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Abstract 
The process that involves the continuous monitoring and analysis of a structure's behavior and performance is known 
as Structural Health Monitoring (SHM). SHM typically involves the use of sensors and other monitoring devices to collect 
data, such as displacements, strains, accelerations, among others. These data are analyzed using advanced algorithms 
and machine learning techniques to identify any signs of abnormal behavior or deterioration. This paper presents a 
numerical and experimental study of a slender frame subjected to five levels of structural changes under impact 
loading. The dynamic responses were recorded by four accelerometers and used to build models based on Sparse Auto-
Encoders (SAE). Such models can identify each of the five structural states in an unsupervised way. A new strategy to 
define the hyperparameters of the SAE is presented, which proved to be adequate in the experiments conducted. 
Finally, the experimental data set is made available to the scientific community to serve as a benchmark for validating 
SHM methodologies to identify structural changes from dynamic measurements. 

Keywords 
Structural Health Monitoring; Damage Detection; Vibration Signals; Unsupervised Deep Learning; Sparse 
Auto-Encoder 

Graphical Abstract 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-8569-0041
https://orcid.org/0000-0002-6625-8165
https://orcid.org/0000-0003-1463-8518
https://orcid.org/0000-0002-7991-8425
https://orcid.org/0000-0002-8860-1286
https://orcid.org/0000-0002-1673-5592


Novelty detection on a laboratory benchmark slender structure using an unsupervised deep learning algorithm Rafaelle Piazzaroli Finotti et al. 

Latin American Journal of Solids and Structures, 2023, 20(9), e512 2/21 

1 INTRODUCTION 

The proper functioning of structural systems and the safety of users are among the main concerns of engineers 
throughout the life cycle of any civil engineering construction. To avoid catastrophic failures, it is important to continuously 
monitor the structure’s condition and detect any abnormal behavior at an early stage, especially when dealing with large 
structures, such as bridges, viaducts, tall buildings, towers, and geotechnical constructions. The process of identifying structural 
failures or malfunctions through continuous monitoring is commonly known as Structural Health Monitoring (SHM). 

After an extensive present-day literature review, Avci et al. (2021) states that the most critical component of SHM is 
damage detection, which is defined as a systematic and automatic process of identifying the existence of damage, followed by 
its localization and its severity assessment. Recent articles specifically focused on damage detection reinforce this assertion 
(Nunes et al. 2021, Dan et al. 2021, Finotti et al. 2022a, Liu et al. 2022, Rosso et al. 2023). Such an idea seems logical since the 
location and quantification of the damage extension presuppose correctly identifying its occurrence beforehand. 

At the same time, SHM strategies that are successful in locating or quantifying damage are often supervised (Avci et al. 
2021, Eltouny et al. 2023). These strategies can be very useful when two or more baseline structural behaviors are known. 
However, this specific situation may hinder their use because, in real structures, only the current structural state is usually 
known. Hence, defining a robust and unsupervised model for detecting structural damage still presents many challenges. 

Among the different methodologies available to identify the occurrence of structural anomalies, vibration-based 
techniques have been extensively investigated lately (Hou and Xia 2021, Avci et al. 2021, Eltouny et al. 2023). Such 
strategies are capable of handling significant structural complexity with relatively low computational cost, depending 
only on the acquired signals and their subsequent processing, which fundamentally consists in two steps: feature 
extraction/data fusion and feature classification to infer if a structural change has occurred. 

Over the past few years, the investigation of structural integrity has been performed by employing modal 
analysis/tracking-based methods, which consist in the evaluation of changes in the modal parameters over time 
(Doebling et al. 1998, Huang et al. 2020, Zhan et al. 2021). The basic assumption is that the degrading process alters the 
physical properties of the structure, such as mass and stiffness, which influence its natural frequencies, mode shapes, and 
damping ratios. However, the effect of environmental/operational factors (uncertainties about loadings, temperature 
variation, etc.) may also alter the structure’s dynamic characteristics, thus adversely impacting the damage diagnosis made 
by these methods (Morales et al. 2019, Anastasopoulos et al. 2021, Wah et al. 2021, Corbally and Malekjafarian 2022, 
Wang et al. 2022). To circumvent this issue, more accurate measurements or higher levels of degradation are required so 
that the changes caused by damage are not mixed with external effects and vice-versa, leading to false alarms. 

Notwithstanding the many procedures that can reduce ambient effects, further efforts are still needed to improve 
the damage assessment tools for practical applications (Wang et al. 2022). Therefore, several contributions have been 
proposed by researchers, including different signal processing techniques to analyze and extract relevant information 
from raw dynamic data (Cardoso et al. 2019a, Mousavi et al. 2022, Zhang et al. 2022, Alves and Cury 2023). 

More recently, due to the evolution of computer and information technologies, increasing attention has been given 
to the application of Machine Learning (ML) in structural novelty identification (Finotti et al. 2017, Cardoso et al. 2019b, 
Sun et al. 2020, Umar et al. 2021, Lei et al. 2022). Among all possible ML-based algorithms, those based on deep learning 
appear as promising alternatives to traditional techniques. In this paper, a special highlight is given to the Sparse Auto-
Encoder (SAE), a deep neural network algorithm that automatically extracts features from data. The SAE reconstructs its 
inputs through an internal coding - modeled by linear and nonlinear functions - that transforms them into a new group 
of variables (features) (Goodfellow et al. 2016). Autoencoders are known not only for their ability to deal with large 
volumes of data, but also for their capability to provide compelling solutions, particularly for nonlinear problems, such 
as structural anomaly detection. Therefore, the SAE may be a suitable method for handling vibration signals. 

Considering that SAE deep learning algorithms are recent tools in the SHM area, studies focused on evaluating them 
to solve novelty detection problems are still welcome, as noticed by the considerable number of recent works that address 
this topic (Wang and Cha 2021, Finotti et al. 2022a, Abbas et al. 2023). However, most studies already published focused 
on numerical models (Wang and Cha 2021, Abbas et al. 2023, Eltouny et al. 2023). Although some applications are found in 
practical and unsupervised applications of SHM systems, as reported by Avci et al. (2021), the SHM solution is not universal 
for different types of structures. A set of techniques that might work for one structure might not work for another. It is also 
observed that most analyses already carried out with SAE are applied to the detection of machine failure components, 
problems that are much better behaved than civil engineering structures ones (Yang et al. 2022). For such reasons, the 
authors understand that there is still a lack of studies to consolidate the application of the SAE in SHM systems. 

In this context, this paper investigates the performance of the SAE algorithm to identify structural alterations in a slender 
frame tested in laboratory subjected to five distinct structural scenarios. The experimental program includes 1500 
experimental tests, being 300 for each damage scenario. Moreover, a new strategy is proposed to define SAE’s best 
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hyperparameters based on the analysis of the well-known Shewhart T control chart (T2-statistic) (Montgomery 2009), 
calculated with SAE extracted features, allowing a correct identification of the five structural scenarios in an unsupervised way. 
Also, for comparison purposes, the authors propose the use of PCA (Principal Component Analysis) for feature extraction. 

An advantage of the proposed methodology is that data are processed directly in the time domain, avoiding modal 
parameters estimation and tracking (Cardoso et al. 2019b). Moreover, the influence of external factors (such as 
temperature) is implicitly modeled by SAE. Differently from modal-based detection methods, the SAE/T2 approach is less 
susceptible to uncertainties and errors related to data processing since no other algorithm is necessary to filter operational 
and/or environmental effects. Thus, such an approach stands for a major advantage in terms of computational cost and 
time of analysis. Another interesting aspect of the proposed methodology is its unsupervised analysis nature, meaning that 
it does not need previously labeled observations or desired output variables. This last aspect is fundamental for real SHM 
applications since in practice there is hardly any prior knowledge of the structure’s health condition in current SHM systems. 

2 THEORETICAL BACKGROUND 

The strategy used to identify structural novelties is based on two algorithms: 

1. The Sparse Autoencoder (SE). In this paper, the SAE is used to extract features capable of characterizing the 
monitored dynamic signals, working as a parameter reducer. 

2. The Shewhart T Control Chart (𝑇𝑇²). This graphic viewer of the statistical metric 𝑇𝑇², calculated from the reduced 
parameters obtained by the SAE, is used in this paper to objectively indicate the occurrence of structural changes. 

For this reason, authors defined the computational model used to identify structural novelties as “SAE-T2 model”. 
A brief discussion of these two methods is presented below. 

2.1 Sparse Auto-Encoder 

Due to its ability to represent data at a high level, concisely and satisfactorily, one of the best known and most used deep 
machine learning algorithms is the Sparse Auto-Encoder (SAE) (Goodfellow et al. 2016). Auto-Encoders consist of a neural 
network that is trained to produce an output that approximates its respective input. Internally, this network has a layer 𝐡𝐡 that 
describes a code used to represent its output 𝐲𝐲, which can be understood in two parts: an encoding function 𝐡𝐡 = 𝑓𝑓(𝐱𝐱); and a 
decoding function 𝐲𝐲 = 𝑔𝑔(𝐡𝐡) that reconstructs the input, as illustrated by the architecture presented in Figure 1. 

 
Figure 1 General structure of an Auto-encoder, mapping an input x to an output y (called as reconstruction). 

Nevertheless, the main interest is not in the replicated output of the AE, but in exploring its ability to extract 
characteristics from raw data. If the AE is used for data mapping only, i.e., without feature reconstruction, it is designed to 
produce 𝐡𝐡 with a smaller dimension than 𝐱𝐱 and is known as Undercomplete Auto-Encoder. The great advantage of reducing 
the data from vector 𝐱𝐱’s dimension to vector 𝐡𝐡’s dimension is the identification of relevant parameters at a high-level of 
abstraction, helpful for recognizing patterns in datasets. In this context, the learning of the AE network is accomplished by 
minimizing a function 𝑍𝑍 �𝐱𝐱,𝑔𝑔�𝑓𝑓(𝐱𝐱)�� that penalizes the differences between 𝐱𝐱 and 𝑔𝑔�𝑓𝑓(𝐱𝐱)�. In cases where the coding 
function is linear and 𝑍𝑍 is the mean quadratic error, the Undercomplete Auto-Encoder behaves like the Principal Component 
Analysis (PCA) (Baldi and Hornik 1989). Conversely, when employing nonlinear functions for 𝑓𝑓 and 𝑔𝑔, the Undercomplete 
Auto-Encoder may be more powerful than PCA to reduce the dimensionality of a problem (Meng et al. 2017). Despite their 
efficiency in characterizing data, the encoders and decoders may acquire an excessive ability to approximate 𝐲𝐲 ≈ 𝐱𝐱, 
resulting in a vector 𝐡𝐡 with high dimensionality, which many times cannot provide interesting parameters for modeling the 
problem. To improve the performance of this deep machine learning technique, the Sparse Auto-Encoder (SAE) was 
proposed. The SAE is an undercomplete auto-encoder where a sparse penalty Γ�𝑓𝑓(𝐱𝐱)� is incorporated into the function 𝑍𝑍 
in the training process - that is, 𝑍𝑍 �𝐱𝐱,𝑔𝑔�𝑓𝑓(𝐱𝐱)�� + Γ�𝑓𝑓(𝐱𝐱)�. In summary, this penalty allows the AE model to represent large 
datasets with a small number of 𝐡𝐡 components, controlling the number of active neurons in the layers (most weights are 
equal to zero). Consequently, the addition of sparsity-inducing term to auto-encoders usually leads to an increase in the 
model's performance and to a reduction of processing time. According to Ng (2011), the penalty term can be obtained by 
calculating the Kullback-Leibler (𝐾𝐾𝐾𝐾) divergence (Kullback and Leibler 1951) as: 
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Γ = ∑ 𝐾𝐾𝐾𝐾(𝜌𝜌||𝜌𝜌�𝑚𝑚) =𝑀𝑀
𝑚𝑚=1 ∑ 𝜌𝜌 𝑙𝑙𝑙𝑙𝑔𝑔 � 𝜌𝜌

𝜌𝜌�𝑚𝑚
� + (1 − 𝜌𝜌)𝑙𝑙𝑙𝑙𝑔𝑔 � 1−𝜌𝜌

1−𝜌𝜌�𝑚𝑚
�𝑀𝑀

𝑚𝑚=1   ( 1 ) 

where || operator indicates the statistical divergence of 𝜌𝜌�𝑚𝑚 from 𝜌𝜌, 𝑀𝑀 is the number of neurons in the intermediate layer, 𝜌𝜌 
is the desired average activation value, also called sparsity proportion (previously defined near to the lower limit of the 
considered activation function), and 𝜌𝜌�𝑚𝑚 represents the average activation value of the respective neuron 𝑚𝑚, which is given by: 

𝜌𝜌�𝑚𝑚 = 1
𝐼𝐼
∑ 𝑓𝑓(𝐖𝐖𝑚𝑚

(1)𝑇𝑇𝐱𝐱𝑖𝑖 + 𝐛𝐛𝑚𝑚
(1))𝐼𝐼

𝑖𝑖=1 .  ( 2 ) 

where 𝐼𝐼 relates to the number of observations (available data). If 𝜌𝜌�𝑚𝑚 = 𝜌𝜌, the function Γ assumes 𝐾𝐾𝐾𝐾 = 0; otherwise, as 
𝜌𝜌�𝑚𝑚 diverges from 𝜌𝜌, 𝐾𝐾𝐾𝐾 presents monotonically increasing values. This formulation avoids the non-propagation problem 
of gradients to the furthest layers of the network. Apart from the sparsity term Γ, another strategy to control the 
“dispersion” of gradients is to insert a weight regularization term Γ2. The Γ2 acts by increasing the values of 𝐖𝐖 and 
decreasing the values of 𝐡𝐡, conforming equation below: 

Γ2 = 1
2
∑ ∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖

(𝑙𝑙)𝐽𝐽
𝑖𝑖=1

𝐼𝐼
𝑖𝑖=1

𝐿𝐿
𝑙𝑙=1   ( 3 ) 

in which 𝐾𝐾 is related to the number of encoder layers and 𝐽𝐽 to the number of input parameters. Taking into consideration 
Eq. 1 and Eq. 3, and admitting the function 𝑍𝑍 as the mean square error, the cost function to be optimized in the training 
process of an SAE model may be defined by: 

𝐸𝐸 = 1
𝐼𝐼
∑ ∑ (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖)2 + 𝛽𝛽Γ +𝐽𝐽

𝑖𝑖=1
𝐼𝐼
𝑖𝑖=1 𝜆𝜆Γ2  ( 4 ) 

where 𝛽𝛽 and 𝜆𝜆 are coefficients that control the influence of the sparsity and regularization terms, respectively. Obtaining the 
SAE parameters through the minimization of Equation 1 goes through an optimization process. In the present work, the 
algorithm used to solve this problem is the SCG (Scaled Conjugate Gradient) algorithm. The Scaled Conjugate Gradient (SCG) 
algorithm is an optimization technique used to find the minimum of a multivariable function, commonly applied in neural 
network training and non-linear optimization problems. It belongs to the family of conjugate gradient methods but stands out 
due to its adaptive step size adjustment along conjugate directions, leading to faster convergence and improved performance 
(Mφller 1993). The SCG algorithm iteratively minimizes the objective function through the following steps: initializing the 
search direction, calculating the gradient, updating the search direction, performing a line search to determine the step size, 
updating the parameters, adjusting the search direction based on gradients and step sizes, and checking for convergence. The 
algorithm dynamically adapts the step sizes along conjugate directions based on the function's curvature, resulting in efficient 
updates and better convergence properties. Overall, SCG has shown effectiveness in optimizing various functions, especially in 
neural network training where it accelerates convergence and reduces the number of iterations required (Mφller 1993). 

In summary, for the proposed approach, SAE models provide the parameters (vector 𝐡𝐡) that can characterize each 
respective monitored dynamic signal 𝐱𝐱. 

2.2 𝑻𝑻²-Control Chart 

Shewhart T Control Chart are graphical statistical tools used to monitor the variability of a problem's parameters 
over time. The charts usually depict several data points, which are formed by a specific statistical characteristic and 
horizontal lines (control limits) responsible for indicating the extreme values of such characteristic when the problem is 
in-control state. Any point beyond these predetermined limits, on the other hand, reveals unusual sources of variability, 
suggesting an out-of-control situation (Montgomery, 2009). In the present work, it means a novelty detection. Due to 
their relatively simple implementation, intuitive interpretation, and effective results, control charts are considered 
suitable tools for structural on-line monitoring and anomaly detection. The multivariate control technique used here is 
the Shewhart T Control Chart. The characteristic plotted in this chart is the Hotelling's 𝑇𝑇²-statistic. The 𝑇𝑇²-statistic 
represents the distance between a new data observation and the corresponding sample mean vector - the higher the 𝑇𝑇² 
value, the greater the distance of the new data from the mean. This metric is based on the relationship among the 
variables and on the scatter of data (covariance matrix). By assuming that matrix 𝐇𝐇𝑁𝑁𝑁𝑁𝑀𝑀 represents a dataset during a 
certain period time (which in this paper are the SAE extracted features), the 𝑇𝑇²-statistic may be calculated as follows: 

𝑇𝑇² = 𝑅𝑅(�̅�𝐡 − �̿�𝐡)𝑇𝑇𝐒𝐒−1(�̅�𝐡 − �̿�𝐡)  ( 5 ) 

where �̅�𝐡 is the sample mean vector of the 𝑀𝑀 available features, obtained from a submatrix of 𝐇𝐇 with R observations 
(𝐇𝐇𝑅𝑅𝑁𝑁𝑀𝑀,𝑅𝑅 < 𝑁𝑁); �̿�𝐡 and 𝐒𝐒 are the vector of reference averages and the mean of the reference covariance matrices, 
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respectively, both estimated using s preliminary submatrices collected during the in-control state of the problem. In this 
work, the Upper Control Limit (UCL) is defined as the 95𝑡𝑡ℎ percentile of the 𝑇𝑇² values of the training data (values greater 
than UCL may be observed only 5% of the time by chance). The Lower Control Limit (LCL) is zero. It is noteworthy that 
the development of Hotelling's 𝑇𝑇²-statistic assumes that the data follow a normal distribution. 

A widespread type of control chart is called 𝑇𝑇-Shewhart (Montgomery, 2009), where the statistic 𝑇𝑇², calculated 
from the vectors 𝐡𝐡, is plotted over time. The statistic 𝑇𝑇² represents the distance between a new data observation and 
the corresponding sample mean vector. The larger the value of 𝑇𝑇², the greater the distance of the new data from the 
mean. This metric is based on the relationship between observations and data dispersion (covariance matrix). 

3 EXPERIMENTAL PROGRAM 

The tested structure is shown in Figure 2. It is a two-story slender aluminum frame. All bars are connected by screws, 
washers, and nuts, having the same dimensions: 300 mm of length; 15.875 mm of width; and 1.587 mm of thickness. 

 
Figure 2: The two-story slender aluminum frame 

Figure 3 shows a sketch of the experimental test. Four unidirectional Bruel© piezoelectric IEPE (Integrated 
Electronics Piezoelectric) accelerometers (100 mV/g) were placed on the structure on the marked positions, measuring 
horizontal accelerations. A low-pass filter was set at 100 Hz. An impact load was applied by using a pendulum with a mass 
of 14 g, fixed at the top. The structural loading consisted in releasing the pendulum mass (from rest) from the position 
indicated in Figure 3. Then, the mass was only subjected to the action of gravity until its collision to the frame at the 
indicated point. Five structural scenarios were analyzed: 

• scenario #1 - No additional mass was added to the structure. In this case, masses 𝑚𝑚1 and 𝑚𝑚2, (indicated in Figure 3) 
are zero. 

• scenario #2 - One additional mass was added to the structure. In this case, masses 𝑚𝑚1 = 7.81𝑔𝑔 and 𝑚𝑚2 = 0. 

• scenario #3 - One additional mass was added to the structure. In this case, masses 𝑚𝑚1 = 15.62𝑔𝑔 and 𝑚𝑚2 = 0. 

• scenario #4 - Two additional masses were added to the structure. In this case, masses 𝑚𝑚1 = 15.62𝑔𝑔 and 𝑚𝑚2 = 7.81𝑔𝑔. 

• scenario #5 - Two additional masses were added to the structure. In this case, masses 𝑚𝑚1 = 15.62𝑔𝑔 and 𝑚𝑚2 = 15.62𝑔𝑔. 

For each scenario, at least 300 tests were performed. Each test lasted for 8.192 s with an acquisition frequency of 
500 Hz, yielding 4096 sampled points per accelerometer. The recordings started 7.2ms before the impact of the 
pendulum mass. A typical result of a test is presented in Figure 4. The data acquisition rate was set after a preliminary 
analysis involving the signal bandwidth, the structure’s dynamic behavior, the accuracy requirements, and data storage 
limitations. Hence, to comply with these aspects, the acquisition rate was set to 500 Hz according to both temporal and 
spectral analysis depicted in Figure 5. A report with further details, as well as the files containing the dynamic responses 
of each test performed are available for download at http://bit.ly/SHM-UFJF. For citations concerning these experimental 
data, please refer to this paper. 
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Figure 3 The testing procedure 

 

Figure 4 Typical result of an experimental test 

 

Figure 5 Typical frequency response of an experimental test 
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4 METHODOLOGY FOR STRUCTURAL NOVELTY ASSESSMENT 

The SAE-𝑇𝑇² model depends on many hyperparameters that must be previously adjusted for each analysis. However, 
the present paper focuses on the following parameters: 

• sparsity proportion: 𝜌𝜌 

• sparsity regularization: 𝛽𝛽 

• weight regularization: 𝜆𝜆 

since they usually play a key role in terms of classification results (Finotti et al. 2019, Finotti et al., 2021). Other 
parameters such as the number of hidden layers, the number of epochs, the type of transfer function may also be 
important. However, preliminary sensitivity analyses indicated that satisfactory results could be achieved for one hidden 
layer, 1000 epochs to minimize Equation 1 using the positive saturating linear transfer function for the encoder (see 
Equation 6) and the linear transfer function for the decoder (see Equation 7). Thus, these parameters were fixed for all 
analyses. 

𝑓𝑓(𝑧𝑧) = �0, if 𝑧𝑧 ≤ 0
𝑧𝑧, if 𝑧𝑧 > 0  ( 6 ) 

𝑓𝑓(𝑧𝑧) = 𝑧𝑧              ( 7 ) 

Therefore, a crucial question that must be addressed is: How to set the best values for the hyperparameters 𝜌𝜌, 𝛽𝛽 
and 𝜆𝜆 for a specific problem of structural novelty detection? In the present paper, this evaluation is performed by a grid 
search of the analyzed hyperparameters, involving both the SAE and the 𝑇𝑇², simultaneously, in four phases: 

Training phase. In this step, a dataset extracted from the same structural state is used to train the SAE model. This 
dataset is called training data. In this paper, the quality of the SAE model is measured by the Reconstruction Error Index 
using the training data (𝑒𝑒𝑡𝑡), as defined in Equation 8. The smaller the 𝑒𝑒𝑡𝑡, the higher the quality of the SAE model is 
observed. 

𝑒𝑒𝑡𝑡 = 1
𝐽𝐽𝐼𝐼
∑ ∑ �𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡 − 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 �𝐼𝐼

𝑖𝑖=1 ,𝐽𝐽
𝑖𝑖=1   ( 8 ) 

where 𝐼𝐼 is the number of sampling points for each signal; 𝐽𝐽 is the number of signals used in the training phase; 𝐼𝐼 and 𝐽𝐽 
are respectively related to the 𝑗𝑗𝑡𝑡ℎ signal and the 𝑖𝑖𝑡𝑡ℎ discrete time; and the superscript 𝑡𝑡 is related to the training phase. 

Model definition phase. Frequently, low reconstruction errors indicate low generalization capacity (overfitting). 
Thus, a new dataset also extracted from the structural state of the previous phase and that has not been used during the 
training phase, is applied to define the optimized SAE- 𝑇𝑇² model. This new dataset is labeled as definition data. It is 
expected that the SAE- 𝑇𝑇² models provide 𝑇𝑇² values for training and definition data statistically similar, since they have 
the same data category. Hence, to achieve the best SAE- 𝑇𝑇² model, one defines: ℎ𝑞𝑞𝑡𝑡  and ℎ𝑞𝑞𝑑𝑑 the 𝑞𝑞 (𝑞𝑞 = 1𝑡𝑡ℎ, 2𝑛𝑛𝑑𝑑or 3𝑟𝑟𝑑𝑑) 
quantile of the distribution of values 𝑇𝑇² obtained for the training and definition data, respectively. The Generalization 
Index (𝐺𝐺𝐼𝐼) of a given SAE- 𝑇𝑇² model is defined in Equation 9. The smaller the 𝐺𝐺𝐼𝐼, the higher the quality of the SAE- 𝑇𝑇² 
model is observed. 

𝐺𝐺𝐼𝐼 = ∑ �ℎ𝑞𝑞𝑡𝑡 − ℎ𝑞𝑞𝑑𝑑�3
𝑞𝑞=1   ( 9 ) 

The best SAE- 𝑇𝑇² model is defined as the one that that better minimizes 𝑒𝑒𝑡𝑡 and 𝐺𝐺𝐼𝐼 values at the same time. The 
strategy presented in this paper first establishes 𝐞𝐞𝑝𝑝𝑡𝑡  and 𝐆𝐆𝐆𝐆𝑝𝑝 as the sets with the smallest 𝑝𝑝% of 𝑒𝑒𝑡𝑡 and 𝐺𝐺𝐼𝐼, respectively, 
generated by the analyzed models during the grid search process. The SAE- 𝑇𝑇² hyperparameters are defined through the 
𝑖𝑖𝑡𝑡ℎ model that produces: 

𝑒𝑒𝑖𝑖𝑡𝑡 ∈ 𝐞𝐞𝑝𝑝𝑡𝑡   ( 10 ) 

and 

𝐺𝐺𝐼𝐼𝑖𝑖 ∈ 𝐆𝐆𝐆𝐆𝑝𝑝  ( 11 ) 

For a given value of 𝑝𝑝, if one has more than one model that produces 𝑒𝑒𝑡𝑡 and 𝐺𝐺𝐼𝐼, which fulfil the conditions described 
in equations 10 and 11, respectively, the model with the smallest 𝑒𝑒𝑡𝑡 is adopted as the SAE- 𝑇𝑇² best model. If no model 
satisfies equations 10 and 11, the analysis is restarted by increasing the percentage 𝑝𝑝 considered for the subsets 𝐞𝐞𝑝𝑝𝑡𝑡  and 
𝐆𝐆𝐆𝐆𝑝𝑝, until the best model is obtained. The initial 𝑝𝑝 value adopted in this work is 1% and incremented also by 1%. The 
Reconstruction Error Index for the definition data (𝑒𝑒𝑑𝑑) is also calculated for further comparisons: 
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𝑒𝑒𝑑𝑑 = ∑ ∑ (𝑥𝑥𝑖𝑖𝑖𝑖𝑑𝑑 − 𝑦𝑦𝑖𝑖𝑖𝑖𝑑𝑑)𝑁𝑁
𝑖𝑖=1 ²𝐽𝐽

𝑖𝑖=1   ( 12 ) 

where, 𝑁𝑁 is the number of sampling points for each signal; 𝐽𝐽 is the number of signals used in the training phase; 𝑗𝑗 is 
related to the 𝑗𝑗𝑡𝑡ℎ signal; and the superscript 𝑑𝑑 is related to the model definition phase. The smaller the values of 𝑒𝑒𝑡𝑡 and 
𝑒𝑒𝑑𝑑, the better the SAE-𝑇𝑇2 model according to this criterion used for comparison purposes. This criterion was named 
comparative criterion. 

Validation phase. During this phase, another dataset (validation data), also extracted from the same structural state 
of the training and definition phases, is applied to the best model obtained in the previous step. The goal is to check the 
model's ability to classify new data. It is expected that the optimized SAE-𝑇𝑇2 model leads to 𝑇𝑇2 values statistically similar 
for training, definition, and validation datasets since they belong to the same structural state. For future comparisons in 
this paper, one defines the Reconstruction Error Index for validation data (𝑒𝑒𝑣𝑣): 

𝑒𝑒𝑣𝑣 = 1
𝐽𝐽𝐼𝐼
∑ ∑ �𝑥𝑥𝑖𝑖𝑖𝑖𝑣𝑣 − 𝑦𝑦𝑖𝑖𝑖𝑖𝑣𝑣 �𝐼𝐼

𝑖𝑖=1
𝐽𝐽
𝑖𝑖=1 , ( 13 ) 

Monitoring phase. At this point, datasets (monitoring data) extracted from different structural states than the ones 
used in the training, definition and validation phases are presented to the SAE-𝑇𝑇2 best model. It is expected that the 
achieved model leads to 𝑇𝑇2 values different from those obtained in the previous phases. Figure 6 shows a hypothetical 
𝑇𝑇2 control chart evaluated for a SAE-𝑇𝑇2 model in which two structural states were analyzed. In Figure 6a, the model 
failed in identifying the two data categories. On the other hand, Figure 6b correctly showed those two structural states. 

 
Figure 6: Typical control charts. (a) One single structural state was detected; (b) Two structural states were detected. 

5 APPLICATION OF THE PROPOSED SHM MODEL TO EXPERIMENTAL DATA 

A subset of the experimental data was used to validate the proposed methodology. From each tested scenario, 600 
signals containing 1 second of monitoring (500 time steps) equally distributed among the accelerometers were used. The 
amplitudes of all signals were normalized between 0 and 1. Equation 14 summarizes the dataset organization: 

𝐗𝐗(500×800)
𝑠𝑠 =

⎣
⎢
⎢
⎢
⎡
𝐴𝐴𝐴𝐴1(1,1) 𝐴𝐴𝐴𝐴2(1,1) 𝐴𝐴𝐴𝐴3(1,1) 𝐴𝐴𝐴𝐴4(1,1) … 𝐴𝐴𝐴𝐴1(1,200) 𝐴𝐴𝐴𝐴2(1,200) 𝐴𝐴𝐴𝐴3(1,200) 𝐴𝐴𝐴𝐴4(1,200)
𝐴𝐴𝐴𝐴1(2,1) 𝐴𝐴𝐴𝐴2(2,1) 𝐴𝐴𝐴𝐴3(2,1) 𝐴𝐴𝐴𝐴4(2,1) … 𝐴𝐴𝐴𝐴1(2,200) 𝐴𝐴𝐴𝐴2(2,200) 𝐴𝐴𝐴𝐴3(2,200) 𝐴𝐴𝐴𝐴4(2,200)
𝐴𝐴𝐴𝐴1(3,1) 𝐴𝐴𝐴𝐴2(3,1) 𝐴𝐴𝐴𝐴3(3,1) 𝐴𝐴𝐴𝐴4(3,1) … 𝐴𝐴𝐴𝐴1(3,200) 𝐴𝐴𝐴𝐴2(3,200) 𝐴𝐴𝐴𝐴3(3,200) 𝐴𝐴𝐴𝐴4(3,200)

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
𝐴𝐴𝐴𝐴1(500,1) 𝐴𝐴𝐴𝐴2(500,1) 𝐴𝐴𝐴𝐴3(500,1) 𝐴𝐴𝐴𝐴4(500,1) … 𝐴𝐴𝐴𝐴1(500,200) 𝐴𝐴𝐴𝐴2(500,200) 𝐴𝐴𝐴𝐴3(500,200) 𝐴𝐴𝐴𝐴4(500,200)⎦

⎥
⎥
⎥
⎤

,  ( 14 ) 

where the subscript s is related to each tested scenario (from #0 to #4); 𝐴𝐴𝐴𝐴𝑘𝑘(𝑖𝑖, 𝑗𝑗) (𝑘𝑘 = 1 … 4;  𝑖𝑖 = 1 … 500;  𝑘𝑘 = 1 … 200) 
is the acceleration recorded by the accelerometer 𝐴𝐴𝐴𝐴𝑘𝑘 at a discrete time 𝑖𝑖 for the 𝑗𝑗𝑡𝑡ℎ experimental test. These data were 
organized into five different analyses defined as cases A to E. For each case, one scenario was used for training, definition, 
and validation phases, while the other scenarios were applied for monitoring data. Table 1 summarizes each analyzed case. 
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Table 1 Definition of data applied in each Case. 

Case Training data Definition data Validation data Monitoring data 

A 𝑿𝑿(1…500;1…400)
0  𝑿𝑿(1…500;401…600)

0  𝑿𝑿(1…500;601…800)
0  𝑿𝑿1;𝑿𝑿2;𝑿𝑿3 and𝑿𝑿4 

B 𝑿𝑿(1…500;1…400)
1  𝑿𝑿(1…500;401…600)

1  𝑿𝑿(1…500;601…800)
1  𝑿𝑿0;𝑿𝑿2;𝑿𝑿3 and𝑿𝑿4 

C 𝑿𝑿(1…500;1…400)
2  𝑿𝑿(1…500;401…600)

2  𝑿𝑿(1…500;601…800)
2  𝑿𝑿0;𝑿𝑿1;𝑿𝑿3 and𝑿𝑿4 

D 𝑿𝑿(1…500;1…400)
3  𝑿𝑿(1…500;401…600)

3  𝑿𝑿(1…500;601…800)
3  𝑿𝑿0;𝑿𝑿1;𝑿𝑿2 and𝑿𝑿4 

E 𝑿𝑿(1…500;1…400)
4  𝑿𝑿(1…500;401…600)

4  𝑿𝑿(1…500;601…800)
4  𝑿𝑿0;𝑿𝑿1;𝑿𝑿2 and𝑿𝑿3 

5.1 The SAE’s network architecture 

In the present work, the SAE’s network architecture was established by specifying a single hidden layer characterized 
by vector h (see Section 2.1). That layer is commonly referred to as the latent space. Figure 7 illustrates the configuration 
of the employed architecture, comprising 500*dim(h) (input to hidden layer) + 500*dim(h) (hidden to output layer) 
weights and respective biases (see Eq. 2 and Fig. 7), resulting in a total of 2000*dim(h) design parameters. Here, dim(h) 
represents the dimension of vector h. For the application under analysis, a single hidden layer was enough to obtain 
satisfactory results. Subsection 5.3. discusses the choice for the dimension of vector h. Other parameters related to the 
SAE model were defined as: maximum gradient value = 1x10-6; encoding activation function = satlin; decoding activation 
function = purelin; maximum number of epochs for training = 1000. 

 
Figure 7: SAE’s network architecture (p indicates the pth signal and K = dim(h)). 

5.2 The grid search process 

The grid search is a technique often used in machine learning to find the best combination of hyperparameters for 
a given model. It involves creating a grid of possible values for each hyperparameter and then systematically evaluating 
the model performance for each combination of hyperparameters on a validation set. The model performance is typically 
measured using a performance metric such as accuracy, precision, recall, among others. By exhaustively searching 
through all possible combinations, grid search helps identify the best set of hyperparameters that yield the best 
performance for a given machine learning algorithm (Raschka 2018). 

Equations 15 to 17 presents the discrete values used in the grid search process for the present analyzed example. 

𝜌𝜌 = [0.0063;  0.0125;  0.0250;  0.0500;  0.1000;  0.2000;  0.4000;  0.8000]  ( 15 ) 

𝛽𝛽 = [0.5000;  1.0000;  2.0000;  4.0000;  8.0000]  ( 16 ) 

𝜆𝜆 = [0.0001;  0.0010;  0.0100;  0.1000]  ( 17 ) 

These values were adopted based on the work of Touati et al. (2020), which affirms that these values ensure good 
coverage of the search space for the considered parameters and corroborated in the studies of Finotti et al. (2021) and 
Finotti et al. (2022a). Considering that the results obtained were quite satisfactory, it is assumed that the application of 
an optimization procedure to determine the optimal hyperparameters of the SAE can be studied in another work, with 
the potential to further improve the results achieved. 
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5.3 The best SAE-𝑻𝑻² model 

Before defining the best SAE- 𝑇𝑇² model, it is necessary to set up the dimension of 𝐡𝐡 vector (dim(𝐡𝐡)). 𝐡𝐡 vectors with a low 
dimension may not be able to fairly characterize the dynamic signals. On the other hand, a high dimension for 𝐡𝐡 can hinder 
the generalizability of the model. In previous works (Finotti et al. 2021 and Finotti et al. 2022a), the dimension of 𝐡𝐡 was 
adopted as 10% of the signal length. Therefore, starting from these reference, dim(𝐡𝐡) values equal to 30, 50 and 70 were also 
evaluated. Figure 8 shows the results related to the models with smaller 𝑒𝑒𝑡𝑡 according to the proposed selection criterion. 

 
Figure 8 Evaluation of 𝑒𝑒𝑡𝑡as a function of dim(𝐡𝐡) 

In Figure 8, the values 𝑒𝑒𝑡𝑡 obtained for each Case and the respective average values are shown. One observes that 
the decay rate for the mean values of 𝑒𝑒𝑡𝑡 as dim(𝐡𝐡) increases is very low (around -0.0000175 𝑒𝑒𝑡𝑡/dim(𝐡𝐡)). Thus, to also 
reduce the computational effort, and keeping a low Reconstruction Error Index 𝑒𝑒𝑡𝑡, the dimension of 𝐡𝐡 was set to 30. The 
best SAE- 𝑇𝑇² models obtained for each case analyzed with the proposed strategy and their respective values of 𝜌𝜌, 𝛽𝛽 and 
𝜆𝜆 are shown in Table 2. These models are labeled as “Proposed” and are also presented with respective Reconstruction 
Error Indexes and Generalization Index (𝐺𝐺𝐼𝐼). 

To compare the performance of the proposed criterion, the smallest Reconstruction Error Index for the validation 
data (𝑒𝑒𝑣𝑣) was also applied to select the best model. This criterion is intuitively adopted to evaluate the performance of 
the SAE. In this case, the best models would be the ones presented as “Comparison” in Table 2. 

To complete the comparisons shown in Table 2, a PCA (Principal Component Analysis) model was defined by using the 
training data. After the definition of the PCA model, the first 30 principal components were applied to reconstruct the monitoring, 
definition, and validation signals, leading to the respective 𝑒𝑒𝑡𝑡, 𝑒𝑒𝑑𝑑 and 𝑒𝑒𝑣𝑣, and allowing the calculation of the respective 𝐺𝐺𝐼𝐼. In this 
case, by using the first 30 principal components, 99.99% of the total variance is explained, playing an important role of parameter 
reducer similar to the SAE, where a dim(𝐡𝐡) = 30. These results are also presented in Table 2 labeled as PCA. 

Table 2 Best model for each case of analysis. 

Case Criteria 𝝆𝝆 𝝀𝝀 𝜷𝜷 𝒆𝒆𝒕𝒕 𝒆𝒆𝒅𝒅 𝒆𝒆𝒗𝒗 𝑮𝑮𝑮𝑮 

1 Proposed 0.2000 0.0010 8.0000 0.0095 0.0115 0.0134 20.48 

Comparison 0.4 0.001 1 0.0051 0.0066 0.0065 112.23 

PCA - - - 0.0009 0.0032 0.0068 175.80 

2 Proposed 0.8000 0.0010 1.0000 0.0065 0.0101 0.0107 13.41 

Comparison 0.4 0.001 4 0.0060 0.0091 0.0089 57.735 

PCA - - - 0.0009 0.0026 0.0044 151.50 

3 Proposed 0.1000 0.0001 4.0000 0.0068 0.0114 0.0192 23.38 

Comparison 0.4 0.0001 2 0.0048 0.0085 0.0096 497.93 

PCA - - - 0.0008 0.0050 0.0072 1242.70 

4 Proposed 0.0500 0.0010 8.0000 0.0102 0.0162 0.0117 10.59 

Comparison 0.4 0.0001 0.5 0.0053 0.0086 0.0068 222.94 

PCA - - - 0.0009 0.0025 0.0020 575.60 

5 Proposed 0.4000 0.0010 0.5000 0.0085 0.0146 0.0147 61.65 

Comparison 0.8 0.0001 1 0.0065 0.0124 0.0129 350.16 

PCA - - - 0.0010 0.0046 0.0048 291.40 
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Table 2 shows that the Reconstruction Error Indexes appear in descending order from the proposed methodology 
(“Proposed”) to the results of the PCA. On the other hand, the 𝐺𝐺𝐼𝐼, when calculated by the proposed strategy, are the 
smallest, reaching more significant values for the “Comparison” methodology and even higher for the PCA. 

However, lower Reconstruction Error Indexes are not necessarily associated with a better to identify structural 
novelties, as it will be discussed further. Figures 9 to 13 present the Shewhart T Control Charts for Cases A to E, 
respectively. The following discussions are also supported by the results of Table 3, where the number of outliers 
detected by each strategy for each type of data are presented. 

Table 3 Percentage of outliers detected by each methodology. 

Case Methodology Training (%) Definition (%) Validation (%) Monitoring (%) 

A Proposed 5 5 10 0 

Comparison 5 7.5 90 0 

PCA 5 17.5 100 0 

B Proposed 5 12.5 5 0 

Comparison 5 7.5 47.5 0 

PCA 5 35 100 0 

C Proposed 5 12.5 37.5 0.16 

Comparison 5 100 100 0 

PCA 5 100 100 0 

D Proposed 5 10 0 0 

Comparison 5 30 0 0 

PCA 5 100 7.5 0 

E Proposed 5 12.5 10 0 

Comparison 5 85 100 0 

PCA 5 87.5 92.5 0 

For Case A (Figure 9), all analyzed methodologies were able to show that the monitoring data differ from those 
obtained in scenario #0. However, only the proposed strategy clearly confirms that training, definition, and validation 
data belong to the same category (Figure 9a). Both “Comparison” and PCA (Figures 9b and 9c) methodologies have 𝑇𝑇² 
values predominantly below the UCL1 for the definition data, even though they present a distribution slightly shifted 
upwards when compared to ones for the training data. As for the validation data, the “Comparison” methodology 
provided 𝑇𝑇² values predominantly higher than the UCL, which may wrongly indicate that these data do not belong to 
scenario #0. The PCA clearly failed, as it did not identify the validation data as belonging to scenario #0. The values for 
𝐼𝐼𝐺𝐺 presented in table 2 for both methodologies confirm these observations. In addition, PCA apparently mistakenly 
identified two groups of data for scenarios #4 and #5. 

Regarding Case B (Figure 10), the evaluated methodologies successfully identified all monitoring data (𝑇𝑇² values 
greater than UCL). However, once again, only the approach proposed in this work identified the training, definition and 
validation data as belonging to scenario #2 (Figure 10a), despite a few outliers with more significant magnitudes. The 
strategy defined by “Comparison” correctly classified the definition data, but most of the validation data had 𝑇𝑇² values 
greater than ULC. In addition, for scenario #5, two sets of data were erroneously detected. The PCA, on the other hand, 
presented an erratic behavior identical to the earlier case (Figure 10c). 

The results achieved by the proposed strategy for Case C (Figure 11) can also be considered satisfactory (see 
Figure 11a), as only one outlier for the monitoring data was detected. Also, the 𝑇𝑇² value distributions for training, 
definition and validation data are reasonably similar, although the validation values are slightly shifted upwards. The 
other strategies behaved similarly to each other, clearly classifying the training, definition, and validation data as three 
distinct classes, which is obviously false (Figure 11b and 11c). 

 
 

 
1 By definition, 95% of the training data are below of the UCL. 
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Figure 9 Shewhart T Control Charts for Case A. (a) Proposed methodology; (b) Comparison methodology; (c) PCA 
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Figure 10 Shewhart T Control Charts for Case B. (a) Proposed methodology; (b) Comparison methodology; (c) PCA 
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Figure 11 Shewhart T Control Charts for Case C. (a) Proposed methodology; (b) Comparison methodology; (c) PCA 
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For Case D (Figure 12), as in the earlier cases, the proposed methodology correctly identified the monitoring data 
and calculated 𝑇𝑇² values that provide similar distributions for all data in scenario #4 (Figure 12a). On the other hand, the 
“Comparison” methodology, despite having also achieved a good performance in the identification of monitoring data, 
provided a distribution of definition data with practically 50% of outliers (Figure 12b). The performance of PCA can be 
considered inferior to the others as it provided 100% of outliers for the definition data (Figure 12c). 

 
Figure 12 Shewhart T Control Charts for Case D. (a) Proposed methodology; (b) Comparison methodology; (c) PCA 
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Finally, for Case E, behaviors like the preceding ones were observed (Figure 13): All methodologies were successful 
in detecting the monitoring data but only the proposed methodology correctly classified the training, definition, and 
validation data. 

 

Figure 13 Shewhart T Control Charts for Case E. (a) Proposed methodology; (b) Comparison methodology; (c) PCA 
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To assess the variability of responses obtained for each SAE- 𝑇𝑇² based methodology, 20 models were randomly 
generated with the same respective hyperparameters (𝛽𝛽, 𝜆𝜆,𝜌𝜌) presented in Table 2. Since the PCA, for a given dataset, 
provides unique results, it was not included in these analyses. Table 4 summarizes the results obtained. Figures 14 to 18 
show the respective Shewhart 𝑇𝑇² Control Charts for Cases A to E. The UCLs plotted in these figures are the respective 
mean values for the 20 analyzed models. In view of the graphs shown in figures 9 to 13, as well as the data presented in 
Table 4, one observes that the results obtained for the 20 random models are similar to those previously shown for a 
single SAE- 𝑇𝑇² model (Figures 9 to 13 and Table 3), showing that the influence of randomness on the results presented 
are not sufficient to invalidate the analyses performed. 

Table 4 Percentage of outliers detected by each methodology considering 20 models per methodology 

Case Methodology Training (%) Definition (%) Validation (%) Monitoring (%) 

A Proposed 5 5.25 11 0 
Comparison 5 13.88 95.63 0 

B Proposed 5 15.88 5.25 0.07 
Comparison 5 14.12 30.75 0 

C Proposed 5 20.13 30.25 0.55 
Comparison 5 93.75 99.50 0 

D Proposed 5 6.88 0.125 0.49 
Comparison 5 25.75 0.63 0 

E Proposed 5 32.88 28.88 0 
Comparison 5 80.13 90.25 0 

 
Figure 14 Shewhart T Control Charts for 20 random models - Case A 

 
Figure 15 Shewhart T Control Charts for 20 random models - Case B 
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Figure 16 Shewhart T Control Charts for 20 random models - Case C 

 
Figure 17 Shewhart T Control Charts for 20 random models - Case D 

 
Figure 18 Shewhart T Control Charts for 20 random models - Case E 

6 FINAL REMARKS 

This paper presented numerical and experimental analyses applied to the detection of structural novelties in a 
slender aluminum frame. An experimental program applied to the tested structure, including 5 structural states, was 
extensively explored. The dynamic responses of the tested structure were recorded using accelerometers and are 
available for the scientific community for validation of strategies for SHM. In the present work, part of these dynamic 
responses was used as input data to evaluate the performance of a SHM model based on SAE and 𝑇𝑇². The proposed SAE-
 𝑇𝑇² model presented a performance in the identification of the structural states tested significantly superior when 
compared to classical models present in the literature. More specifically, the strategy of adopting and the smaller 
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validation error or the PCA showed to have inferior performances and greater generalization difficulties, yielding the best 
results achieved through the proposed SAE- 𝑇𝑇². Finally, the experimental datasets presented is of fundamental 
importance for the validation of the proposed methodology, and may help the validation of other strategies, as they will 
be available to the academic community. With the advances in the application of the technique, knowledge of the 
behavior mechanisms can be increased, making it possible to predict the performance of the structure over time, aiming 
at decision-making to reduce risk. 
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