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Abstract 
As a primary load-bearing component, accurately predicting the bearing capacity of concrete-filled 
rectangular steel tube (CFRST) members is an essential prerequisite for ensuring structural safety. Machine 
learning methods are employed to model and predict the axial load bearing capacity of CFRST columns. A test 
database containing 1119 members is established, and the input parameters of the machine learning model 
are determined using a combination of data preprocessing and correlation analysis. Four machine learning 
algorithms, namely Lasso, ANN, RF, and XGBoost, are selected to build the prediction models for axial load 
bearing capacity, and a comparative analysis of their predictive performance is conducted. The feature 
importance analysis is performed using the SHAP method. The results indicate that the model based on the 
XGBoost algorithm achieves the highest prediction accuracy. Through comparison with six existing calculation 
methods in domestic and international codes, the reliability of its predictive performance is verified. 
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1 INTRODUCTION 

Since its inception in the 1940s, artificial intelligence (AI) has been applied in various disciplines and has given rise 
to multiple algorithms. Machine learning, a major subfield of AI, focuses on the design and development of algorithms 
that can identify complex patterns from experimental data, without assuming pre-established equations as models, and 
make intelligent decisions. In comparison to conventional numerical simulation methods, machine learning methods rely 
on the patterns observed in a large volume of experimental data, with relatively less influence from the user. Moreover, 
machine learning can effectively utilize existing experimental data, thereby avoiding the resource consumption 
associated with extensive repetitive testing. The application of machine learning in the field of civil engineering 
maintenance and diagnostics has started early and has yielded a substantial number of valuable research outcomes with 
practical engineering significance. However, in the domain of engineering structural design, the integration of intelligent 
technologies is still emerging. Existing research predominantly focuses on predicting material properties such as concrete 
strength, optimal mix ratios, erosion resistance, etc., while predictions concerning the performance of structural 
components are relatively scarce. Nevertheless, predicting component performance is fundamental to achieving 
intelligent structural design. Therefore, conducting predictive research on the performance and load-bearing capacity of 
structural components using machine learning methods holds significant importance. 

Since John Lally, an American, first filled concrete in circular steel tubes as load-bearing column components and 
applied for a patent in 1897, steel tube concrete structures have been widely recognized and studied by the academic 
and engineering communities due to their advantages of high load-bearing capacity, good ductility, ease of construction, 
fire resistance, and cost-effectiveness. In steel tube concrete structures, rectangular steel tubes do not provide as 
significant confinement to the core concrete as circular steel tubes do. However, concrete-filled rectangular steel tube 
(CFRST) possesses the characteristics of strong plastic deformation capacity, good ductility, and excellent seismic 
performance, while also overcoming the design, construction, and usability inconveniences associated with the special 
cross-sectional shape of circular steel tube concrete structures. Additionally, concrete-filled rectangular steel tube 
structures have the advantages of high flexural stiffness and convenient node connections. Given the numerous 
advantages of CFRST columns, they have been widely applied in high-rise structures, subway stations, and other 
engineering projects. Therefore, research and application of CFRST columns hold significant value in the field of 
engineering. Axial compression is one of the typical loading conditions for steel tube concrete load-bearing members, 
and accurately predicting their bearing capacity is a crucial prerequisite for ensuring structural safety. Due to the 
influence of multiple factors, such as geometric parameters, material properties, and nonlinear interactions, the 
calculation of bearing capacity for concrete-filled rectangular steel tube is complex. 

Researchers have conducted extensive experimental studies and theoretical analyses on the bearing capacity of 
CFRST columns, yielding fruitful results and establishing relevant design codes and technical regulations. These codes 
provide various theories and empirical formulas for the design of CFRST columns. The ultimate limit state theory used in 
EC 4 (1994) [1] and ACI 318-99 [2] considers CFRST columns equivalent to reinforced concrete columns, using simplified 
formulas to calculate the axial load-bearing capacity. The unified theory adopted in GJB 4142-2000 [3] and DBJ/T13-51-
2020 [4] assumes the combined action of concrete and steel during the load-bearing process, no longer distinguishing 
between steel tubes and concrete. Instead, the overall geometric properties of the member (such as cross-sectional area 
and moment of inertia) and the composite performance indicators of steel tube concrete are used to calculate various 
load-bearing capacities of the member. The superposition theory ignores the interaction between the steel tube and 
concrete, treating the final bearing capacity under axial load as the sum of the concrete bearing capacity and the steel 
tube bearing capacity. Representative codes for this approach are AIJ (1997) [5] and DB/T29-57-2016 [6]. The pseudo-
steel theory is based on steel structure design codes, where concrete is converted to steel using the elastic modulus, 
without changing the cross-sectional area of the steel tube. It considers the filled concrete as a means to increase the 
yield strength and elastic modulus of the steel tube, thereby calculating the relevant parameters of the equivalent steel 
tube and using the bearing capacity of the equivalent steel tube component as the bearing capacity of the prototype 
steel tube concrete component. The representative code for this theory is CECS 159:2004 [7]. 

Researchers have conducted extensive experimental studies and theoretical analyses on the bearing capacity of CFRST 
columns, achieving fruitful results and establishing relevant design codes and technical specifications. These codes encompass 
various theories and empirical formulas for the design of CFRST columns. However, there are significant differences in design 
codes and technical specifications among different countries, such as EC4 (1994), AISC-LRFD (1979) [8], and BS 5400 (1978) [9]. 
Even within the same country, such as China, the standards vary greatly, including CECS 159:2004, GJB 4142-2000, and 
DBJ/T13-51-2020, as shown in Table 1 for their corresponding applicability ranges. Each design code demonstrates different 
levels of accuracy and is only applicable to certain ranges of materials and geometric properties. Existing calculation models 
exhibit higher accuracy for CFRST columns using ordinary concrete strength and steel strength. However, using these models 
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to predict the bearing capacity of other types of CFRST columns, such as high-strength steel tube concrete and thin-walled 
steel tube concrete, can lead to significant errors. Nonetheless, with recent advancements in building materials, ultra-high-
strength structural steel ranging from 690 MPa to 1300 MPa and ultra-high-strength concrete ranging from 120 MPa to 200 
MPa have emerged for modern construction. The use of high-strength steel, high-strength concrete, and large-section profiles 
in steel tube concrete has become increasingly common to meet the requirements of heavy-duty design. The material strength 
and slenderness ratio often exceed the applicable range of the design codes. Therefore, developing a unified and efficient 
design method for CFRST columns is necessary and urgent, and the development of machine learning methods offers a new 
approach to address these issues. Machine learning methods make full use of the advantages of the big data era, leveraging 
the accumulated experimental data from different regions and periods over the past few decades. These methods directly 
explore the mapping relationship between the inputs (structural basic design parameters) and outputs (target performance 
indicators) in the data samples, thereby establishing accurate and stable prediction models. Compared to traditional 
“mechanics-driven” methods, this approach focuses on data, avoiding complex mechanical derivations and numerical 
implementations. It is a “data-driven” modeling method that can complement the “mechanics-driven” methods, leading to a 
more comprehensive and refined modeling method for predicting the axial compressive bearing capacity of CFRST columns. 

Table 1 The applicability range of design codes for concrete-filled rectangular steel tube components. 

code EC 4 (1994) AISC-LRFD 
(1979) BS 5400 (1978) CECS 159:2004 GJB 4142-2000 DBJ/T13-51-

2020 
Specimen type Cylinder Cylinder cube cube cube cube 

( )'
c cuf orf Mpa  '21 70cf 

 '20.7 55cf 

 20cf   30 80cuf 

 30 60cuf 

 30 90cuf 

 

( )yf Mpa  235 ~ 355  379

 275 ~ 355  235 ~ 420  235 ~ 390  235 ~ 420  

/H t  52 235 / yf  3 /s yE f  3 /s yE f  60 235 / yf
 

40 235 / yf
 

60 235 / yf
 

In recent years, preliminary research has emerged using machine learning methods to predict the axial compressive 
capacity of CFRST columns, and the relevant algorithms and database information are summarized in Table 2. It can be 
observed that the early studies had relatively small-scale databases. For example, the database established by Tien-Thinh 
Le et al. [10] consisted of only 102 specimens, and the column category was limited to short columns, which restricted 
the applicability range of the models developed. However, their research demonstrated that using neural networks to 
predict the load-bearing capacity of steel tube concrete exhibited high accuracy. Tran et al. and Du et al. developed 
databases with 300 and 302 specimens, respectively, and their proposed models further improved the generalization 
ability and applicability range, facilitating reliable and rapid prediction of the axial compressive capacity of rectangular 
CFST (Concrete-Filled Steel Tube) columns, suitable for practical design applications. However, the existing research still 
has the following limitations: 1) The size of the databases is relatively small (less than 400 specimens), representing only 
a small portion of the existing experimental data. A smaller database can lead to overfitting of the model, thereby 
reducing its predictive accuracy. 2) Most scholars have used a single machine learning method (such as ANN, SVM, DT), 
which exhibits poorer generalization ability compared to ensemble learning methods (such as RF, GDBT, XGBoost). 
Moreover, using only one machine learning method for load prediction lacks comparisons between different models. 3) 
Currently, there are only prediction models for the axial compressive capacity of short columns made of concrete-filled 
rectangular steel tube, while there is a lack of predictive research for long columns of the same material. 4) Different 
scholars have used different input parameters, and there has been a lack of exploration and analysis of dataset features, 
as well as the determination of feature correlation and feature selection methods. 5) The application of machine learning 
methods demonstrates the unique advantages of this approach in predicting the fundamental performance of concrete 
structures. However, most current research is based on “black box” models, which can provide accurate predictions 
based on input data but lack explanations for the model predictions. This limitation reduces the credibility and application 
scope of machine learning methods. 

To this end, this study establishes a predictive model for the axial compressive capacity of CFRST columns based on 
machine learning methods. Based on a survey of 132 sets of tests conducted between 1962 and 2023, a database is 
established, including a total of 1,119 specimens, consisting of 460 short column specimens and 659 long column 
specimens of concrete-filled rectangular steel tube. A feature correlation heatmap is plotted to explore and analyze the 
dataset features, and the f_regression score function is used for feature selection to determine the input parameters of 
the machine learning model. Machine learning algorithms such as Lasso Regression, Artificial Neural Networks (ANN), 
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Random Forest (RF), and Extreme Gradient Boosting (XGBoost) are employed to predict the axial compressive capacity 
of concrete-filled rectangular steel tube. The predictive ability of the models for different load directions is studied, and 
suitable machine learning algorithms are selected through comparative analysis. Furthermore, a new feature parameter 
sensitivity analysis method based on SHAP (Shapley Additive Explanations) is used to interpret the machine learning 
prediction model and reflect the influence of each feature parameter on the final prediction value. The selected machine 
learning algorithms are compared and analyzed with the current load calculation methods in domestic and international 
codes and specifications to verify the accuracy of the established machine learning models. The aim is to provide 
reference for the intelligent prediction and design of the axial compressive capacity of steel tube concrete components. 

Table 2 Summary of the machine learning predictive models for the axial compressive capacity of CFRST 

Data 
Sources 

Number of 
test pieces B/mm t/mm L/mm fy/Mpa f’c/Mpa 

Machine 
learning 

algorithm 

Predictive 
parameter 

Ref[10] 102 60-285 2.5-7.9 60-3600 192-395 25-85 ANN N 

Ref[11] 180 100-323 1.44-7.47 300-969 198-835 10.65-91.1 SVM N 

Ref[12] 314 60-324 2-11.70 295-3150 194.2-835 7.9-164.1 GPR N 

Ref[13] 392 77-323 1.90-12.50 330-3910 242-781 15-193 ANN N 

This 
research 1119 60-750 0.8-16 60-4135 176.7-

1030.6 8-226 Lasso, ANN, 
RF, XGBoost N 

2 Establishment and Comparative Analysis of Machine Learning Models 

2.1 The establishment of the database. 

The dataset used in this study consists of 1,119 experimental data points, including 460 test data points for short 
CFRST columns and 659 test data points for long CFRST columns (short columns are defined as columns with / 4L B ≤ , 
and long columns are defined as columns with / 4L B > , where L is the length of the specimen and B is the length of the 
shorter side of the rectangular cross-section). These data points are collected from existing literature. Figure 1 presents 
a diagram of CFRST columns under axial loading together with their geometrical descriptions. Due to the wide range of 
data sources, the reported concrete strength in different studies is obtained from cylindrical, cubic, or prismatic 
specimens of different sizes, requiring strength conversion. The definition of unified compressive strength of concrete is 
of great significance for developing the experimental database and comparing steel tube concrete tests conducted 
worldwide. Considering that 86.5% of the specimens' concrete strength in the database is obtained from cylindrical 
specimens, according to the concrete structural design code, all specimens' concrete strength is converted to the 
strength of a standard cylindrical specimen with a diameter of 150mm and a height of 300mm (f'c) to achieve 
normalization of database parameters and reduce errors caused by the conversion process. See equations (1) and (2) for 
conversion formulas, and Table 3 lists the detailed conversion factors. 

1 2 ,0.88ck cu kf fα α= × × ×  (1) 

'
3 ,c cu kf fα= ×  (2) 

Among them, ckf  is the standard value of the axial compressive strength of the concrete prism, ,cu kf  is the 

standard value of the axial compressive strength of the concrete cube, and '
cf  is the standard value of the axial 

compressive strength of the concrete cylinder. 1 2 3, , α α α  is the calculation coefficient, which is determined according to 
the concrete strength, see Table 3 for details. 

There are 11 feature parameters, including the width of the steel tube section (B, short side), the height of the steel 
tube section (H, long side), the thickness of the steel tube wall (t), the length of the column (L), the slenderness ratio 
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(L/B), the aspect ratio of the section (H/B), the width-thickness ratio of the steel plate (H/t), the yield strength of the 
steel (fy), the compressive strength of the concrete cylinder (f'c), the elastic modulus of the concrete (Ec) and the elastic 
modulus of the steel (Es). Table 4 shows the statistical parameters of the 1119 test data points. From Table 4, it can be 
seen that the database covers a wide range of parameters. The range of section height H, aspect ratio H/B, and external 
depth-to-thickness ratio H/t of the specimens are 60 to 750 mm, 1 to 3.03, and 10.49 to 240, respectively. The range of 
specimen length L and slenderness ratio L/B are 60 to 4135 mm and 0.59 to 47.49, respectively. The yield strength fy 
ranges from 177.26 to 1030.6 MPa, and the compressive strength fc' of the concrete cylinders ranges from 8 to 
173.85 MPa. Figure 2 presents the distribution of feature parameters for 1,119 experimental data. 

Table 3 Detailed values of calculation coefficient 1 2 3, , α α α  

, /cu kf Mpa  
1α  2α  3α  

40≤  0.76 1 0.79 
50 0.76 0.9675 0.79 
60 0.78 0.935 0.833 
70 0.80 0.9025 0.857 
80 0.82 0.87 0.875 

 

Figure 1. Diagram of CFRST column. 

Table 4 Parameter statistics information 

Feature parameter Count Mean Std Min Max 

B 1119 137.65 62.72 60 750 
H 1119 155.67 70.05 60 750 
t 1119 4.58 1.96 0.8 16 
L 1119 1225.82 984.87 60 4135 

L/B 1119 10.15 9.64 0.59 47.49 
H/B 1119 1.16 0.30 1 3.03 
H/t 1119 38.76 21.93 10.49 240 
fy 1119 422.79 177.26 176.7 1030.6 
f’c 1119 56.73 31.28 8 173.85 
Ec 1119 37.68 6.20 23.4 52.52 
Es 1119 200.11 3.03 182 226 
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Figure 2 Statistical distribution of 1119 experimental data. 



Machine Learning-Based Prediction of Axial Load Bearing Capacity for CFRST Columns Tuo Lei et al. 

Latin American Journal of Solids and Structures, 2023, 20(8), e509 7/17 

2.2 Data preprocessing and feature selection. 

The axial compressive strength of rectangular concrete-filled steel tubes varies between 105.4 kN and 24294 kN, 
with an average value of 2235.31 kN. The probability density distribution of the axial compressive strength is shown in 
Figure 3a, indicating a noticeable left skewness. To improve the data handling capability of the model, this study applies 
the Box-Cox transformation to normalize the target values. The distribution of axial compressive strength of rectangular 
concrete-filled steel tubes before and after the transformation is shown in Figure 3. 

 
Figure 3 The axial compressive strength distribution chart 

To explore and analyze the features of the dataset, a heatmap of feature correlation was generated. In the heatmap, 
lighter colors indicate higher correlation between two features, while darker colors indicate lower correlation. The 
heatmap of feature correlation with axial compressive strength is shown in Figure 4. 

 
Figure 4 Partial variables and target variable (N) heatmap. 

The axial compressive strength (N) is subjected to feature selection using the f_regression scoring function. F-Score 
was initially proposed by Chen from National Taiwan University and is a method to measure the discriminative power of 
features between two classes, distinct from the F1_score evaluation metric for classification problems. Based on this 
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method, effective feature selection can be achieved. A higher F-Score indicates a stronger discriminatory ability of the 
feature. The F-Score of all features is calculated for feature selection, and the F-Scores of the features are listed in Figure 5. 

 

Figure 5. F_score of feature parameters. 

Feature selection was performed based on the feature correlation heatmap and the calculation of F-Score importance 
values. Among the geometric parameters of the rectangular steel tube-concrete columns, the parameters D, B, and t 
showed strong positive correlations with N (axial compressive strength), while the aspect ratio (L/B) and the aspect ratio of 
the section (H/B) exhibited strong negative correlations with N. Regarding the material parameters of the rectangular steel 
tube-concrete columns, the parameters fy, f'c, and Ec demonstrated strong positive correlations with N. However, the 
elastic modulus of the steel material showed a weak positive correlation with N, with a correlation coefficient of only 0.13. 
Furthermore, its F-Score value was the lowest at 344.0, indicating that it had a minimal contribution to N. Considering that 
the distribution of the elastic modulus values in the database ranged from 182 to 226, with 75% of the values being 200  GPa 
and having low fluctuation, this feature parameter was removed. Although the width-to-thickness ratio of the steel plate 
(H/t) exhibited a weak negative correlation with N, with a correlation coefficient of only -0.0064, its F-Score value was 
relatively high at 2254.0. Previous studies have shown that the width-to-thickness ratio of the plate (H/t) is an important 
parameter affecting the local buckling of the steel tube wall, which in turn reduces the load-carrying capacity and ductility 
of the structure. Therefore, this feature parameter was retained. After feature selection and processing, the resulting 
dataset consisted of 1119 samples. Taking into account the influences of different parameters on the load-bearing capacity 
of the steel tube-concrete columns, 10 input parameters (B, H, t, L, L/B, H/B, H/t, fy, f'c, Ec) were selected for predicting the 
axial compressive strength of rectangular steel tube-concrete columns. Once the database collection was completed, the 
1119 experimental data points were randomly divided into training and testing datasets in approximately a 7:3 ratio, with 
783 samples assigned to the training dataset and the remaining 336 samples assigned to the testing dataset. 

2.3 Algorithm evaluation metrics 

In this paper, the coefficient of determination ( 2R ), mean absolute error (MAE), and root mean square error (RMSE) 
are selected as the evaluation metrics to measure the model performance. The calculation formulas are shown in 
Equation (3) to Equation (5). 
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( )
( )

( )

2

2 1
2

1

, 1

n

i i
i

i i n

i i
i

y y
R y y

y y

=

=

−
= −

−

∑

∑

 (3) 

( ) 

1

1,
n

i i i i
i

MAE y y y y
n =

= −∑  (4) 

( ) ( )
2

1

1,
n

i i i
i

RMSE y y y y
n =

= −∑  (5) 

Where iy  represents the actual values of the samples, iy  represents the predicted values, and n represents the number 
of samples. 

The coefficient of determination reflects the proportion of the total variation of the dependent variable that can be 
explained by the regression relationship with the independent variables. It represents the degree of fit of the regression 
results to the observed values. The coefficient 2R  takes values between 0 and 1, where a larger coefficient of 
determination indicates a better model performance. The Mean Absolute Error (MAE) is the average of the absolute 
differences between the predicted values and the actual values. The Root Mean Square Error (RMSE) is a measure that 
reflects the extent of differences between the predicted values and the actual values. Both MAE and RMSE have the 
same units of measurement, but RMSE first squares the errors, then sums them, and takes the square root, amplifying 
the differences between larger errors. Compared to MAE, RMSE tends to have larger values and more directly reflects 
the true errors. Smaller values of MAE and RMSE indicate more accurate model predictions. 

2.4 Training and comparative experiments of machine learning models. 

Machine learning methods can be divided into linear regression algorithms, single learning methods, and ensemble 
learning methods. In this study, we employed one linear regression algorithm (Lasso), one single learning method (ANN), 
and two ensemble learning methods (RF, XGboost), totaling four algorithms, to predict and compare the axial 
compressive strength of CFRST columns. The features and labels from the dataset were inputted into the models, and 
the data were divided into training and testing sets. Machine learning algorithm models were trained on the training set 
and used to make predictions on the testing set. Grid search and 10-fold cross-validation methods were employed to 
determine the optimal hyperparameters for hyperparameter tuning. 

Figure 6 shows the comparison between the predicted values and the actual values for the four models. It can be 
visually observed that compared to Lasso Regression and ANN, the predicted values of axial compressive strength based 
on RF and XGBoost are more concentrated within the error limit of ±15%. This indicates that the prediction models for 
axial compressive strength of concrete-filled rectangular steel tube based on RF and XGBoost algorithms have better 
predictive performance on the samples. 

Table 5 presents the test results of the four machine learning prediction models. According to the results, the 
Extreme Gradient Boosting (XGBoost) model achieves the best performance in terms of MAE, RMSE, MSE, and 2R . It 
demonstrates strong generalization ability and high prediction accuracy. Random Forest (RF) and Artificial Neural 
Network (ANN) also exhibit reasonable accuracy. However, the Lasso Regression model shows poor predictive accuracy, 
with a test set coefficient of determination of only 0.865 and a MAE of 520.31. Therefore, the following section will 
employ the XGBoost model for feature analysis and prediction of the ultimate torsional strength. 

Table 5 Evaluation metrics of different machine learning prediction models. 

predictive model Number set 2R  RMSE MAE 

Lasso Train 0.862 884.73 591.28 
Test 0.865 725.34 520.31 

ANN Train 0.912 707.14 444.48 
Test 0.916 573.52 385.25 

RF Train 0.988 260.83 102.95 
Test 0.954 425.78 235.50 

XGBoost Train 0.998 57.61 16.26 
Test 0.980 294.82 148.63 
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Figure 6 The prediction performance of LassoRegression, ANN, RF, and XGBoost machine learning models. 

3. Feature importance analysis based on the SHAP method 
The application of machine learning methods has demonstrated their unique advantages in predicting the basic 

performance of steel-concrete structures. However, most of the current research focuses on “black box” models, which 
can provide accurate predictions based on inputs but lack interpretability. This limitation reduces the credibility and 
applicability of machine learning methods. Traditional methods like Feature Importance can intuitively reflect the 
importance of features but cannot determine the relationship between features and the final prediction. SHAP (SHapley 
Additive exPlanations) uses a feature attribution method to calculate the attribution values of features, which can reflect 
the impact of each feature on the final prediction and indicate the positive or negative influence, thus enhancing the 
interpretability of the model. SHAP provides powerful data visualization capabilities to display the model and explanation 
results, making it widely applicable for interpreting complex algorithm models. Therefore, using the SHAP algorithm to 
explain the XGBoost model allows us to analyze the impact of each feature on the predicted value and identify the key 
parameters in estimating axial load-bearing capacity. 

3.1 The global interpretation of the experimental database 
The SHAP method can be used to explore the influence of input variables on the final axial compressive load capacity 

prediction of XGBoost model for rectangular steel-concrete columns. The important factors of the input variables are 
shown in Figure 7a. The higher the SHAP value, the greater the variable's influence. The main influences of the input 
variables on the axial compressive load capacity of rectangular steel-concrete columns, ranked by importance, are B, t, 
fy, f'c, H, L/B, and Ec. It is important to note that the Shapley values are based on average prediction results. It can be 
observed that B is the most important feature, which increases the predicted axial compressive load capacity by an 
average of 926.48 kN (shown as 926.48 on the x-axis). The importance of t relative to B is approximately 73%. The 
contributions of L, H/t, and H/B are smaller compared to the seven major features, with their importance being 
approximately 6.6%, 2.7%, and 1.6% of B, respectively. 

 
Figure 7 Global interpretation using SHAP method. 
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Figure 7b displays the distribution of SHAP values for each feature parameter and illustrates the corresponding 
impact trends. In the figure, the horizontal axis represents specific SHAP values, and the vertical axis represents input 
variables (i.e., feature parameters) sorted by their importance. Each point represents an individual sample from the 
entire dataset, colored from low (blue) to high (red) according to the corresponding feature's value. Positive or negative 
SHAP values indicate positive or negative correlations between the feature and the output parameter (i.e., N). Therefore, 
Figure 7b not only demonstrates which features are important but also reveals how each feature parameter influences 
the axial compressive load capacity (N). The section width B and wall thickness t are the most critical variables, with 
larger values of B and t resulting in larger SHAP values and greater contributions to the axial compressive load capacity. 
Similarly, larger values of the steel yield strength fy, concrete compressive strength f'c, and section height H will increase 
the corresponding SHAP values, leading to higher axial compressive load capacity. On the other hand, for feature 
parameters such as aspect ratio L/B, section height-to-width ratio H/B, and plate width-to-thickness ratio H/t, there is a 
decreasing trend in axial compressive load capacity as these values increase. In contrast, the aspect ratio L/B has a 
significant negative impact on most samples. The tail typically extends to the left rather than the right, indicating that 
extreme L/B values significantly reduce the axial compressive load capacity. 

 
Figure 8 The individual model interpretation results of the SHAP method. 

3.2 The local interpretation of the experimental database 
In addition to providing global explanations for the database, SHAP values also provide local explanations for each 

individual sample. Two representative samples, a long column and a short column (CB40-SL3(B)[14] and 4-4P[15]), are selected 
for illustration as shown in Figure 8. The SHAP method decomposes the predicted axial compressive capacity of CFST columns 
into the sum of the influences from each feature parameter. The average predicted torsional resistance is 2231.527 kN, serving 
as the baseline value. Each feature parameter that contributes to higher or lower predictions (compared to the baseline) is 
displayed in red or blue, respectively. As shown in Figure 8a, for sample 1, B is the most critical feature parameter with a 
positive influence on the axial compressive capacity, having a SHAP value of 1649.8 kN. Similarly, f'c, fy, and H have positive 
influences on the shear capacity, with SHAP values of 872.14 kN, 739.46 kN, and 252.15 kN, respectively. L/B and L are the 
most critical feature parameters with negative effects on the axial compressive capacity, having SHAP values of -323.25 kN and 
-28.01 kN, respectively. By combining the baseline values and SHAP values for all feature parameters, the final predicted shear 
capacity is 5865.995 kN, which is close to the experimental value of 5896 kN. For sample 2, as shown in Figure 8b, L/B and L 
are typical positive feature parameters with SHAP values of 105.47 kN and 33.13 kN, respectively. B, t, fy, and H are typical 
negative feature parameters with SHAP values of -490.51 kN, -384.23 kN, -277.56 kN, and -153.19 kN, respectively. The final 
predicted shear capacity is 911.511 kN, which is close to the experimental value of 916 kN. 

3.3 Feature dependency of the prediction results 
SHAP can also reveal the feature dependency of the prediction results, that is, how the SHAP values change with the 

variation of input variables. This complements the SHAP feature distribution summary plot and provides more detailed insights 
into how SHAP values vary with feature values. Figure 9 presents the results for each feature parameter. It can be observed 
that the SHAP values of B, t, fy, f'c, and Ec increase with the values of the corresponding feature parameters, while the SHAP 
values of L and L/B decrease with increasing feature parameter values. This indicates a positive correlation between B, t, fy, f'c, 
Ec, and the axial compressive strength of the rectangular steel-reinforced concrete column, while L and L/B show a negative 
correlation. From Figure 9j, it can be seen that H/t exhibits an increasing trend in SHAP values with increasing feature parameter 
values up to 30, indicating an increase in the compressive strength. However, for H/t values above 30, the SHAP values decrease 
with increasing feature parameter values, indicating a decrease in the compressive strength. Furthermore, from Figure 9i, it is 
evident that H/B shows a slow increase in compressive strength with increasing feature parameter values below 1.5, while 
above 1.5, H/B exhibits a gradual decrease in compressive strength with increasing feature parameter values. 
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SHAP can also reveal the interaction effects among different feature parameters. Figure 10 presents the interaction 
results for six key feature parameters. Figure 10a shows the interaction between the section width B and the section 
height H. When the section height H is within the range of 0 to 125mm, the SHAP value of B slowly increases with 
increasing parameter values. However, when H is greater than 125mm, the SHAP value of B rapidly increases with 
increasing parameter values. From Figures 10b, c, e, and f, it can be observed that regardless of the size of fy and f'c, the 
SHAP values of B and t increase with increasing parameter values. Figure 10d displays the interaction between the section 
height H and the wall thickness t. When H is less than 120mm, regardless of whether t is large or small, the SHAP value 
of H is negative and negatively correlated with the axial compressive strength. However, when H is greater than 120mm, 
the SHAP value of H becomes positive and positively correlated with the axial compressive strength. When H is between 
120mm and 320mm, the SHAP value of H rapidly increases with increasing parameter values. When H is greater than 
320mm, the SHAP value of H increases slowly. From Figures 10g, h, and i, it can be observed that regardless of the size 
of t, fy, and f'c, when the aspect ratio L/B is less than 6, the SHAP value of H is positive and positively correlated with the 
axial compressive strength. However, when the aspect ratio L/B is greater than 6, the SHAP value of H is negative, and it 
decreases with increasing parameter values, showing a negative correlation with the axial compressive strength. 

 
Figure 9 The impact patterns of each feature parameter on axial compressive capacity. 
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Figure 10 The interaction relationships among different feature parameters. 

4. Comparison between XGBoost prediction model and existing standards. 

Many design codes for steel and composite materials provide calculation methods and empirical formulas for the 
axial load-carrying capacity of CFRST columns. These include European standard EC4 (1994), American standard AISC-
LRFD (1979), British standard BS 5400 (1978), as well as domestic standards such as CECS 159:2004, GJB 4142-2000, and 
DBJ/T13-51-2020. The empirical calculation formulas of each standard are listed in Table 6. Previous studies have often 
focused only on predicting the axial load-carrying capacity of short columns, while in practical engineering, columns are 
often long. The predictive performance of the XGBoost machine learning model for short and long columns is compared 
and analyzed against the load calculation methods of these six existing standards, both domestic and international, to 
validate the accuracy of the XGBoost model. 

Table 6 The empirical design formulas in each standard. 

Code category empirical design formula 

EC4(1994) short column '
y c

us s c
s c

f f
N A A

γ γ
= + 

 

long column '
y c

ul s c
s c

f fN A Aχ
γ γ

 
= + 

 
    

CECS:159:2004 short column us y s ck cN f A f A= +   
long column ( )ul y s ck cN f A f Aϕ= +    

GJB 4142-2000 short column ( )21.212us sc o o cN A fα ξ β ξ= + +     
long column ( )21.212ul sc o o cN A fα ξ β ξ= Φ + +     

AISC-LFRD(1999) short column ( ) ( )

( )

2

2

0.658 ........... 1.5

0.887 ........... 1.5

my s c

u

my s c
c

F A
N

F A

λ λ

λλ

 ≤
=    



 long column 

BS 5400(1978) short column ( )10.85 0.91 0.45us s y c cuN k A f A f= +  
long column ( )2 0.91 0.45ul s y c cuN k A f A f= +  

DBJ/T13-51-2020 short column ( )1.18 0.85us sc sc cN A fθ= +   
long column ( )1.18 0.85ul sc sc cN A fϕ θ= +   
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Table 7 Evaluation metrics for the prediction capability of the XGBoost model and existing standards. 

predictive model Number set 2R  RMSE MAE 

EC4(1994) short column 0.919 848.03 626.20 
long column 0.836 563.85 427.36 

CECS 159:2004 short column 0.951 660.67 434.74 
long column 0.858 524.77 377.39 

GJB 4142-2000 short column 0.806 1315.11 859.75 
long column 0.709 751.75 501.48 

AISC-LFRD(1979) short column 0.966 546.61 370.22 
long column 0.899 463.59 312.40 

BS 5400(1978) short column 0.892 981.11 698.62 
long column 0.761 681.35 511.97 

DBJ/T13-51-2020 short column 0.917 858.74 628.63 
long column 0.808 611.31 458.52 

XGBoost short column 0.973 371.81 173.77 
long column 0.969 233.22 172.28 

 
Figure 11. Prediction performance of the XGBoost model and six existing standards. 
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Figure 12. Distribution of error range 

Table 8. Error range of short column data prediction. 

Error range(%) The number of data within the error range and the corresponding percentage 
EC4 AISC-LFRD BS-5400 CECS159:2004 GJB4142-2000 DBJ/T13-51-2020 XGBoost 

 143 290 106 193 55 179 350 
(31%) (63%) (23%) (42%) (12%) (39%) (76%) 

 207 336 166 259 127 253 391 
(45%) (73%) (36%) (56.2%) (27.5%) (55%) (85%) 

 262 377 225 359 198 304 423 
(57%) (82%) (49%) (78%) (43%) (66%) (92%) 

 336 396 295 389 281 359 437 
(73%) (86%) (64%) (84.5%) (61%) (78%) (95%) 

Table 9. Error range of long column data prediction. 

Error range(%) The number of data within the error range and the corresponding percentage 
EC4 AISC-LFRD BS-5400 CECS159:2004 GJB4142-2000 DBJ/T13-51-2020 XGBoost 

 105 277 69 138 49 86 468 
(16%) (42%) (10.5%) (21%) (7.5%) (13%) (71%) 

 191 336 135 217 96 171 534 
(29%) (51%) (20.5%) (33%) (14.5%) (26%) (81%) 

 303 409 244 316 191 287 587 
(46%) (62%) (37%) (48%) (29%) (43.5%) (89%) 

 336 442 277 349 237 316 613 
(51%) (67%) (42%) (53%) (36%) (48%) (93%) 

Figure 11 shows the comparison between the predicted values and actual values of the XGBoost model and six 
existing specifications. Table 7 presents the testing results of the predictive model. For short columns, the XGBoost-based 
predictive model has achieved some improvement compared to existing models. Compared to EC4, BS 5400, CECS 
159:2004, GJB 4142-2000, and DBJ/T13-51-2020, the predicted axial compressive capacity values of AISC-LRFD and 
XGBoost are more concentrated within a ±15% error limit, with determination coefficients of 0.966 and 0.973, mean 
absolute errors (MAE) of 370.22 and 173.77, and root mean square errors (RMSE) of 546.61 and 371.81, respectively. 
For long columns, the accuracy of the XGBoost-based predictive model is significantly higher than the existing models, 
with a determination coefficient of 0.969 and MAE and RMSE values of 172.28 and 233.22, respectively. 

The error distributions of all models are also plotted in Figure 12, and the summary of data for short columns and 
long columns is provided in Tables 8 and 9, respectively. It can be observed that the proposed XGBoost-based predictive 
model demonstrates superior accuracy for long column predictions compared to existing models, especially within a 
small error range. For short column predictions, it also shows some improvement compared to existing models within a 
small error range. However, for larger error ranges, the XGBoost-based model only provides slight improvements 
compared to existing models. For instance, within a 5% error range, the proposed GBT model achieves an accuracy rate 
of 93% for long column predictions, which is nearly twice that of existing models. Among the six considered design 
specifications, AISC-LRFD offers the best predictions for short columns, with a determination coefficient of 0.966, MAE 
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and RMSE values of 370.22 and 546.61, and a prediction accuracy rate of 63% within a 5% error range. These values 
surpass CECS 159:2004 with 0.951, 434.74, 660.67, and 42%, respectively, but are much better than GJB 4142-2000 with 
0.806, 859.75, 1315.11, and 12%. For long columns, AISC-LRFD also provides the best predictions, with a determination 
coefficient of 0.899, MAE and RMSE values of 312.40 and 463.59, and a prediction accuracy rate of 42% within a 5% error 
range. These values outperform CECS 159:2004 with 0.858, 377.39, 524.77, and 21%, respectively, but are significantly 
better than GJB 4142-2000 with 0.709, 501.48, 751.75, and 7.5%. 

Therefore, it can be concluded that the proposed XGBoost-based model not only exhibits the best performance in 
predicting the strength of CFRST columns for both short and long columns, but also demonstrates superior generalization 
capability and accuracy. 

5 CONCLUSION 

1. Reasonable data preprocessing methods and correlation analysis are applied to determine the input parameters of 
the machine learning model in a scientifically and logically manner, considering the different correlations between 
geometric and material parameters and the bearing capacity of rectangular steel tube-concrete columns. 

2. Ensemble learning methods (RF, XGBoost) outperform linear regression algorithm (Lasso) and single learning 
method (ANN) in predicting the axial compressive strength of rectangular steel tube-concrete columns. Among 
them, the XGBoost machine learning model exhibits the best performance, demonstrating superior generalization 
ability and highest prediction accuracy. 

3. Based on the XGBoost prediction model, feature importance analysis using the SHAP method is conducted to identify 
the main factors influencing the axial compressive strength of rectangular steel tube-concrete columns. These factors, 
ranked from strongest to weakest, are B, t, fy, f'c, H, L/B, and Ec. Local interpretations are provided for selected 
samples, which demonstrate high accuracy in predicting their outcomes. The analysis also reveals the feature 
dependencies and interaction effects among the feature parameters of CFRST columns' axial compressive strength. 

4. The predictive performance of the XGBoost machine learning model is compared with the bearing capacity 
calculation methods of six existing standards, both domestically and internationally. The XGBoost model exhibits 
significantly higher accuracy in predicting the bearing capacity of long columns compared to the current standards. 
Moreover, its accuracy in predicting short columns is further improved. Among the six considered standards, AISC-
LRFD demonstrates the best prediction accuracy for both short and long columns. 

Author's Contributions: Conceptualization, Tuo Lei and Jianxiang Xu; Methodology, Jianxiang Xu and Shuangfei Liang; 
Investigation, Zhimin Wu and Shuangfei Liang; Writing - original draft, Tuo Lei and Jianxiang Xu; Software, Zhimin Wu and 
Shuangfei Liang; data curation, Shuangfei Liang and Zhimin Wu; Validation, Jianxiang Xu and Shuangfei Liang; Writing – 
review & editing, Jianxiang Xu and Tuo Lei; Supervision, Tuo Lei. 

Editor: Marcílio Alves 

References 

[1] Euro Code 4.Design of composite steel and concrete structures,Part,1: General Rules and rules for buildings(together with 
United Kingdom National Application Document(S). DDENV 1994—l;1994, British Standards Institution, London WIA2BS, 1994. 

[2] ACI 318-99, Building code requirements for structural concrete and commentary S . Farmingtion Hills(Ml), American 
Concrete Insttute. Detroit, USA, 1999. 

[3] GJB 4142-2000, Technical regulations for early-strength composite structures for emergency repair of military ports in 
wartime [S].117[s]. 

[4] Fujian Province Engineering Construction Standard DBJ/T13-51-2020 Technical Specification for Steel Tube Concrete 
Structures [s] (in Chinese). 

[5] AIJ, Recommendations for design and construction of concrete filled steel tubular structures[S], Architectural Institute of 
Japan(AIJ) Tokyo, Japan, 1997. 



Machine Learning-Based Prediction of Axial Load Bearing Capacity for CFRST Columns Tuo Lei et al. 

Latin American Journal of Solids and Structures, 2023, 20(8), e509 17/17 

[6] Tianjin Engineering Construction Standard DB/T29-57-2016 Tianjin Steel Structure Residential Design Regulations [S] (in 
Chinese. 

[7] China Engineering Construction Standardization Association Standard CECS 159:2004 Technical Specification for Concrete-
filled rectangular steel tube Structure [S] Beijing . (in Chinese). 

[8] AISC-LRFD,Load and resistance factor design specification for structural steel buildings,2nd[S], American Institute of Steel 
Conrstruction(AISC) Chicago, USA,1979. 

[9] British Standards Institutions, BS 5400 Steel,concrete and composite bridges,parts:Code of practice for design of 
composite bridges[s] London,UK, 1978. 

[10] Le, T. T., Asteris, P. G., & Lemonis, M. E. (2021). Prediction of axial load capacity of rectangular concrete-filled steel tube 
columns using machine learning techniques. Engineering with Computers, 1-34. 

[11] Ren, Q., Li, M., Zhang, M., Shen, Y., & Si, W. (2019). Prediction of ultimate axial capacity of square concrete-filled steel 
tubular short columns using a hybrid intelligent algorithm. Applied Sciences, 9(14), 2802. 

[12] Le, T. T. (2022). Practical machine learning-based prediction model for axial capacity of square CFST columns. Mechanics of 
Advanced Materials and Structures, 29(12), 1782-1797. 

[13] Tran, V. L., Thai, D. K., & Kim, S. E. (2019). Application of ANN in predicting ACC of SCFST column. Composite Structures, 
228, 111332. 

[14] Goode, C. D., & Lam, D. (2011). Concrete-filled steel tube columns-tests compared with Eurocode 4. In Composite 
Construction in Steel and Concrete VI (pp. 317-325). 

[15] DENAVIT M. Steel-concrete composite column database [ DB / OL ]. [ 2021-10-5 ]. http://mark.denavit.me/Composite-
Column-Database/. 


