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Abstract 
The paper presents an analysis of the possibility of increasing the 
accuracy and stability of machining of low-rigidity shafts while 
ensuring high efficiency and economy of their machining. An effec-
tive way of improving the accuracy of machining of shafts is in-
creasing their rigidity as a result of oriented change of the elastic-
deformable state through the application of a tensile force which, 
combined with the machining force, forms longitudinal-lateral 
strains. The paper also presents mathematical models describing 
the changes of the elastic-deformable state resulting from the 
application of the tensile force. It presents the results of experi-
mental studies on the deformation of elastic low-rigidity shafts, 
performed on a special test stand developed on the basis of a 
lathe. An estimation was made of the effectiveness of the method 
of control of the elastic-deformable state with the use, as the regu-
lating effects, the tensile force and eccentricity. It was demon-
strated that controlling the two parameters: tensile force and 
eccentricity, one can improve the accuracy of machining, and thus 
achieve a theoretically assumed level of accuracy. 
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1 INTRODUCTION 

A half or all machine parts are rotating elements: shafts (ca. 40%), discs, sleeves, cylinders etc. 
Among those, up to 12% are low-rigidity shafts (Pus et al., 1982). 
A highly important, and at the same time complex problem is the achievement of the assumed ac-
curacy of machining and operational reliability of low-rigidity shafts. Such shafts are elements of 
many assemblies of various machines and devices, and find applications in, among others, aerospace 
industry, precision mechanics, tool-making industry (special tools), automotive industry. They are 
characterised by disproportion in overall dimensions and low rigidity in specific sections and direc-
tions. Stringent requirements are also applied in terms of the geometric shape, mutual positioning of 
surfaces, linear dimensions and quality of surface finish.  
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The specific nature of machining of similar parts causes that the primary difficulty relates to the 
achievement of the required parameters of the accuracy of form, dimensions and surface quality. 
Low inherent rigidity and relatively low rigidity of the shaft, compared to the stiff assemblies of the 
machine tool, cause the appearance of vibrations under specific conditions. The process of machin-
ing interferes with and destabilises many factors (large free distortions of shafts, vibrations in the 
tool-object system, breaking of chips etc.), which causes a reduction in the accuracy of machining 
(Cardi et al., 2008; Hassuiand  and Diniz, 2003; Jianliang and  Rongdi 2006; Litak et al., 2004; Li-
tak and Rusinek 2012; Qiang, 2000; Altintas, 2000).  
The traditional methods of achieving accurate machining of low-rigidity shafts, based on multi-pass 
machining, lowered parameters of machining, steadies and additional treatments and manual lap-
ping, cause a significant lowering of efficiency, and in many cases preclude the achievement of re-
quired reliability; also, they are incompatible with the contemporary requirements of automation, 
they are uneconomical and inefficient.  
The initial studies on the dynamic response of a rotation shaft subjected to a moving load has been 
done by Katz et al. (1988). Especially, they focused on the dynamical effects accounted by different 
approaches: Euler-Bernoulli, Rayleigh, and  Timoshenko beam models for a simply supported rotat-
ing shaft leading to the changes in rotor response.  This problem was generalized to a three-
directional load moving in the axial direction by Ouyang and Wang (2012).  
In the context of a regenerative cutting process, chatter vibrations response of the workpiece  mod-
elled as a flexible beam were also studied by Altintas (2000), Tusty (2000), Chen  and Tsao (2006),  
and more recently by Bisu et al. (2009a; 2009b), Cahuc et al. (2010), Han et al. (2012). 
 
2 MATHEMATICAL MODELS OF MACHINING OF ELASTIC-DEFORMABLE SHAFTS 

One of the effective ways of improving the accuracy of machining of parts of this type is increasing 
their rigidity as a result of oriented change of their elastic-deformable state, through the application 
of a tensile force which, combined with the machining force, forms longitudinal-lateral strains. As 
shown by experimental studies, increase of rigidity of parts with diameters from 2 to 6 mm and 
length from 100 to 300 mm, with their loading with a tensile force within the range from 980 to 
1960 N, leads to a reduction of elastic strain by from 80 to 20%, respectively.  Furthermore at di-
ameters d = 8 – 12 mm such a loading reduce elastic stain by 5 –7%. Increasing of d > 16 mm at a 
given length has practically no effect on the value of static stiffness and, correspondingly, on the 
deformation of the parts (Jianliang and Rongdi, 2006; Świć et al. 2010). 

Analysis of the effect of the tensile force on the static rigidity of machined elements can be per-
formed with the use of the model in Table 1, line 1. The model does not provide an adequate de-
scription of the behaviour of the elastic line at various methods of fixing. This means that, in the 
model in question, the element fixed in the tailstock of the lathe has both the possibility of linear 
displacement along the axis of the part and the possibility of free rotation of the section at the 
point of fixing. In many cases, such a method of fixing does not lead to a reduction of deformation 
in the machining zone. 

With the application of the tensile force, the fixing of a shaft can be realized by means of a 
spring sleeve. Such a method of fixing can be interpreted as rigid fixing, with the possibility of axial 
play (Tab. 1, lines 2 and 3).  
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To minimise elastic deformation, it is also possible to control the angle of rotation of the part 
section at the point of fixing, through the application of a tensile force shifted with relation of the 
axis of the centres (Świć et al. 2010). This kind of fixing can also be represented as a moving rotary 
support (Tab. 1, line 4).  

The fundamental feature of the presented schematic is the application of the control moment at 
the point of fixing of the machined part – through eccentric tension. The application of a single 
controllable force factor – eccentric tension – permits the generation of two force factors at any 
predefined section of the part, and in the machining zone in particular: the longitudinal force Fx1 
and the bending moment M2 = Fx1 · e, counteracting the machining forces, i.e. the oriented elastic-
deformable state of the shaft.  

The application of tensile forces with a shift relative to the axis of the centres at both ends of 
the machines shaft – in this case the fixing can be represented as a moving rotary support (Tab. 1, 
line 5) – permits the control of the position of the part axis from two sides at any position of the 
cutting tool, relative to the length of machining. Moreover, it is possible to use a special fixture for 
mobile tensioning in the machining of long shafts with low rigidity (Tab. 1, line 6).  

The specifics of elastic-deformable loading of low-rigidity parts, with eccentric compression in 
machining operations, are taken into account in model 7 (Tab. 1). 

In Table 1 the following symbols are used:  
 
Fx1 tensile force; 
Fzg bending force; 
Fc, Fp, Ff are two bending force  and axial components; 
e eccentricity of tensile force in tension; 
M1 moment generated by the axial component Ff of the machining force; 
x1, x2, x3 current coordinates at each of the sections; 
a distance between the cutting edge (point of load application) and the point 

of fixing of the part in the spindle; 
b,c  other characteristic distances along the shaft; 
d diameter of the machined part; 
L length of the shaft; 
Q0 and M0 initial parameters: perpendicular force and moment at the point of the fixing 

of the part, respectively. 
   

One of the methods that permit the generation of a mathematical model describing the kind of 
elastic line, with relation to the part parameters and to the parameters of the process of machining 
(loading forces) is the energy method of Ritz, by means of which the deformation functions were 
obtained for a tensioned rod with an end fixed rigidly (Tab. 1, line 2). 

Another method permitting the achievement of results with practical utility is the generation of 
a description of the elastic line of a low-rigidity part in lateral-longitudinal bending, in the form of a 
system of differential equations of the fourth order, with a constant coefficient. With the occurrence 
of concentrated forces and moments dividing  the shaft into sections the following differential equa-
tions can be written (axial tension – model 3) at each of the sections: 
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yi
IV −α 2yi

" = 0  (1) 
 

where: α = Fx1
EI

, E – modulus of elasticity, I – moment of inertia of the section.  

In the simplest case, the only disturbance of the elastic line is located at the point of machining, 
i.e. 

   
i =∈ 1,2{ }  (2) 

 
The solution of equation (1) can be written in the simplified single mode form (for symmetric 

situation - model 2 instead of hyperbolic functions the trigonometric ones are used) (Young et al., 
2003): 

 

  yi xi( ) = Ai sinhα xi + Bi coshα xi +Cixi + Di  (3) 
 

and in the case of (2):  
  

y1 x1( ) = A1 sinhα x1 + B1 coshα x1 +C1x1 + D1
y2 x2( ) = A2 sinhα x2 + B2 coshα x2 +C2x2 + D2 .

⎧
⎨
⎪

⎩⎪
 (4) 

 
Taking into account that M1 x1( ) = EI ⋅ y1" ; F1 x1( ) = EI ⋅ y1''' ; M 2 x2( ) = EI ⋅ y2" ; 

F2 x2( ) = EI ⋅ y2''' , from the boundary conditions (column 3, Tab. 1) in each system of coordinates at 

x1 = 0 , deformation y1 0( ) = 0 , angle of rotation of section y1
' 0( ) = 0  and EI ⋅ y1

'' 0( ) = M 0 , 

EI ⋅ y1
''' 0( ) =Q0 , the constant coefficients were determined as follows: 

 

A1 =
Q0

EIα 2 , B1 =
M 0

EIα 2 , C1 = − Q0

EIα 2 , D1 = − M 0

EIα 2 , (5) 

 
and the equation of deformations on section I, taking into account (5) and the terms for the deter-
mination of α can be written as: 

 

y1 x1( ) = Q0
αFx1

sinhα x1 −α x1( )+ M 0

Fx1
coshα x1 −1( )  (6) 

 
Coefficients A2, B2, C2, D2 were expressed from the boundary conditions x2 = 0, conditions of bal-
ance and compensation of deformations y1

' a( ) = y2' 0( ) , EIy1
'' a( ) = EIy2'' 0( ) , 

EIy1
'' a( ) + Fzg = EIy2''' 0( ) = 0  and they are equal to: 



264       G. Litak et al. / Method of control of machining accuracy of low-rigidity elastic-deformable shafts 

Latin American Journal of Solids and Structures 11(2014) 260 - 278 

 

A2 =
Q0 coshαa +M 0α sinhαa + Fzg

α 3EI
,  

B2 =
Q0 sinhαa +M 0α sinhαa

α 3EI
,  

C2 =
Q0 coshαa +M 0α sinhαa + Fzg

α 3EI
,  

D2 =
Q0 sinhαa +M 0α sinhαa

α 3EI
,  

(7) 

 
And the equation of deformation on section II can be written as: 

 

y2 x2( ) = Q0 chαa +M 0α shαa + Fzg
αFx1

sinhα x2 −α x2( )+ Q0 sinhαa +M 0α coshαa
αFx1

coshα x2 −1( ) .  (8) 

 
Equations of deformations on sections I and II, for the case of model 4 (Tab. 1) and the other 

cases of loading considered, obtained in an analogous manner, are presented in column 4, Tab. 1. 
The values of the initial parameters Q0 and M0 were determined at extreme conditions at the 

end of the rod: 
y2
' L − a( ) = 0  (9) 

 
and the equations of deformations at the end of the deformed rod:  
 

y1 a( ) = −y2 L − a( )  (10) 
 

The results of solving equations (9) and (10) are given in column 5, Tab. 1. 
At eccentric tension (model 4, Ff ≠ 0, e ≠ 0) the differential equations (1) on each of sections I 

and II have the form: 
y1
IV −α1

2y1
'' = 0  (11) 

 

  y2
IV −α2

2 y2
'' = 0  (12) 

 

where: α1 =
Fx1 − Ff
EI

,  α 2 =
Fx1
EI
, and the solution of (11) and (12) is written as (3), taking into 

account α1 on section I. Substituting the boundary conditions, conditions of balance and conditions 
of simultaneity of deformations (column 3, Tab. 1) into equations (11) and (12), a description of 
deformations was obtained, as presented in column 4, Tab. 1.  

The initial parameters Q0 and M0 were determined through conditions (9) and the equation of 
balance: 
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M L( )∑ =Q0L +M0 + Ff
d
2
+ Fzg L − a( )− Fx1e = 0  (13) 
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and the obtained values of Q0 and M0 are given in column 5, Tab. 1. 
A specific feature of the problem of control of elastic deformations of an elastic-deformable part 

under consideration, with two-sided eccentric tension (Tab. 1, line 5), is the ease of determination of 
the initial parameters Q0 at known M1 = Fx1 � e1 and M2 = Fx2 � e2 from the conditions of the bal-
ance of forces, relative to the axes of coordinates ( Y∑ = 0 ) and of the balance of moments 

( Mb∑ = 0  – columns 3 and 5). At the same time, it becomes more complicated to determine the 

angle of rotation Q0, at which the term sought was obtained from equations (10) and presented in 
column 5. 

For a long part loaded with a tensile force, the calculation schematic was presented in the form 
of a beam twice statically indeterminate (Tab. 1, line 6), loaded with bending force Fzg, moment 

M1 = Ff ⋅
d
2

 and longitudinal forces Ff and Fx1. The values of the forces and moments are definite, 

with Fx1 > Ff  and Ff > 0 , therefore to the left from point A the beam is always in a state of ten-

sion, and the value of Ff can be negative as the direction of the working travel f changes. In the 
case of diameter equal to d1 on the left section of the part (from point D to 0) and diameter d2 (to 
the right from D), the axial moments of inertia of the cross-section will equal, respectively,: 

I1 =
πd1

4

64
, I2 =

πd2
4

64
, and parameters α 2 =

Fx1
EI2

, α1 =
Fx1 + Ff
EI1

. When support A moves to 

the right, point D moves with it at the same velocity, and distance b has a constant value. Dimen-
sion a changes within the range of 0 ≤ a ≤ (l – a). To solve the double statically indeterminate prob-
lem of longitudinal-lateral bending of the beam, under loading with the moving tensile force Fx1, the 
left and the rights parts of the beam were analysed.  

From the boundary conditions and the conditions of mutual interaction of deformations (Tab. 1, 
line 6) the functions of deformations (column 4) and the initial parameters (column 5) were ob-
tained. 

The results of modelling of the values of elastic deformations of the part within the machining 
zone (x = a) are presented in Fig. 1, the numbers of analytical relations corresponding to the num-
bers designating the models in Table 1. Relation 5 was obtained experimentally, with the part fixed 
in the grip of the spindle and in the spring sleeve of the tailstock, with no possibility of cross-section 
rotation at the point of fixing (model 3).  
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Figure 1   Estimated relations of elastic deformation changes of a shaft (numbers from 1 to 5 correspond to the numbers designating 
the models in Table 1). 

 
3 EXPERIMENTAL STUDIES  

The experimental studies of elastic deformations of low-rigidity shafts were conducted on a special 
test stand, constructed on the basis of a lathe (Fig. 2).  
A shaft (1) is aligned in the lathe grip between a standard compression dynamometer (2) type 
DOSM–3–02 (measurement range from 19.6 to 196.0 N), mounted by means of a bracket (3) in the 
cutter holder (4) of the lathe. The radial component of the cutting force Fp was estimated using the 
dynamometer (2). Registration of elastic deformations was conducted by means of an electromag-
netic displacement transducer (9) with a recorder unit (10). The transducer (9) was mounted in a 
holder (8) on a plate (6) positioned on the guide rails (5 and 7). 
 

 
Figure 2   Schematic of the experimental stand for the testing of elastic deformations of parts. 
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The experimental stand was used to test the elastic deformations of shafts with diameters 
d = 2 –18 mm and lengths of 100, 200 and 300 mm. The maximum deformation of the part, under 
tension with the axial force Fx1, decreases in a non-linear manner in accordance with the equations 
given above (Tab. 1).  

Experimental results (model 1) are shown in Fig. 3. The shaft was loaded with axial force Fx1 = 
1960N (a) and 980N (b), respectively, while the lateral force was Fzg = 19.6 N. The measurements 
accuracies were  0.4 N and 0.01mm for Fx1 axial forces and displacements, respectively.  

Based on the further experiments performed (to model 2) one can state that the discrepancy be-
tween the analytical results and the experimental data is from  3 to 12%. The calculations were 

made with the use of model 4, with the assumption that 01 ≠xF , 0=e  fully correspond to the data 
obtained from model 1.  

Certain discrepancies between the results could also result from the assumptions adopted in the 
selection of calculation scheme.  

a)  

b)  
 

Figure 3   Experimental dependence of elastic shaft deformation (of  length L = 300 mm and diameter d = 4 mm ) loaded with axial force 
Fx1 = 1960N (a) and 980N (b). The lateral force Fzg = 19.6 N, fitted according to the model shown in Table 1, case 3. 

 
On the basis of the calculations of elastic deformations caused by axial tension, and also on the 

basis of experimental data, it can be stated that at any point on the part (L/d = 15 – 50 within the 
range of shaft diameters under consideration), and at the point of machining in particular, situated 
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directly beneath the cutting edge (x = a), the value of elastic deformation of the shafts tested can 
be significantly reduced through the selection of a suitable tensile force Fx1 and eccentricity e (Halas 
et al., 2008; Świć et al. 2011). 

In the development of technological methods for the control of grinding accuracy of low-rigidity 
shafts the elastic-deformable state can be generated by means of longitudinal compressive forces, 
shifted relative to the axis of the centres or applied additionally to the ends of the parts by means 
of bending moments.  

 
4   OPTIMISATION OF PARAMETERS OF AN ELASTIC-DEFORMABLE STATE 

The calculation scheme of the forces acting on the shaft and the elastic line of the shaft are present-
ed in Table 1 (line 7). The application of compressive forces, shifted relative to the axis of the cen-
tres, was considered as method of generation of a bending moment applied to the face of a low-
rigidity shaft and as a technological premise for the control of machining accuracy.  
In the case of a beam compressed with a longitudinal force and transmitting any lateral force, the 
solution of equation (1) can be presented in the form: 
 

y = y0 + y0
'α x + y0

'' 1− cosα x( ) + y0''' α x − sinα x( ) + f x( ) ,  (14) 
 
where: y0 , y0

' , y0
'' , y0

'''  – deformation, angle of rotation, second and third derivatives at the origin 
of the system of coordinates, respectively,; f(x) – function of the effect of lateral loads.  
The equations of the lines of elastic deformations on sections I and II have the form of: 
 

yI = y0
'α x + y0

'' 1− cosα x( ) + y0''' α x − sinα x( ) ,
yII = y0

'α x + y0
'' 1− cosα x( ) + y0''' α x − sinα x( ) + f x( ) .

⎧
⎨
⎪

⎩⎪
 (15) 

 
The initial parameters, in accordance with the conditions adopted earlier (Tab. 1) are as follows: 
 

( )[ ]( ) ( ) +
⎭
⎬
⎫

⎩
⎨
⎧ −−

−
−+−−= L

LLL
LLLL

F
F

y
x

zg βα
ααα

ααβαβα
α

cos1
sincos

cossincos1

1

'
0  

( ) ( ) ,sin
sincos

cos11cossin

1

2
⎥
⎦

⎤
⎢
⎣

⎡ +
−

−−++ L
LLdL

LLLL
F
M
x

α
αβα

αααα  

 

(16) 

 

y0
''' =

Fzg
αFx1

αL β −1+ cosβαL( ) − sinαL[ ] βαL( )
αL cosαL − sinαL

⎡

⎣
⎢

⎤

⎦
⎥ −  

M 2

Fx1

αL sinαL + cosαL − 1

αL cosαL − sinαL
⎛
⎝

⎞
⎠ ,  

(17) 
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where: β = L − a
L

, Fx1 – in the given case – compressive force.  

After integration and transformation of (15), the equation of the bending moment on section I 
was obtained:  

M1 x( ) = − Fx1
α 2 y0

''α 2 cosα x + y0
'''α 2 sinα x( ) . (18) 

 

Taking into account that at x = 0, M1(0) = M2 it follows from (18) that M 2 =
Fx1
α 3  and, corre-

spondingly,  y0
'' = −M 2

Fx1
. After considering the function of the effect of lateral loading  

f x( ) = −
Fzg x − a( )

Fx1
+
Fzg
αFx1

sin x − a( ) ,  (19) 

 
the equation of deformations on the shaft sections ultimately assumes the form:  
 

y1 x( ) = −
Fzg
Fx1

A 1− cosεL( )− 1− cosβαL( )⎡⎣ ⎤⎦ x +
M 2

Fx1
B 1− cosαL + sinαL( )⎡⎣ ⎤⎦ α x −

M 2

Fx1
1− cosα x( ) + FzgA

αFx1
− M 2B

Fx1

⎛
⎝⎜

⎞
⎠⎟
α x − sinα x( ) ,

yII x( ) = yI x( )− Fzg
Fx1

x − a( )− Fzg
αFx1

sin x − a( ) .

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

 (20) 

 
where:  

A =
αL β −1+ cosβαL( )− sinβαL

αL cosαL − sinαL
,  B = αL sinαL + cosαL −1

αL cosαL − sinαL
.  

For the estimation of the effectiveness of the method of control of the elastic-deformable state af-
ter the application of bending moments to the shaft face, and of the technological capabilities of 
such control, the relation describing the elastic line of the shaft was obtained in the form of (15).  

The initial parameters are determined from the relation: 
 

y0
' =

Fzg
αFx1

β −
sin βαL
sinαL

⎛
⎝⎜

⎞
⎠⎟ −

2M2
Fx1

cosαL
sinαL

−
1

αL
⎛
⎝⎜

⎞
⎠⎟ ,

y0
'' = −

2M2
Fx1

,

y0
''' =

Fzg
αFx1

sin βαL
sinαL

⎛
⎝⎜

⎞
⎠⎟ −

2M2
Fx1

cosαL
sinαL

⎛
⎝⎜

⎞
⎠⎟ .

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

 (21) 
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Taking into account equation (19), the function of deformations ultimately assumes the form: 
 

yI
' =
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1
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1− cosα( ) +

+
FzgC

αFx1
+
2M2D

Fx1

⎛

⎝⎜
⎞

⎠⎟
α x − sinα x( ) ,

yII x( ) = yI x( ) − Fzg
Fx1

x − a( ) + Fzg
αFx1

sin x − a( ) ,

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

 (22) 

 

where:   
C =

sinβαL
sinαL ,   

D =
cosαL
sinαL . 

Equations of lines of elastic deformations (20) and (22), as well as the equations presented in 
Table 1, describing the position and shape of a low-rigidity shaft in relation to its dimensions and 
active loads, permit estimation of the effectiveness of control of the elastic-deformable state of a 
low-rigidity shaft during turning.  

The control of the elastic-deformable state with the use of the tensile force Fx1 and eccentricity e 
as the regulating factors, enabled the formulation of the problem of optimisation: definition of the 
values of the tensile force Fx1 and eccentricity e as functions of part parameters L and d, component 
forces of machining Ff, Fp, Fc (and thus also machining parameters v, f, ap), distance a from the 
cutting edge to the point of fixing of the part in the spindle and the instant coordinate x, minimis-
ing the deformation of the part: 
 

y =
x1F ,e
min φ d, l, Ff , v, ap, f , Fx1, e, a, x( ) .  (23) 

 
Function y was arrived at on the basis of relations presented in Table 1 (columns 4 and 5). The 

values of components Fp, Fc and Ff of the machining force were defined by means of the technologi-
cal conditions, i.e. the parameters and the geometry of machining; ui technological limitations im-
posed on the variable parameter Fx1 resulting from the specific design features of the equipment and 
from the permissible tensile loads. 

 
a∈ 0, L{ } ,   x ∈ 0, L{ } ,  e∈ 0, 2d{ } ,  

Fx1 ∈σ = Fx1( ) :gi Fx1( ) ≤ ui{ } ,   ui ≥ 0 ,   i =1,n.  
(24) 

 
The most significant effect on the accuracy of machining is that of the value of deformation di-

rectly beneath the cutting tool; expressions (23) and (24) should be complemented with the limita-
tion: 

 
a = L − x  (25) 
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The formulated problem relates to issues of non-linear programming and can be solved with 
suitable methods [21]. The easiest way is to define the required values of the longitudinal tensile 
force Fx1, at axial tension (model 2 or model 4 at e = 0). For the selection of the values of Fx1, cor-
responding to the relations (23), (24), (25), the bipartite method was applied. Numerical studies 
with the help of the method grids (Fig. 3a) demonstrated that the objective function y is a unimod-
al function.  

The bipartite method permits the determination of the extreme value of Fx1 within: 
 

Ki = log2 Fx1max −
Fx1min
ΔFx1

⎛

⎝⎜
⎞

⎠⎟
,  (26) 

 
steps or on the path of (K – 1) – fold calculation of the objective function y.  
 
 

 
 

Figure 4   Objective functions and changes of tensile force Fx1 in relation to the machining length obtained in the case of various 
models (1-3 – numbers designating models from Table 1). Note, different scale in Fig. 3a. 
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The results of modelling (Fig. 3 b, c, d) indicate the possibility of obtaining, determined by the 
process conditions, low values of elastic deformations as a result of controlling the force Fx1, but 
with relation to the condition (24) in such cases it is advisable to control Fx1 at given values of ec-
centricity e when testing model 4 (Martos, 1975). 

To achieve the required low value of deformation the eccentric tension can be applied (model 4 
at e ≠ 0). 

Analysis of the results of numerical studies, obtained from relations (23), (24) and (25), as well 
as the supporting experimental tests, demonstrated that elastic deformations of low-rigidity shafts 
under eccentric tension control decrease, in the case of the parts class considered, from 2- to 20-fold, 
and in the case of shafts with d < 6 mm the decrease is achieved at lower values of the tensile force. 
It was demonstrated that eccentric tension very effectively reduces the elastic deformations of shafts 
with d ≥ 6 mm (L = 300 mm) as compared to axial tension. For example, at d = 8 mm, 
L = 300 mm, Fp = 147 N, λ1 = Fp/Ff = 0.5 (κr = 900) and values of Fx1 = 980 N, e = 2.5 mm (Fig. 
4d) elastic deformations on the whole machining length are from 2- to 2.4-fold lower than in the 
case of axial tension. With adaptive control of the values of eccentricity e and force Fx1, the value of 
elastic deformations can be reduced 18-fold; it amounts to (3 – 4.5)·10–2 mm (L = 300 mm, d = 8 
mm, Fp = 147 N, λ1 = 0.5, Fx1 = 1245N, e = 7.8 mm) and is practically stable over the whole 
length (Fig. 4e).  
 

 
 

Figure 5   General view of 3D of hyperbololid like shape of the response surface for the values of the objective function – a); relations 
of change of objective function y(0), tensile force Fx1 (x) and eccentricity e with relation to length L at x = a – b, c, d, e: 

b) (d=6mm, Fzg=49N, Fx10=980N, L=300mm, Ff=30N), c) (d=6mm, Fzg=70N, Fx10=980N, L=300mm, Ff=40N), d) 
(d=8mm, Fzg=147N, Fx10=980N, L=300mm, Ff=196N), e) (d=8mm, Fzg=147N, Fx10=980N, L=300mm, Ff=196N). 
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Figure 5 (continued) 
 

To determine the optimum parameters Fx1 and e, taking into account the limitations (24), (25), 
one can apply both the method of grids and (with relation to the unimodal nature of the objective 
function) the gradient method.  

A general view of the numerically estimated 3D response surface  for  the objective function (23) 
with process limitations in the form of Fx1max, emax, and with an extreme at point F is presented in 
Fig. 4a. In many cases there is no need to find the extreme, and it is sufficient to determine the 
required value of ysk.zad. The cutting planes O1A1C1D1 and O2A2C2D2 correspond to the required 
values of y’sk.zad. and y”sk.zad., relative to which the set of optimum values of Fx1 and e is sought.  

The relations of changes of the objective function y, tensile force Fx1 and eccentricity e at various 
shaft diameters and values of machining force, obtained by means of modelling as a result of search 
with the gradients method, are presented in Fig. 4b,c,d,e. The modelling was conducted with the 
assumption of the following conditions: d = 6 mm, Fzg = 49 N, Fx10 = 980 N, Ff  = 30 N (Fig. 4b); 
d = 6 mm, Fzg = 70 N, Fx10 = 980 N, Ff  = 40 N (Fig. 4c); d = 8 mm, Fzg = 147 N, Fx10 = 980 N, 
Ff = 196 N (Fig. 47d); d = 8 mm, Fzg = 147 N, Fx10 = 980 N, Ff = 196 N (Fig. 4e). 

As follows from analysis of the results presented in Fig 4, control of the level of machining accu-
racy, at elastic-deformable state of the part with L/d = 15 – 50, can be effected with sufficient ef-
fectiveness through the control of two parameters: tensile force Fx1 and eccentricity e; this permits 
the achievement of a theoretically assumed level of accuracy.  

Loading a semi-finished product with a tensile force, causing the elastic-deformable state, is 
equivalent to the creation of an additional support causing an increase of the static stiffness of the 
part. Therefore, the alignment and the fixing of semi-finished products can be realized in self-
centring grips or in a spring sleeve. 
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5 CONCLUSIONS 

To determine the optimum parameters Fx1 and e, taking into account the limitations (24), (25), one 
can apply both the method of grids and (with relation to the unimodal nature of the objective func-
tion) the gradient method.  

A general view of the numerically estimated 3D response surface  for  the objective function (23) 
with process limitations in the form of Fx1max, emax, and with an extreme at point F is presented in 
Fig. 4a. In many cases there is no need to find the extreme, and it is sufficient to determine the 
required value of ysk.zad. The cutting planes O1A1C1D1 and O2A2C2D2 correspond to the required 
values of y’sk.zad. and y”sk.zad., relative to which the set of optimum values of Fx1 and e is sought.  

The relations of changes of the objective function y, tensile force Fx1 and eccentricity e at various 
shaft diameters and values of machining force, obtained by means of modelling as a result of search 
with the gradients method, are presented in Fig. 4b,c,d,e. The modelling was conducted with the 
assumption of the following conditions: d = 6 mm, Fzg = 49 N, Fx10 = 980 N, Ff  = 30 N (Fig. 4b); 
d = 6 mm, Fzg = 70 N, Fx10 = 980 N, Ff  = 40 N (Fig. 4c); d = 8 mm, Fzg = 147 N, Fx10 = 980 N, 
Ff = 196 N (Fig. 47d); d = 8 mm, Fzg = 147 N, Fx10 = 980 N, Ff = 196 N (Fig. 4e). 

As follows from analysis of the results presented in Fig 4, control of the level of machining accu-
racy, at elastic-deformable state of the part with L/d = 15 – 50, can be effected with sufficient ef-
fectiveness through the control of two parameters: tensile force Fx1 and eccentricity e; this permits 
the achievement of a theoretically assumed level of accuracy.  

Loading a semi-finished product with a tensile force, causing the elastic-deformable state, is 
equivalent to the creation of an additional support causing an increase of the static stiffness of the 
part. Therefore, the alignment and the fixing of semi-finished products can be realized in self-
centring grips or in a spring sleeve. 
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