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Abstract 
Topology optimization research has focused on structures of a single domain or component. The single 
component configuration fails to capture the complexity of real multi-component structures. It is necessary to 
develop new methods and numerical strategies to solve multi-component systems. In this work, we propose a 
new approach considering a sequential method of topological optimization in multi-component systems. The 
proposed algorithm for topology optimization of multi-component systems is sequential. It optimizes the first 
component, the result found is included in the analysis of the optimization of the next component and thus it 
continues analyzing consecutively all the components until the last one. This methodology is the only one that 
performs sequential optimization using open-source tools. The implementation of sequential method is 
developed in four processes: development of the multi-component mesh, numerical structural analysis through 
the FEM, sensitivity analysis and a final optimization. A comparison is made with an optimization of multi-
component systems in a normal way using three commonly seen examples. 
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1 INTRODUCTION 

Many structures are composed of more than one structural component, known as multi-component. Examples 
include trusses, automotive systems, machinery, aircraft components, and many others as illustrated in Figure 1. Real 
structures are usually composed of several components that are interconnected with the aim of improving transportation 
or manufacturing, these are generally composed by the "assembly" of several individual components or multi-
component structures. However, optimizing the topology of multi-component elements can be a challenging, since the 
division of structures into their individual components may not be sufficient to consider the interaction between 
components. Thus, topology optimization in multi-component structures is still an extensive field to be explored. 

 
Figure 1 Multi-component structure 

In general, the conventional process of analysis of multi-component systems involves the consideration of the 
components individually, in order to simplify the process of modeling and designing the project (LI, STEVEN, et al., 2001). 
Thus, considering this individual analysis of each component, the connection elements are treated as a load transfer 
system, and take into account a variety of simplifications of kinematic constraints that may not reflect the real conditions. 
This strategy can limit the accuracy of the analysis and may not capture all interconnected effects between components. 
The load transfer system that is imposed on predefined connection locations between components may require that 
each component be sized taking into account the constraints and constraints of the component set. However, evaluating 
loading and boundary conditions for all multi-component systems may not be clear or sufficient for the effective 
development of multi-component systems. To ensure the desirable performance of multi-component systems, it is 
necessary to incorporate the layout of the various connected elements and their components into topology optimization. 
This will allow the interactions between components to be more accurately considered and optimize the performance 
of the system as a whole. 

A direct approach to solve this problem of optimizing the topology of multi-component elements is proposed by 
Chickermane and Gea (1997). In this approach the joints between the components are modeled as a grid of spring 
elements that transfer force potentially between the nodes of two parts. However, this straightforward approach may 
not capture all physical interactions between elements. 
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According to recent research carried out by Thomas, et al., (2020), several studies have addressed multi-component 
optimization on periodic elements, but using single component optimization with element decomposition. However, 
other works also used the direct decomposition of elements, as is the case of Menassa and Devries (1991), which inserted 
fixed positions between elements, and (CHIREHDAST, JIANG, 1996), which established fixed weld points. In Jiang and 
Chirehdast (1997), adhesive bonding elements were considered, which generated a lot of assumptions about the 
dynamics of movement between the components. Even in works such as Li, et al., (2001) which considered fixed 
elements with discrete joints in three dimensions, load transfers were still performed through theoretical assumptions 
between components. 

There are optimization methods that combine topology and layout, using component location variables as part of 
the design variables to allow flexible placement of connecting elements. In the work of ZHU, et al., (2017) is incorporated 
this approach into a final topology optimization framework, and the method was refined by Ambrozkiewicz And 
Kriegesmann (2021), who included predefined fixed-form connector elements to model force transfer between 
components and the structure support. These element fasteners are connected to the structure using coupling equations 
to avoid the need for meshing when components move. More recently, Rakotondrainibe, et al., (2020) modeled rigid 
supports together using movable boundary condition zones, whose positions were part of the optimization in a defined 
level set topology optimization framework. 

The sequential methodology of topological optimization in multi-component systems or sequential method, is a 
new approach that is based on the work carried out by Ferro and Pavanello (2022). In this work, a complete 
demonstration of structural topological optimization in multi-component elements is made. It shows the advantages of 
including the mesh insertion of a 3D environment, then the possibilities of reading the mesh by the environment to solve 
problems using FEM, how to use the methodology of the adjoint solution and finally the optimization. An advantage of 
this approach is, in fact, the ease of integration between the creation of the 3D mesh and the consideration of all 
components and their connections, including direct contact between their elements, with no simplification between 
domains. Also, another advantage is the fact that it is possible to choose which domain(s) will be considered as a volume 
restriction in the optimization and this falls directly into the creation of the new sequential method approach. And this 
even considering the entire numerical process in an open-source environment. 

In the new approach of the sequential method, considering the advantages of the normal approach, it is possible to 
insert results obtained individually from each domain and later insert them to calculate the optimization of the next 
domain sequentially. And so, verifying the gains of the new approach, where the best results for Compliance are 
graphically demonstrated, with even smaller values obtained, the optimization process is more stable and the processing 
time is not necessarily much longer. Which can be very feasible for situations with many components being considered. 
And finally, in the sequential method it is also possible to consider the volume constraints individually in each component 
and thus showing the robustness and diversity of possibilities in the sequential method. 

2 OPEN-SOURCE SOFTWARES 

With the advancement of technology and the spread of numerical methods, open-source software has become 
more improved and widely disseminated. One such software is FEniCS (ALNAES, BLECHTA, et al., 2015, LOGG, 
WELLS, et al., 2011), which offers excellent resources for partial differential equations using the finite element method. 
Dolfin-Adjoint (MITUSCH, FUNKE, et al., 2019), a complementary package to FEniCS, is used to calculate the model 
sensitivities, i.e., the derivatives of objective functions and volume constraints. To solve the constrained minimization 
problem, we can use the Ipopt (Interior Point OPTimizer) (WÄCHTER, BIEGLER, 2006). The optimization solver is a large-
scale nonlinear optimization package that finds local solutions. The Gmsh software (REMACLE, GEUZAINE, 2007) is used 
to generate finite element meshes in three dimensions, with an integrated CAD engine and a post-processor. 

Thus, all work is done using the following sequence: Mesh generation with Gmsh, Finite Element Analysis with 
FEniCS, Sensitivity analysis with Dolfin Adjoint and Optimization with Ipopt. 

2.1 Mesh generation: Gmsh software 

Gmsh is a software that has a combination of three-dimensional mesh generator, CAD and post-processor 
(REMACLE, GEUZAINE, 2007). In this work , we will only use the three-dimensional mesh generation functionality, which 
will be later converted for reading in FEniCS. 

To define a model in Gmsh, its boundary representation (BRep) is used, where a volume is bounded by a set of 
surfaces, a surface is bounded by a series of curves, and a curve is bounded by two endpoints. The model is composed 
of topological entities that deal only with the adjacencies in the model, and are implemented as a set of abstract 
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topological classes. BRep can be extended by defining internal or embedded entities in the model: internal points, edges 
and surfaces can be embedded in volumes; and interior points and curves can be embedded in surfaces. 

One of the great advantages of using Gmsh is that its geometry structure allows defining each volume of each 
domain, including the connection elements, and converting them for reading in FEniCS according to the mathematical 
process of the topological optimization method. And according to the types of meshes that can be read by FEniCS, the 
finite element models used in the work use tetrahedral linear finite elements. 

2.2 Finite element method: FEniCS 

The utilization of the FEniCS platform was crucial for the implementation of the finite element method, following a 
functional analysis-based approach (LANGTANGEN, MARDAL, 2019). This software is capable of solving Partial 
Differential Equations (PDEs) and simplifying the implementation process by utilizing the abstract formulation of the 
method, which is considered one of the two primary approaches of the finite element method, with the other being the 
engineering structural analysis formulation (LANGTANGEN, LOGG, 2016). FEniCS is one of the tools based on the first 
approach, as well as other works by authors such as Kirby (2007) and Larson and Bengzon (2013). 

Using the GALERKIN-type weighted residuals method ("CG" or Continuous Galerkin), it is possible to write the 
formulation of the PDEs solution considering a nodal polynomial approximation by subdomains. The test functions used 
in the FEniCS programs are defined according to the spaces of functions that specify the properties of the approximations 
of the numerical values adopted (LANGTANGEN, LOGG, 2016). To reduce the number of degrees of freedom of the 
models, only Lagrange CG1 tetrahedral elements are used both for the analysis of the displacements and for the filtering 
system. 

2.3 Sensitivity analysis: dolfin adjoint 

The adjoint method is a mathematical technique used in optimization to efficiently calculate the gradient of an 
objective function with respect to a set of design variables. This method is used in dolfin-adjoint software, which is a tool 
for solving PDEs and optimizing their solutions. 

The adjoint system is the same idea as the reverse algorithmic or automatic differencing mode. Where the term 
adjunct is also used in the literature as dual. 

Thus, as seen in Farrell, et al., (2013) and Mitusch et al., (2019) one starts by fixing the choice of parameter 𝑚𝑚, and 
then solves the Jacobian solution d𝑢𝑢 d𝑚𝑚⁄  associated with choosing 𝑚𝑚. Then the inner product is made with a term 𝜕𝜕𝜕𝜕 𝜕𝜕𝑢𝑢⁄  
and thus the gradient d𝜕𝜕 d𝑚𝑚⁄  is calculated. 

According to Farrell, et al., (2013) and Mitusch, et al.,( 2019), the gradient calculation process in an optimization 
problem with PDE constraint starts with the fixed choice of the parameter 𝑚𝑚, followed by the resolution of the Jacobian 
solution d𝑢𝑢 d𝑚𝑚⁄  corresponding to that choice. Then, the inner product is made with a term 𝜕𝜕𝜕𝜕 𝜕𝜕𝑢𝑢⁄ , in order to calculate 
the gradient d𝜕𝜕 d𝑚𝑚⁄ . 

2.4 Optimization: Ipopt 

Ipopt is a free non-linear optimization software. It uses the interior point method to solve continuous optimization 
problems, subject to nonlinear and linear constraints (ALONSO, DE SÁ, et al., 2019, DE SOUZA, SILVA, 2020) . 

The interior point method (ANDREI, 2022, MAAR, SCHULZ, 2000) is an optimization method that consists of 
iteratively approximating the solution of the problem in a series of steps. Each step consists of determining a search 
direction that improves the current solution. This direction is determined by solving an auxiliary problem, which is a 
quadratic approximation of the original problem. 

3 STRUCTURAL TOPOLOGY OPTIMIZATION IN MULTI-COMPONENT ELEMENTS 

To perform the structural topological optimization in multi-component elements, the problem of minimizing the 
structural compliance (mean sensitivity) is considered, through an objective function over the considered domains, 
according to Equation 1 (BENDSOE, SIGMUND, 2003, CHICKERMANE, GEA, 1997). 

𝐿𝐿(𝑣𝑣)  =   ∑ �∫ 𝑓𝑓𝑖𝑖
 
Ω𝑖𝑖

. 𝑣𝑣 𝑑𝑑Ω𝑖𝑖  +   ∫ 𝑇𝑇𝑖𝑖
 
𝜕𝜕Γ𝑁𝑁𝑖𝑖

. 𝑣𝑣 𝑑𝑑Γ𝑁𝑁𝑖𝑖�
𝐷𝐷
𝑖𝑖=1 ,  (1) 
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where 𝐿𝐿(𝑣𝑣) is the work of external forces of volume forces 𝑓𝑓𝑖𝑖 and surface forces 𝑇𝑇𝑖𝑖  applied to each domain, 𝐷𝐷 represents 
the number of domains analyzed, 𝑖𝑖 represents the subindex of each domain, 𝑖𝑖 is the individual domains, 𝑣𝑣 represents the 
test functions, and 𝜕𝜕Γ𝑁𝑁𝑖𝑖  is the portion of the contour where the surface forces of each domain are applied. 

Equilibrium conditions (BENDSOE, SIGMUND, 2003) are considered as constraints of the problem and are given per: 

−∇.𝜎𝜎  =  𝑓𝑓𝑏𝑏 𝑖𝑖𝑖𝑖 Ω,    (2) 

𝜎𝜎.𝑖𝑖 = 𝑇𝑇 𝑜𝑜𝑖𝑖 Γ𝑁𝑁,  (3) 

where 𝜎𝜎 is the Cauchy stress tensor, 𝑓𝑓𝑏𝑏 is the body forces, 𝑖𝑖 represents the external normal direction in Γ𝑁𝑁 and ∇.𝜎𝜎 is 
the stress divergence. 

And the following additional restrictions: 

�𝜌𝜌(𝑥𝑥)d𝑥𝑥𝑖𝑖  ≤ 𝑉𝑉𝑖𝑖
𝛺𝛺

 

0 ≤ ρ(𝑥𝑥) ≤ 1,  ∀𝑥𝑥 ∈ Ω𝑖𝑖  (4) 

Since the parameter 𝜌𝜌(𝑥𝑥) is the design variable (𝜌𝜌(𝑥𝑥) = 1 means presence of material and 𝜌𝜌(𝑥𝑥) = 0 means absence 
of material), 𝑉𝑉𝑖𝑖, in Equation 4, is the desired final volume of each component. The strain displacement relations 
considering the small elastic deformations of a multi-component Ω𝑖𝑖 can be written as: 

𝜖𝜖𝑖𝑖(𝑣𝑣) = 1
2

(∇𝑣𝑣 + (∇𝑣𝑣)𝑇𝑇).  (5) 

The constitutive equations can be written as: 

𝜎𝜎𝑖𝑖(ui) = 𝜆𝜆𝜆𝜆𝜆𝜆(𝜖𝜖𝑖𝑖)𝐼𝐼 + 2𝜇𝜇𝜖𝜖𝑖𝑖  (6) 

and the linear integral form of the equilibrium conditions can be written as: 

𝑎𝑎(𝑢𝑢, 𝑣𝑣) = ∑ ∫ 𝜎𝜎𝑖𝑖(𝑢𝑢𝑖𝑖)
 
Ω𝑖𝑖

: 𝜖𝜖𝐼𝐼(𝑣𝑣)dΩ𝑖𝑖𝐷𝐷
𝑖𝑖=1   (7) 

where ui is the displacement field of each domain, 𝜖𝜖𝑖𝑖(𝑣𝑣) is the linear part of the Green strain stresses of each domain, 𝜆𝜆𝜆𝜆 
is the trace and 𝐼𝐼 is the identity tensor. The Lamé constants are 𝜆𝜆 and 𝜇𝜇 according to: 

λ = 𝐸𝐸𝐸𝐸
(1+𝐸𝐸)(1−2𝐸𝐸) ,  μ = 𝐸𝐸

2(1+𝐸𝐸),  (8) 

being in Equation 8, 𝐸𝐸 the Young’s modulus and 𝜈𝜈 a Poisson coefficient. 
With this, the variational formulation is summarized on how to find 𝑢𝑢, total displacements considering the influence 

of all domains, so that 𝑢𝑢  ∈  𝑉𝑉 where: 

𝑎𝑎(𝑢𝑢, 𝑣𝑣) = 𝐿𝐿(𝑣𝑣)  ∀𝑣𝑣  ∈  𝑉𝑉�   (9) 

being 𝑉𝑉�  the Hilbert subspace of 𝑣𝑣 admissible functions. 
Isotropic elastic conditions are assumed in the examples of this work. The update material distribution 𝜌𝜌(𝑥𝑥) is done 

by updating the material stiffness through compliance minimization (Bendsøe and Sigmund, 2003) which can be written 
as follows: 

min. 𝐿𝐿(𝑣𝑣) 

s.a: 𝑎𝑎(𝑢𝑢, 𝑣𝑣) = 𝐿𝐿(𝑣𝑣)  ∀𝑣𝑣  ∈  𝑉𝑉�  
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∑ ∫ 𝜌𝜌(𝑥𝑥) 
Ω𝑖𝑖

d𝑥𝑥𝑖𝑖 ≤ 𝑉𝑉𝑖𝑖𝐷𝐷
𝑖𝑖=1  𝑤𝑤𝑖𝑖𝜆𝜆ℎ 0 ≤ 𝜌𝜌(𝑥𝑥) ≤ 1,∀𝑥𝑥 ∈  Ω𝑖𝑖  (10) 

The method presented in this study uses the SIMP technique - Isotropic Solid Material with Penalization (SIGMUND, 
2001) to optimize the structural topology of multi-component elements simultaneously and individually. This method 
allows an ideal material distribution for each component, considering the loads imposed on the structure as a whole, 
without simplifications. In this way, it is possible to carry out a precise optimization of the distribution of materials in 
each component of the structure. 

Thus, a continuous SIMP relaxation is performed, proposed by Bendsøe and Sigmund (2003) according to: 

𝐸𝐸  =  𝐸𝐸𝑚𝑚𝑖𝑖𝑚𝑚 +  (𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐸𝐸𝑚𝑚𝑖𝑖𝑚𝑚)𝜌𝜌(𝑥𝑥)𝑝𝑝  (11) 

4 DENSITY AND PROJECTION FILTERS 

The choice of the power law for the interpolation of materials, according to Equation 11, can lead to numerical 
problems of the "checkerboard" type with alternating solutions between 𝜌𝜌(𝑥𝑥) = 0 and 𝜌𝜌(𝑥𝑥) = 1 (DÍAZ, SIGMUND, 1995, 
JOG, HABER, 1996, SIGMUND, PETERSSON, 1998). To mitigate these problems, it is common to use a hearing density 
filter implicitly by solving a Helmholtz-type partial differential with Neumann boundary conditions (LAZAROV, SIGMUND, 
2011) as described in Equation 12: 

−𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚
2 ∇2𝜓𝜓�(𝑥𝑥) + 𝜓𝜓�(𝑥𝑥) = 𝜓𝜓(𝑥𝑥)  (12) 

The continuous representation of the unfiltered design variable is 𝜓𝜓(𝑥𝑥), while the filtered design variable is 𝜓𝜓�(𝑥𝑥), 
and the parameter 𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚 has a role similar to 𝜆𝜆𝑚𝑚𝑖𝑖𝑚𝑚 in classical approaches to filtering by the SIMP method. In the study 
by (Lazarov and Sigmund, 2011), an approximate relationship between the length scales for the classical filter and the 
Helmholtz approach is described as 𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚 = 𝜆𝜆𝑚𝑚𝑖𝑖𝑚𝑚 2√3⁄ , where the parameter 𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚 is defined by the solution of a partial 
differential equation of the Helmholtz type with homogeneous Neumann boundary conditions, according to Equation 
12. The solution of the equation can be expressed in the form of an integral convolution, which is equivalent to the 
classical filter. In terms of variational formulation, we have: 

−𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚
2  ∫  ∇Ω 𝜓𝜓�(𝑥𝑥).∇𝑤𝑤𝑑𝑑Ω  +   ∫  ∇𝜓𝜓�(𝑥𝑥)Ω 𝑤𝑤𝑑𝑑Ω  =   ∫  𝜓𝜓(𝑥𝑥)𝑤𝑤𝑑𝑑ΩΩ  ∀𝑤𝑤  ∈  𝑊𝑊� ,  (13) 

being 𝑊𝑊�  Hilbert subspace of 𝑤𝑤 admissible functions. 
The density filtering method results in non-binary values between 0 and 1, and to obtain a smoother transition 

between these values, the Heaviside Projection is used. This technique consists of projecting the intermediate densities 
to their minimum and maximum limits. In (WANG, LAZAROV, et al., 2010), this projection is performed by calculating a 
new density field, 𝜌𝜌�(𝑥𝑥), as follows: 

�̅�𝜌(𝜌𝜌�(𝑥𝑥)) =  tanh(𝛽𝛽𝛽𝛽)+tanh (𝛽𝛽(𝜌𝜌�(𝑚𝑚)−𝛽𝛽))
tanh(𝛽𝛽𝛽𝛽)+ tanh (𝛽𝛽(1−𝛽𝛽))

  (14) 

The 𝛽𝛽 parameter is used in the intermediate density projection and is responsible for weighting the intermediate values. 
The 𝛾𝛾 parameter is responsible for performing the projection. 

5 NUMERICAL IMPLEMENTATION 

The equilibrium equations described by Equation 9 are solved using the finite element method, through the FEniCS 
framework. This software converts models described by variational forms using high-level language and automatically 
generates the corresponding finite element code. The sensitivities are calculated using the adjoint method, using the 
Dolfin Adjoint package, which is capable of automatically deriving the adjoint and tangent discrete linear models from a 
direct model written in the Python interface for FEniCS. To solve the optimization problem presented in Equation 10, 
optimization routines from the Ipopt library are used, which is capable of dealing with large-scale nonlinear problems, 
through the implementation of an "interior point" and a "line search". The analysis and optimization methods employed 
are suitable for handling large problems, with up to millions of variables and constraints. Figure 2 presents a general 
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scheme of the numerical implementation used for a normal optimization including all components or domains of a 
considered multi-component structure. In Figure 3, the new scheme of sequential optimization is presented, where the 
use of the previous result in the subsequent result of each component or domain is considered. The sequential 
optimization sequence follows in Figure 4. 

 
Figure 2 Numerical implementation routine for Normal Optimization 

 
Figure 3 Numerical implementation routine for Sequential Optimization 

 
Figure 4 Sequential methodology of topological optimization in multi-component systems 
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6 MODELS ANALYZED 

To illustrate the application of the proposed approach, some common models in the literature will be generated 
and analyzed. One of the models is the Cantilever Beam with two domains, which is often used in structural topology 
optimization studies in multi-component elements, and presents the overlapping domains and their connection 
elements. Superimposed multi-component models, like the one shown in Figure 1 in 3D analysis, or models with even 
greater thickness, can lead to significant distortions in the final results due to the eccentricity of the load in relation to 
the components. However, this distortion is not as evident in 2D analyzes and is often overlooked in the cited studies, 
which generally focus on 2D analyses. 

With the aim of making the models more realistic and circumventing the problems resulting from distortion in the 
final results caused by the eccentricity of the load in relation to the components, this work also proposes the inclusion 
of an additional connection element, such as a connection plate, to promote concentric loading between the multi-
components in the models. The numerical approach also allows choosing which domains can be optimized, only changing 
the need for volume constraint functions. To make the simulation even more realistic, the connection elements will be 
modeled as pins or hollow screws, reducing the rigidity of the connection and making it more flexible, improving the 
applicability in the analysis conditions in each individual element. The models of the individual components and their 
connections are considered with a material with modulus of elasticity 𝐸𝐸 = 210. 109𝑃𝑃𝑎𝑎 and Poisson coefficient of 𝜈𝜈 = 0.3. 
All individual components have the following dimensions: length: 3𝑚𝑚, height: 1𝑚𝑚 and width: 0.02𝑚𝑚 

In all examples the differences between sequential optimization and normal optimization are shown. And due to 
the differentiated form of mesh creation presented here, with the use of external mesh generation and compatible with 
the solution to the problem in an FEM environment, there are few works for comparative purposes. In the work done by 
Ambrozkiewicz and Kriegesmann (2021), in its main example with two components and two connection elements, only 
the final result of Complince is shown, however, even so, it has a result similar to the one developed here. 

In the sequential method it is also possible to consider the volume constraints individually in each component. As 
demonstrated by Ferro and Pavanello (2023) using a subclass of Dolfin-Adjoint, it is possible to consider the desired 
volume for each component individually according to Equation 4. And thus, a comparison considering variations between 
volumes is also shown at the end of each model. 

6.1 Cantilever with two domains 

The first example is the Cantilever with two domains, in which a multi-component with two overlapping beams and 
two fixed connecting elements was created - the left domain is fixed to the left face, while a load is applied to the middle 
part of the right face of the right domain. Volume reduction to 50%. The finite element model uses tetrahedral linear 
finite elements with 72.822 elements (FEniCS uses only tetrahedral mesh in 3D models). 

In Figures 5 and 6 is the result for normal optimization, that is, being performed at the same time in all domains. 
And in Figures 7 and 8 the sequential optimization method is shown. 

 

Figure 5 Cantilever with two domains (Normal Optimization): a) Base Geometry, b) Optimized Geometry 
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Figure 6 Cantilever with two domains (Normal Optimization): Optimized Side Views 

 

Figure 7 Cantilever with two domains (Sequential Optimization): a) 1st Optimized Domain and b) 2nd an All Optimized Domain 

 

Figure 8 Cantilever with two domains (Sequential Optimization): Optimized Side Views 

An important analysis in structural optimization is the evaluation of the objective function or the Compliance, as a 
function of the iteration compared to the reduction of the volume of the structure. Thus, Figure 9 shows this result 
comparing the Compliance between a structure with normal optimization and a sequential optimization. 
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Figure 9 Cantilever with two domains: Compliance/Volume Fraction curve versus Iteration 

After viewing the results obtained for both normal optimization and sequential optimization, it is observed that the 
final results are very close, presenting a variation of approximately 4% with better performance for sequential 
optimization. When comparing the time spent on numerical processing, the normal optimization is done in 151 seconds 
and the sequential one in 380 seconds in this example. Considering that for the sequential optimization there are ttwo 
sequential optimizations, this longer time is justified. And even with the additional time, even so, if a model with a larger 
mesh is considered, the final results will be even better for the sequential method, showing its ability to obtain better 
results. 

6.1.1 Cantilever with two domains - different volume constraints 

Now, the results will be shown considering that the volumes of each component can be individualized using the 
sequential method. 

According to Figure 5 a) considering the Cantilever with two domains, the volumes of Components 1 and 2 will be 
changed. Figure 10 shows the result for the Volume of 30% for Component 1 and 50% for Component 2. And Figure 11 
is showing the result for the Volume of 50% for Component 1 and 30% for Component 2. 

 

Figure 10 Cantilever with two domains (Sequential Optimization): Optimized Side Views - Volume of 30% for Component 1 and 50% 
for Component 2 
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Figure 11 Cantilever with two domains (Sequential Optimization): Optimized Side Views - Volume of 50% for Component 1 and 30% 
for Component 2 

6.2 Cantilever with two domains and a connecting plate 

Now the Cantilever model is made considering two non-overlapping aligned beams and a plate or an additional 
joining element between the beams. Each beam is connected by two connecting elements through the additional plate. 
The left domain is fixed to the left face and a load is applied to the central part of the right face of the right domain. 
Volume reduction to 50%. The finite element model uses tetrahedral linear finite elements with 61.815 elements. 

In Figures 12 and 13 is the result for normal optimization, that is, being performed at the same time in all domains. 
And in Figures 14 and 15 the sequential optimization method is shown. 

 

Figure 12 Cantilever with two domains and a connecting plate (Normal Optimization): a) Base Geometry, b) Optimized Geometry 

 

Figure 13 Cantilever with two domains and a connecting plate (Normal Optimization): Optimized Side Views 
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Figure 14 Cantilever with two domains and a connecting plate (Sequential Optimization): a) 1st Optimized Domain, b) 2nd Optimized 

Domain and c) 3rd and All Optimized Domain 

 
Figure 15 Cantilever with two domains and a connecting plate (Sequential Optimization): Optimized Side Views 

As in the previous example, an evaluation of the objective function or Compliance is also carried out, depending on 
the detected iteration of the structure's volume reduction. Thus, Figure 16 shows this result comparing Compliance 
between a structure with normal optimization and sequential optimization. 

 
Figure 16 Cantilever with two domains and a connecting plate: Compliance/Volume Fraction curve versus Iteration 

After viewing the results obtained for both normal optimization and sequential optimization, in this model, it is also 
observed that the final results are very close, presenting a variation of approximately 4.4% with better performance for 
sequential optimization. When comparing the time spent on numerical processing, the normal optimization is done in 
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131 seconds and the sequential one in 576 seconds in this example. In this case, sequential optimization is performed in 
three sequential optimizations, justifying the longer time. 

6.2.1 Cantilever with two domains and a connecting plate - different volume constraints 

The results will be shown considering that the volumes of each component can be individualized using the 
sequential method. 

According to Figure 12 a) considering the Cantilever with two domains and a connecting plate, the volumes of 
Components 1 and 2 and a connecting plate will be changed. Figure 17 shows the result for the Volume of 50% for 
Component 1 and 2 and 30% for a connecting plate. And Figure 18 shows the result for the Volume of 30% for Component 
1 and 2 and 50% for a connecting plate. 

 

Figure 17 Cantilever with two domains and a connecting plate (Sequential Optimization): Optimized Side Views - Volume of 50% for 
Component 1 and 2 and 30% for a connecting plate 

 

Figure 18 Cantilever with two domains and a connecting plate (Sequential Optimization): Optimized Side Views - Volume of 30% for 
Component 1 and 2 and 50% for a connecting plate 

6.3 Cantilever with three domains 

Finally, the Cantilever model is made considering three overlapping equal beams. Each beam is connected by two 
connecting elements through the center plate. The left domain is fixed to the left face and a load is applied to the middle 
part of the right face of the right domain. Volume reduction to 50%. The finite element model uses tetrahedral linear 
finite elements with 57.088 elements. 

In Figures 19 and 20 is the result for normal optimization, that is, being performed at the same time in all domains. 
And in Figures 21 and 22 the sequential optimization method is shown. 
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Figure 19 Cantilever with three domains (Normal Optimization): a) Base Geometry, b) Optimized Geometry 

 

Figure 20 Cantilever with three domains (Normal Optimization): Optimized Side Views 

 

Figure 21 Cantilever with three domains (Sequential Optimization): a) 1st Optimized Domain, b) 2nd Optimized Domain and c) 3rd and 
All Optimized Domain 

 

Figure 22 Cantilever with three domains (Sequential Optimization): Optimized Side Views 

Also, as in the previous examples, an evaluation of the objective function or Conformity is carried out, depending 
on the detected iteration of structure volume reduction. Thus, Figure 23 shows this result comparing Compliance 
between a structure with normal optimization and sequential optimization. 
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Figure 23 Cantilever with three domains: Compliance/Volume Fraction curve versus Iteration 

After viewing the results obtained for both normal optimization and sequential optimization, in this model, it is also 
observed that the final results are very close, presenting a variation of approximately 1% with better performance for 
sequential optimization. In this model, the sequential optimization is also performed in three sequential optimizations, 
justifying the longer numerical processing time, with the normal optimization performed in 126 seconds and the 
sequential optimization in 573 seconds. It is observed here that in the first iterations, there is a low variation between 
the normal and sequential optimization, but as the process continues, the improvement in the result in the sequential 
optimization is evidenced. 

6.3.1 Cantilever with three domains - different volume constraints 

The results will be shown considering that the volumes of each component can be individualized using the 
sequential method. 

According to Figure 19 a) considering the Cantilever with three, the volumes of Components 1, 2 and 3 will be 
changed. Figure 24 shows the result for the Volume of 30% for Component 1 and 50% for a Components 2 and 3. And 
Figure 25 shows the result for the Volume of 30% for Components 1 and 2 and 50% for a Component 3. 

 

Figure 24 Cantilever with three domains (Sequential Optimization): Optimized Side Views - Volume of 30% for Component 1 and 
50% for a Components 2 and 3 
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Figure 25 Cantilever with three domains (Sequential Optimization): Optimized Side Views - Volume of 30% for Components 1 and 2 

and 50% for a Component 3 

7 CONCLUSION 

This work implemented a new approach in the design of multi-component systems, the sequential methodology of 
topological optimization in multi-component systems using the programs Gmsh, FEniCS, Dolfin Adjoint and Ipopt. Thus, 
demonstrating the feasibility of implementation in a fully open-source environment. Classic examples of structural 
topology optimization were considered as multi-component elements and their results are shown. 

At first, the integration between the different platforms used may seem expensive, but the learning progress in this 
approach has a smooth curve over the works and models performed. Understanding the mesh generation process by 
Gmsh and how to make it available, within the multi-component elements approach, both for the finite element analysis 
performed by FEniCS and for the Dolfin-Adjoint sensitivity calculation, is a complex process and shown in this work 
integrated into all programs. 

The great advantage of the numerical method developed in this work is the sequential use of results obtained for a 
component and inserted into the analysis to obtain the result of the next domain and so on until the last domain. 

When comparing the results obtained here with well-known works such as those seen in Thomas, et al., (2020) that 
use commercial packages or even more recent works such as Ambrozkiewicz snd Kriegesmann (2021), we see that the 
results are very close, showing the viability of the codes generated here. However, this work is the first that makes a 
sequential analysis of its components individually. 

Finally, the results obtained showed that the sequential method, even with a longer processing time, justified by 
the fact that there are a series of optimizations until reaching the final result, still proves to be advantageous in relation 
to the normal method, where in the final result, structures have the lowest compliance. Looking from the computational 
point of view, the increase in time is of the order of N components, therefore, for large amounts of components, or even 
models with larger meshes, the sequential method is even more advantageous if it is necessary to optimize components 
individually. 
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