕𝜕𝑟𝑟 𝜕𝜕𝑛𝑛⁄ = 𝛁𝛁𝑟𝑟 ∙ 𝐧𝐧 = 𝜕𝜕𝑟𝑟 𝜕𝜕𝑥𝑥𝑖𝑖⁄ 𝑛𝑛𝑖𝑖 is the normal derivative of 𝑟𝑟. 𝒞𝒞 ∫  
Indicates that the integral is evaluated in the Cauchy Principal Value sense and 𝐂𝐂(𝐱𝐱′)𝐮𝐮(𝐱𝐱′) is the free term arising from 
the singular integral (Aliabadi, 2002). For a non-watertight B-representation 𝚪𝚪� , the BIE (12) is not an exact mathematical 
integral representation of the problem. However, 

𝐂𝐂(𝐱𝐱′)𝐮𝐮(𝐱𝐱′) ≈ ∫ 𝐔𝐔(𝐱𝐱′, 𝐱𝐱)𝐭𝐭(𝐱𝐱)𝚪𝚪� dΓ − 𝒞𝒞 ∫ 𝐓𝐓(𝐱𝐱′, 𝐱𝐱)𝐮𝐮(𝐱𝐱)𝚪𝚪� dΓ, (16) 

as long as the missing boundaries 𝚪𝚪𝑔𝑔𝑔𝑔𝑔𝑔 due to gaps and spurious boundaries 𝚪𝚪𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 due to overlaps are small enough 
compared to 𝚪𝚪� , i.e., �𝚪𝚪𝑔𝑔𝑔𝑔𝑔𝑔� ≪  �𝚪𝚪�� and ‖𝚪𝚪𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜‖ ≪  �𝚪𝚪��. Thus, enforcing the equality in (16) will not produce significant 
errors, as long as the continuity of the boundary fields is not required by the governing boundary integral equations. 

3.2 Numerical approximations and solution by collocation point 

Approximations are required for obtaining numerical solutions of the previous presented BIE by the classical 
weighted residue collocation method. Thus, the boundary 𝚪𝚪� = ⋃ 𝑺𝑺𝑖𝑖𝐼𝐼

𝑖𝑖=1  must be discretized. Each NURBS surface 𝑺𝑺𝑖𝑖  are 
then discritezed into 𝑁𝑁𝑁𝑁(𝑖𝑖) linear (triangular or quadrilateral) boundary elements, over which displacements, tractions, 
and the boundary geometry are approximated regarding the isoparametric concept. Introducing the numerical 
approximations into Eq. (12) results 

𝐫𝐫(𝐱𝐱′) = 𝐂𝐂(𝐱𝐱′)𝐮𝐮(𝐱𝐱′) + ∑ ∫ 𝐓𝐓(𝐱𝐱′, 𝐱𝐱(𝜉𝜉, 𝜂𝜂))𝐒𝐒𝑖𝑖
𝐮𝐮(𝐱𝐱(𝜉𝜉, 𝜂𝜂))d𝑆𝑆𝑖𝑖 𝐼𝐼

𝑖𝑖=1 − ∑ ∫ 𝐔𝐔�𝐱𝐱′, 𝐱𝐱(𝜉𝜉, 𝜂𝜂)�𝐒𝐒𝑖𝑖
𝐭𝐭�𝐱𝐱(𝜉𝜉, 𝜂𝜂)�d𝑆𝑆𝑖𝑖𝐼𝐼

𝑖𝑖=1  (17) 

𝐫𝐫(𝐱𝐱′) = 𝐂𝐂(𝐱𝐱′)𝐮𝐮(𝐱𝐱′) + ∑ ∑ ∫ ∫ 𝐓𝐓(𝐱𝐱′, 𝐱𝐱(𝜉𝜉1, 𝜉𝜉2))𝑁𝑁𝛼𝛼
𝑜𝑜(𝑖𝑖)(𝜉𝜉1, 𝜉𝜉2)J𝑜𝑜(𝑖𝑖)(𝜉𝜉1, 𝜉𝜉2)d𝜉𝜉1d𝜉𝜉2

1
−1

1
−1

𝑁𝑁𝑁𝑁(𝑖𝑖)
𝑜𝑜=1 𝐮𝐮𝛼𝛼

𝑜𝑜(𝑖𝑖)𝐼𝐼
𝑖𝑖=1 −

∑ ∑ ∫ ∫ 𝐔𝐔(𝐱𝐱′, 𝐱𝐱(𝜉𝜉1, 𝜉𝜉2))𝑁𝑁𝛼𝛼
𝑜𝑜(𝑖𝑖)(𝜉𝜉1, 𝜉𝜉2)J𝑜𝑜(𝑖𝑖)(𝜉𝜉1, 𝜉𝜉2)d𝜉𝜉1d𝜉𝜉2

1
−1

1
−1

𝑁𝑁𝑁𝑁(𝑖𝑖)
𝑜𝑜=1 𝐭𝐭𝛼𝛼

𝑜𝑜(𝑖𝑖)𝐼𝐼
𝑖𝑖=1  (18) 
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where 𝐫𝐫(𝐗𝐗′) is the boundary integral equation residue, 𝐼𝐼 indicates the number of NURBS surfaces 𝑺𝑺𝑖𝑖  (NURBS patches) 
describing the boundary 𝚪𝚪�  and 𝑁𝑁𝑁𝑁(𝑖𝑖) the number of boundary elements utilized for the discretization of 𝑺𝑺𝑖𝑖. The mapping 
𝑺𝑺𝑖𝑖(𝜉𝜉, 𝜂𝜂), given by (8), is adopted for the generation of the nodal coordinates of the conventional linear elements, as detailed 
in the next subsection. The basis functions 𝑁𝑁𝛼𝛼

𝑜𝑜(𝑖𝑖)(𝜉𝜉1, 𝜉𝜉2) of the element 𝑒𝑒(𝑖𝑖) ∈ 𝑺𝑺𝑖𝑖  are linear Lagrange polynomials, which 
are applied for both the geometric mapping 𝐱𝐱(𝜉𝜉1, 𝜉𝜉2) and the fields approximations 𝐮𝐮𝑜𝑜(𝑖𝑖)(𝜉𝜉1, 𝜉𝜉2) = 𝑁𝑁𝛼𝛼

𝑜𝑜(𝑖𝑖)𝐮𝐮𝛼𝛼
𝑜𝑜(𝑖𝑖) and 

𝐭𝐭𝑜𝑜(𝑖𝑖)(𝜉𝜉1, 𝜉𝜉2) = 𝑁𝑁𝛼𝛼
𝑜𝑜(𝑖𝑖)𝐭𝐭𝛼𝛼

𝑜𝑜(𝑖𝑖), in which 𝐮𝐮𝛼𝛼
𝑜𝑜(𝑖𝑖) and 𝐭𝐭𝛼𝛼

𝑜𝑜(𝑖𝑖) are, respectively, the coefficients of the displacement and tractions 
approximations for the element 𝑒𝑒(𝑖𝑖) ∈ 𝑺𝑺𝑖𝑖. J𝑜𝑜(𝑖𝑖)(𝜉𝜉, 𝜂𝜂) is the Jacobian of the Gaussian-to-physical space mapping of the linear 
isoparametric elements. Notice that 𝜉𝜉1 and 𝜉𝜉2 are the coordinated of the Gaussian space of the boundary elements and 
must not be confused with the first and secont knot values of Ξ. The usual BEM system of equations 

𝐇𝐇𝐮𝐮 = 𝐆𝐆𝐓𝐓 (19) 

is thus obtained by imposing 𝐫𝐫(𝐗𝐗𝑛𝑛′ ) = 𝟎𝟎 for a set of collocation points 𝐗𝐗𝑛𝑛′  , 𝑛𝑛 = 1,⋯ ,𝑁𝑁 , where 𝑁𝑁 is the number of 
unknown coefficents of the numerical approximations. The dense (full-populated) matrices 𝐇𝐇, 𝐆𝐆 arise from the integral 
of the kernels 𝐓𝐓(𝐱𝐱′, 𝐱𝐱) and 𝐔𝐔(𝐱𝐱′, 𝐱𝐱), respectively, and 𝐮𝐮, 𝐭𝐭 are vectors collecting the coefficients 𝐮𝐮𝛼𝛼

𝑜𝑜(𝑖𝑖), 𝐭𝐭𝛼𝛼
𝑜𝑜(𝑖𝑖) of all boundary 

elements, accounting for their connectivity. After the boundary conditions imposition, the unknown coeficients of 𝐮𝐮 and 
𝐭𝐭 are collected into a vector 𝐱𝐱 and the final system 𝐀𝐀𝐱𝐱 = 𝐛𝐛 can thus be solved. The weak-singular integrals in (14) are 
integrated in polar coordinates, and the singularity cancels with the Jacobian of the transformation. The strong–singular 
integrals on the other hand are regularized by the Guiggiani Method (Guiggiani and Gigante, 1990). The remaining regular 
integrals are performed with adaptative Gaussian quadrature and sub-elementation integration (Cordeiro, 2018). 
Discontinuous boundary elements, such as those presented in Aliabadi (2002), are adopted in regions of geometric or 
traction discontinuities, and also together with a special collocation strategy to ensure an adequate collocation points 
distance, when using the surface-independent discretization for the NURBS surfaces 𝑺𝑺𝑖𝑖  , 𝑖𝑖 = 1,⋯ , 𝐼𝐼. 

4 Patch independent discretizations 

The discretization in the proposed numerical framework accounts for the following details: (i) Independent 
discretization of each NURBS surface into linear elements, based on the independent parametrizations 𝑺𝑺𝑖𝑖(𝜉𝜉, 𝜂𝜂); (ii) 
Generalized discontinuous elements at the edges of the visible areas of the NURBS parametric spaces are detected by a 
Level Set function where the offset collocation strategy is adopted; (iii) The discontinuities in the displacement field 
between surfaces are small enought due to the fact that the integral kernels are non-null at all points of the ℝ3 Cartesian 
space, resulting full-populated matrices that does not allow the independent motion of the surfaces; (iv) The offset 
collocation strategy avoids singularities and near-singularities due to coincident or small distance collocation points; (v) 
Regular NURBS surfaces are discretized into linear quadrilateral elements while trimmed surfaces can be discretized with 
both linear triangular and quadrilateral elements; (vi) The basis functions of the generalized discontinuous elements are 
built by imposing the Kronecker property at the offseted parametric coordinates of the collocation points, retaining the 
physical meaning of the coefficients of the elemental field’s aproximations. 

The first step toward the surface discretization generation is to build ℝ2 meshes for the parametric spaces of the 
NURBS surfaces. It is worth to emphasize that the discretization of each parametric space is performed independently. The 
nodes at the edges of the parametric spaces are identified by a level-set function and the respective elements are 
transformed into generalized discontinuous boundary elements where the offset collocation strategy is employed. Finally, 
based on the NURBS surface geometric mapping, Eq. (8), the nodal coordinates in the ℝ3 Cartesian space are obtained. 

4.1 Discretization of regular NURBS patches 

The discretization of the parametric space of a regular NURBS surface is trivial. In the proposed numerical 
framework, the discretization is performed with linear quadrilateral boundary elements, as illustrated in Fig. 4. 
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Figure 4 Discretization of regular NURBS patches: a) NURBS parameter space. b) discretization of the parameter space. c) resulting 

discretization in ℝ3. 

4.2 Discretization of trimmed NURBS patches 

The discretization at the visible areas of the parametric space of a trimmed NURBS surface requires the knowledge 
of the number of trimming loops 𝑙𝑙 = 1,⋯ , 𝐿𝐿, the number o trimming curves 𝑐𝑐 = 1,⋯ ,𝐶𝐶(𝑙𝑙) per loop 𝑙𝑙 and their 
mathematical description, i.e., the mapping 𝑪𝑪𝑐𝑐(𝑙𝑙)

𝑡𝑡 (𝑢𝑢). The trimming curves and the edges of the parametric space are 
discretized into a finite number of line segments. The trimmed NURBS surfaces are classified into two types for 
discretization purposes: the inner and the outer trimmed NURBS surfaces. In the former case, the meshed region is 
delimited only by the line segments of the trimming curves. In the latter case, the line segments of both trimming curves 
and the parametric space edges delimit the meshed region. Based on this geometric definition, the discretization of the 
visible areas 𝓐𝓐𝑜𝑜 of the parametric space into triangular or quadrilateral linear elements is performed based on 
bidimensional unstructured mesh generation algorithms. Fig. 5a and 5b illustrate the discretization of the parametric 
spaces of both inner and outer trimmed NURBS surfaces, respectively. The visible areas 𝓐𝓐𝑜𝑜 are presented in grey. 𝑪𝑪𝑐𝑐(𝑙𝑙)

𝑡𝑡  
indicates the trimming curve number 𝑐𝑐 ∈ 𝑙𝑙. Fig. 5 also illustrates the ℝ3 discretization of the surface in the physical space. 

 
Figure 5 Discretization of trimmed NURBS patches: a) inner discretization. b) outer discretization. 
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4.3 Generalized discontinuous elements and the offset collocation 

Collocation points in the same geometric position or small distance collocation between points leads to numerical 
singularities in any collocation based method, such as the collocation boundary integral equation method. The offset 
collocation strategy adopted herein avoids collocation points closely positioned. The collocation points are obtained by 
an offset of the edge nodes of the parametric mesh into the interior of the visible area of the NURBS parametric space, 
avoiding collocation at the edges or trimming curves. The edge nodes are identified by a signed distance function 
ϕ(𝝃𝝃𝑛𝑛,𝚪𝚪𝑜𝑜) (or, level set function) defined in the visible area 𝓐𝓐𝑜𝑜 of the parametric spaces Ξ⊗ Η as 

ϕ(𝝃𝝃𝑛𝑛,𝚪𝚪𝑜𝑜) = �
distance(𝝃𝝃𝑛𝑛,𝚪𝚪𝑜𝑜),

0
−distance(𝝃𝝃𝑛𝑛,𝚪𝚪𝑜𝑜),

 
 if 𝝃𝝃𝑛𝑛 ∈ 𝓐𝓐𝑜𝑜

 if 𝝃𝝃𝑛𝑛 ∈ 𝚪𝚪𝑜𝑜
 otherwise

 (20) 

where 𝝃𝝃𝑛𝑛 = {𝜉𝜉𝑛𝑛, 𝜂𝜂𝑛𝑛}T are the parametric coordinates of the 𝑛𝑛 = 1,⋯ ,𝑁𝑁(𝑖𝑖) nodes adopted in the discretization of 𝑺𝑺𝑖𝑖. The 
boundary of the visible area 𝓐𝓐𝑜𝑜 is 𝚪𝚪𝑜𝑜 and distance(𝝃𝝃𝑛𝑛,𝚪𝚪𝑜𝑜) is the Eucliadian distance function between the boundary 𝚪𝚪𝑜𝑜 and 
the node coordinate 𝝃𝝃𝑛𝑛 in the parametric space Ξ⊗ Η, which can be numerically computed regarding the parametrizations 
of the trimming curves 𝑪𝑪𝑐𝑐(𝑙𝑙)

𝑡𝑡 (𝑢𝑢) and small parametric increments Δ𝑢𝑢. The elements that intercept the boundary of the visible 
areas 𝓐𝓐𝑜𝑜 are set as generalized discontinuous boundary elements. The triangular and quadrilateral linear generalized 
discontinuous boundary elements adoped herein are illustrated in Fig. 6a, while Figs. 6b illustrates their use for discretization 
of the visible areas of the parametric spaces of both regular and trimmed NURBS surfaces. 

 
Figure 6 Generalized discontinuous elements: a) collocation points in the Gaussian space. b) collocation points in the parametric 

space of a regular NURBS. c) collocation points in the parametric space of a trimmed NURBS. 

The basis functions 𝑁𝑁𝛼𝛼
𝑜𝑜(𝑖𝑖) of the generalized discontinuous elements are built imposing the Kronecker delta property 

for the Lagrange polynomials at the same parametric coordinates of the offseted collocation points. This ensure that the 
coefficients 𝐮𝐮𝛼𝛼

𝑜𝑜(𝑖𝑖) and 𝐭𝐭𝛼𝛼
𝑜𝑜(𝑖𝑖) of the fields approximations have physical meaning. The term “generalized” was introduced 

in the present work to emphasize the fact that the collocation points and anchors for the kronecker imposition can be 
chosen arbitraly inside the domain of the element (see Fig. 6a). The geometric mapping of the generalized discontinuous 
elements is defined by 𝐱𝐱(𝜉𝜉1, 𝜉𝜉2) = 𝑆𝑆𝛼𝛼

𝑜𝑜(𝑖𝑖)(𝜉𝜉1, 𝜉𝜉2)𝐱𝐱𝛼𝛼
𝑜𝑜(𝑖𝑖), where 𝑆𝑆𝛼𝛼

𝑜𝑜(𝑖𝑖)(𝜉𝜉1, 𝜉𝜉2) is the original basis with nodal Kronecker 
imposition and 𝐱𝐱𝛼𝛼

𝑜𝑜(𝑖𝑖) the nodal coordinates of the element 𝑒𝑒 ∈ 𝑺𝑺𝑖𝑖. On the other hand, the basis functions 𝑁𝑁𝛼𝛼
𝑜𝑜(𝑖𝑖)(𝜉𝜉1, 𝜉𝜉2) 

for the fields of the generalized elements are computed by the imposition of the Kronecker property: 

𝑁𝑁𝛼𝛼(𝜉𝜉1, 𝜉𝜉2) = 𝑐𝑐1𝛼𝛼 + 𝑐𝑐2𝛼𝛼𝜉𝜉1 + 𝑐𝑐3𝛼𝛼𝜉𝜉2 𝑁𝑁𝛼𝛼�𝜉𝜉1
𝛽𝛽 , 𝜉𝜉2

𝛽𝛽� = �10
 for α = β
 for α ≠ β  ⇒ 𝑐𝑐𝑖𝑖𝛼𝛼,α = β = j = 1,⋯ ,3 (21) 

for linear triangular elements and 

𝑁𝑁𝛼𝛼(𝜉𝜉1, 𝜉𝜉2) = 𝑐𝑐1𝛼𝛼 + 𝑐𝑐2𝛼𝛼𝜉𝜉1 + 𝑐𝑐3𝛼𝛼𝜉𝜉2 + 𝑐𝑐4𝛼𝛼𝜉𝜉1𝜉𝜉2 𝑁𝑁𝛼𝛼�𝜉𝜉1
𝛽𝛽 , 𝜉𝜉2

𝛽𝛽� = �10
 for α = β
 for α ≠ β  ⇒ 𝑐𝑐𝑖𝑖𝛼𝛼,α = β = j = 1,⋯ ,4 (22) 

for linear quadrilateral elements. 
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5 RESULTS 

Three examples are presented to investigate the performance of non-watertight boundary element models, built 
from B-representations regarding the surface-independent discretization approach, in linear elasticity three-dimensional 
problems. The first example deals with a cube cut by a cylindrical surface with available analytical solution. A convergence 
study regarding small gaps in non-watertight models was performed. The second and the third examples deal with the 
numerical analysis of models built from complex B-representation CAD models. In the final example, the analysis model 
is built from a non-watertight geometry, which is not an option for finite element models. 

5.1 Cube cut by a cilyndrical surface – convergence test 

The first example corresponds to a cube of length 𝐿𝐿 = 1 (length unity), cut by a concentric cylindrical surface of 
radius 𝑟𝑟 = 0.15 (length unity) as illustrated in Fig. 7. The displacement components normal to the faces 𝑥𝑥 = 0, 𝑦𝑦 = 0 
and 𝑧𝑧 = 0 are restricted, and a unity traction 𝑡𝑡𝑧𝑧 = 1 (stress unity) acts on the face 𝑧𝑧 = 1. 

 
Figure 7 Cube cut by a cylindrical surface (red). The unspecified boundary conditions are zero tractions (Peng, 2016). 

The analytical displacement solution for such a problem is given by 

ux(𝐱𝐱) = −𝜈𝜈𝑥𝑥
𝑁𝑁

 , uy(𝐱𝐱) = −𝜈𝜈𝜈𝜈
𝑁𝑁

, uz(𝐱𝐱) = 𝑧𝑧
𝑁𝑁

 (23) 

The elastic constants adopted for the problem were 𝑁𝑁 = 1000 (stress unity) and 𝜈𝜈 = 0.3. From the seven surfaces 
that constitute the B-representation of the problem, the two trimmed faces 𝑧𝑧 = 0 and 𝑧𝑧 = 1 were discretized with 
triangular elements, while the remaining ones were discretized with quadrilateral elements. Three levels of 
discretizations were adopted for a convergence study: Level I, Level II and Level III. The Levels I, II and III discretizations 
comprise 704, 1328, 2924 elements and 772, 1446, 2995 nodes, respectively. Six models were then generated: three 
with the trimmed surfaces matching the cylindrical surface and three with intentioned gaps at the intersection of the 
trimmed and cylindrical surfaces. Fig. 8 illustrates a frontal view of the watertight and non-watertight meshes for the 
most refined level. 

Two convergence analyses were performed, one for the watertight models and another for the non-watertight 
models. The influence of the gaps can be evaluated regarding the convergence in terms of the L2-norm of the boundary 
displacement error. The L2-norm of boundary displacement error can be computed as 

‖𝐞𝐞u‖𝐿𝐿2 = �∫ (𝐮𝐮�−𝐮𝐮)∙�(𝐮𝐮�−𝐮𝐮)�𝚪𝚪� d𝚪𝚪

∫ 𝐮𝐮∙𝐮𝐮𝚪𝚪� d𝚪𝚪
 (24) 

in which 𝚪𝚪� = ⋃ 𝑺𝑺𝑖𝑖𝐼𝐼
𝑖𝑖=1  is the approximated boundary, 𝐮𝐮� the approximated displacement solution and 𝐮𝐮 the analytical 

displacement solution. The convergence results in terms of the L2-norm of boundary displacement error are presented 
in Fig. 9a concerning the number of collocation points of the models. Besides, Fig. 9b shows the exponential increase 
that occurs in ‖𝐞𝐞u‖𝐿𝐿2 as the ratio of the gap areas per the total boundary area increases. 
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Figure 8 Discrete BEM models: a) watertight model. b) non-watertight model. 

 
Figure 9 ‖𝐞𝐞u‖𝐿𝐿2 convergence results: a) watertight vs. non-watertight models. b) error vs. gap sizes. 

As expected, the error reduces when the number of collocation points increases in both convergence analyses. 
However, the gaps do affect the error ‖𝐞𝐞u‖𝐿𝐿2 in one order of magnitude, i.e., from 10−4 to 10−3. Even thought, global 
errors with magnitudes 10−3 are still acceptable for pratical engineering analysis purposes. 

To illustrate that the numerical results are satisfatory even in the presence of small gaps, Fig. 10 brings the results 
of the norm of the displacement vector for both watertight and non-watertight models with refinement Level III. Note 
that the results are identical considering the decimal digits presented. 

 
Figure 10 Displacement boundary field results: a) watertight model. b) non-watertight model. 
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This example is considered to be a benchmark for the validation of non-watertight discrete BEM models of linear 
elasticity. In the two next examples, non-watertight discrete BEM models are built from complex B-representation with 
the surface-independent discretization approach. The B-representation may even be non-watertight B-representations. 

5.2 Base-plate - Comparative analysis 

The second example deals with the analysis of a base-plate for structural applications. The multiple-path B-
representation NURBS model was obtained from an Initial Graphics Exchange Specification (IGES) file, available in the 
GrabCAD library. Fig. 11 illustrates the visualization of the B-representation geometry obtained from the IGES Tollbox in 
MATLAB and the most refined discrete BEM model generated with the surface-independent discretization algorithm. 

 
Figure 11 B-representation models: a) B-representation geometry. b) non-watertight discrete BEM model. 

The B-representation model is composed of 36 NURBS surfaces. There are 30 regular NURBS surfaces of polynomial 
orders 𝑝𝑝 = 1 and 𝑞𝑞 = 2, and 6 trimmed NURBS surfaces of polynomial orders 𝑝𝑝 = 1 and 𝑞𝑞 = 1 . From the 6 trimmed 
surfaces, 4 are trimmed by 2 circular curves (𝑝𝑝 = 2), and the other 2 are trimmed by 8 circular curves (𝑝𝑝 = 2). Two levels 
of discretization were adopted for the discrete BEM models: Level I and Level II. The Levels I and II discretizations are 
composed of 4586 and 12367 elements, and 5586 and 13874 nodes, respectively. The BEM models were built without 
any concern about conforming meshes at the intersections of the surfaces, thus resulting non-watertight discrete 
models. Since the B-representation is a watertight geometric model, a volumetric Finite Element Model (FEM) of the 
problem was easily created in the commercial software Ansys. The volumetric mesh from Ansys is composed of 15322 
tetrahedral quadratic elements of the type Solid186, resulting 27526 nodes. The elastic constants adopted for the 
analysis were 𝑁𝑁 = 1000 (stress unity) and 𝜈𝜈 = 0.3. The boundary conditions imposed in the model were null prescribed 
displacements, 𝐮𝐮� = 𝟎𝟎, in the left-half surface of the eight circular holes and prescribed tractions 𝐭𝐭̅ = {10 0 0}T (stress 
unity) for the right-half surface of the central axial hole. Fig. 12 illustates the boundary conditions of the problem. 

 
Figure 12 Discretization and boundary conditions: a) prescribed 𝐮𝐮� = 𝟎𝟎. b) prescribed 𝐭𝐭̅ = {10 0 0}T. 

The structural BEM and FEM analysis produced similar displacement fields. For the level I BEM model, the maximum 
values of displacement components were uxmax = 4.72828, uymax = 2.05836 and uzmax = 0.50842 (length unities). The 
level II BEM model on the other hand produced the following maximum values of displacement components uxmax =
4.86869, uymax = 2.13497 and uzmax = 0.53051 (length unities). The differences of theses and the FEM results are 
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duxmax = 1.86%, duymax = 8.56% and duzmax = 9.65% for the level I BEM model and duxmax = 1.05%, duymax = 12.60% 
and duzmax = 12.30% for the level II BEM model. The undeformed and deformed configurations for the level II non-
watertight BEM and Ansys FEM models in scale 1:1 are illustrated in Figure 13. 

 
Figure 13 Undeformed/deformed mesh configurations: a) non-watertight BEM model. b) watertight Ansys FEM model. 

Fig. 14 presents a qualitative displacement boundary fields evaluation comparing the most refined non-watertight 
BEM model with the Ansys FEM model. 

 
Figure 14 Displacement boundary field results: a) non-watertight BEM model. b) watertight Ansys FEM model. 

5.3 Crane hook 

The last example deals with the analysis of a crane hook. The multiple-path B-representation model was obtained from 
an Initial Graphics Exchange Specification (IGES) file available in the GrabCAD library. The B-representation of the problem 
is a complex non-watertight one, which introduces severe difficulties for volumetric mesh generation. A surface mesh with 
non-conforming meshes at the surfaces intersections can be easily created with the surface-independent discretization 
algorithm on the other hand. Fig. 15a illustrates the visualization of the B-representation geometry obtained with the IGES 
Tollbox in MATLAB and a zoom in the non-watertight part of the B-representation is presented in Fig. 15b. 

The B-representation model of the hook is composed of 69 NURBS surfaces. From the 69 surfaces, 32 are regular 
NURBS surfaces of polynomial orders 𝑝𝑝 = 5 and 𝑞𝑞 = 5, 8 are regular NURBS surfaces of polynomial orders 𝑝𝑝 = 5 and 
𝑞𝑞 = 4, and 4 are regular NURBS surfaces of polynomial orders 𝑝𝑝 = 1 and 𝑞𝑞 = 2. From the remaining 25 NURBS surfaces, 
20 are trimmed NURBS surfaces of polynomial orders 𝑝𝑝 = 5 and 𝑞𝑞 = 5, 2 are trimmed NURBS surfaces of polynomial 
orders 𝑝𝑝 = 5 and 𝑞𝑞 = 4, and 3 are trimmed NURBS surfaces of polynomial orders 𝑝𝑝 = 1 and 𝑞𝑞 = 1 . In the parameter 
space of the 25 trimmed surfaces, a total of 93 trimming curves of polynomial orders 𝑝𝑝 = 1, 𝑝𝑝 = 2 and 𝑝𝑝 = 5 are defined. 
A single refined discrete BEM model is generated with the surface-independent discretization algorithm. The 
discretization is composed of 9623 elements and 11614 nodes. The BEM model was built without any concern about 
conforming meshes at the intersections of the surfaces, thus avoiding complications due to the non-watertight nature of 
the geometric B-representation. Fig. 16a illustrates the discrete BEM model and a zoom in the non-watertight part of the 
discretization is presented in Fig. 16b. 
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Figure 15 B-representation geometry: a) full B-representation geometry. b) non-watertight part of the geometry. 

 

Figure 16 Discrete BEM model: a) full BEM model. b) non-watertight part of the model. 

The elastic constants adopted for the analysis were 𝑁𝑁 = 100000 (stress unity) and 𝜈𝜈 = 0.3. The boundary conditions 
imposed in the model were null prescribed displacements, 𝐮𝐮� = 𝟎𝟎, in the bottom surface of the hook suport and prescribed 
tractions 𝐭𝐭̅ = {0 −10 0}T (stress unity) in the central part of the body of the hook, as illustrated in Fig. 17. 

 

Figure 17 Discretization and boundary condition: a) prescribed 𝐮𝐮� = 𝟎𝟎 (in red). b) prescribed 𝐭𝐭̅ = {0 −10 0}𝑇𝑇(in blue). 

Fig. 18 presents the results of the norm of the boundary displacement field and the undeformed/deformed 
configurations in scale 1:50. 
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Figure 18 Crane-hook results: a) norm of the boundary displacement field. b) undeformed/deformed configurations. 

Since the B-representation of the problem is a complex non-watertight one, the volumetric mesh generation needed 
for developing a finite element (FE) model would require CAD repaire algotithms to close the gaps of the geometry (Coll 
et. al. 2014). Therefore, no FE model was created for this example. Note that even though there is a visiable gap in the 
model, a reasonable solution has been achieved with the BEM model. 

6 CONCLUSION 

The present study investigates how unsought gaps and overlaps in non-watertight boundary element models affect 
the numerical response of linear elasticity problems. A surface-independent discretization approach was developed to 
achieve flexibility in model generation without any concern about surface-to-surface mesh compatibility. Linear 
quadrilateral elements were adopted for the discretization of regular surfaces, while both triangular and quadrilateral 
elements can be adopted for the discretization of trimmed surfaces. Generalized discontinuous elements at the edges of 
the visible areas of the NURBS parametric spaces are detected by a Level Set function, and an offset collocation strategy 
was adopted for the nodes at the edges of the visible areas of the NURBS parametric spaces, avoiding singularities in the 
collocation BEM equations. The influence of the gaps in the convergence of the L2-norm of the boundary displacement 
error was verified in a 3D example with an available analytical solution. It is also shown that the L2-norm of the boundary 
displacement error increases exponentially with the increase in the size of the gaps. A second example with an available 
finite element solution was analyzed regarding a non-watertight BEM model for qualitative boundary field validation. 
Finally, a complex non-watertight B-representation of a crane hook consisting of 44 regular NURBS surfaces and 25 trimmed 
NURBS surfaces was analyzed. The obtained results have pointed out that, as long as the gaps and overlaps are small 
enough, BEM models built up from non-watertight geometries may produce valuable solutions for practical purposes. Since 
the surface gaps and overlaps, inherent to practical geometric design technics, are usually very small, one can adopt the 
BEM as a plausible choice for the structural analysis, avoiding redesigning the solid in CAD software. Future investigations 
may include 3D path-discontinuous isogeometric convergence and sensitivity analysis for non-watertight models. 
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