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Abstract 
Nonlinear vibration response of nanomechanical cantilever 
(NMC) active probes in atomic force microscope (AFM) appli-
cation has been studied in the amplitude mode. Piezoelectric 
layer is placed piecewise and as an actuator on NMC. Contin-
uous beam model has been chosen for analysis with regard to 
the geometric discontinuities of piezoelectric layer attachment 
and NMC’s cross section. The force between the tip and the 
sample surface is modeled using Leonard-Jones potential. As-
suming that cantilever is inclined to the sample surface, the 
effect of nonlinear force on NMC is considered as a shearing 
force and the concentrated bending moment is regarded at the 
end. Nonlinear frequency response of NMC is obtained close to 
the sample surface using the dynamic modeling. It is then 
become clear that the distance and angle of NMC, the probe 
length, and the geometric dimensions of piezoelectric layer can 
affect frequency response bending of the curve.   
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1 INTRODUCTION 

Nowadays, Atomic Force Microscope (AFM) has become a useful tool for direct measurements of 
intermolecular forces with atomic precision. This microscope can be used in various fields such as 
semiconductors, manufacturing, polymeric materials, bio-analysis, biomaterials, and in the studying 
of metal surfaces (Jalili and Laxminarayana, 2004). AFM robot is a powerful tool for nano-level 
evaluation, biomaterials diagnosis, nano description of materials and equipment, and assembly at 
nano-scale (Schaefer et al., 1995; Junno et al., 1995; Sitti and Hashimoto, 2000). 

Atomic Force Microscope has a cantilever with a probe of a very fine tip, by which the infor-
mation from the sample and tip interaction can be obtained. Recently, a new generation of NMCs 
has been developed for AFM imaging (Lee et al., 1999; Rogers et al., 2004). These types of NMCs 
are equipped with a piezoelectric layer that can be used for actuation, sensing, and simultaneous 
actuation and sensing. The piezoactuator NMCs advantage compared with bulky piezotube actua-
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tors has made them as an appropriate choice for high-speed imaging of AFM (Rogers et al., 2004). 
Other advantages of this type of NMCs are compacting of AFM when the NMCs are used as a sen-
sor, and the possibility of using multiple probes in parallel functions (Adams et al., 2003) 

The accuracy of power estimation based on AFM measured information depends on the selected 
dynamic model for the cantilever. With its effect on the controlling system, dynamic system model 
directly affects the images resolution. Most of the mathematical models which have been used until 
the date are lumped-mass spring models (Sarid et al., 1997; Pishkenari et al., 2008), while it has 
been proved (Nayfeh et al., 1992) that nonlinear lumped mass models which approximate continu-
ous dynamic systems with the nonlinear boundary conditions may encounter substantial errors. 
NMC vibrating analysis has been studied at the specific attachment of piezoelectric (throughout 
layer) with simple rectangular cantilever and considering the continuous beam model in non-contact 
mode(Wolf and Gottlieb, 2002; Fung and Huang, 2001). 

This paper focuses on the nonlinear mathematical modeling of vibrating motion of NMC. Here, 
unlike earlier works in which NMC has been studied in contrast with sample surface (Wolf and 
Gottlieb, 2002; Fung and Huang, 2001)and with throughout piezoelectric layer and horizontal to the 
sample surface, piezoelectric layer has been piecewise, and it is supposed to be angled to the sample 
surface, and the effects of piezoelectric confining electrodes in modeling would not be ignored. To do 
so, NMC is modeled with the help of continuous beam theory of Euler Bernoulli and considering the 
existing discontinuities in the length to increase the accuracy. Inclined NMC has a piezoelectric 
layer confined between two electrodes. It is vibrated through actuating voltage and Lennard-Jones 
potential model is selected to describe the interaction between tip and sample. The governing equa-
tion of motion is changed into the nonlinear and ordinary differential equation using Galerkin ap-
proximation and it is solved to extract frequency response using perturbation method. Finally, a 
discussion will be made on the results in different conditions.  

 
2 DYNAMIC MODELING 

In order to modeling the NMC, a discontinuous beam, shown in Figure 1a, with a piezoelectric layer 
on its top surface is considered. There are two layers on top and beneath the piezoelectric layer act 
as electrode. The beam is inclined toward sample surface as shown in Figure 1b. It is clamped at 
one end; the other end is free and subjected to interaction force between tip and surface. 
 
 
 
 
 
 
 
 
 
 
                               (a)                                               (b) 

Figure 1   (a) Schematic of the NMC, and (b) itscoordinatesystem and loading 
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In addition, it is assumed that the motion of NMC is governed by Euler-Bernouli theory, there-
fore shear deformation and rotary inertia terms are negligible. The Hamilton’s approach is adopted 
and used here in order to drive the equation of motion. The kinetic energy of NMC can be written 
as: 
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where u and v are longitudinal and bending deflections of NMC and also: 
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and  H!! is Heaviside function. 
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The potential energy of NMC can be obtained by stress-strain relations. The linear constitutive 

equations of piezoelectric for the particular geometry are as follows (Salehi-Khojin et. al., 2008): 
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in which, )3(
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11ε are the longitudinal stress and strain along the long direction, d21is the coeffi-

cient of the converse piezoelectric layer and P(t) is the voltage for controlling the amplitude of vi-
bration. Note that numbering of layers is done from the lowest to the highest. The total potential 
energy of NMC can now be formulated as follows: 
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in which, superscript (t) indicatestip. The force imposed by the surface of the sample to the tip can 
be expressed according to Lennard-Jones model (Wolf and Gottlieb, 2002) as follows: 
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where H1 and H2 are Hamaker constants. D indicates the distance between the tip of probe and the 
surface of the sample. Interaction force can be expressed as follows, using Taylor series extension 
around the static equilibrium, regarding the first four terms: 
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and δ is dirac function. Using Eqs. 1-7, the Lagrangian of the NMC and virtual work can be written 
as: 
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Since NMC neutral axis remains inextensible during vibration, the longitudinal and bending vi-

brations are related to each other by non-elongation constraint 
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Using Hamilton’s principle, governing equation of motion can be obtained as: 
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Regarding the lay-up of piezoelectric layer on NMC, the main body is usually made wider and 

its tip section is made narrower to improve the deformation measurement. On the other hand, pie-
zoelectric layer is not necessarily extended to the end. Such discontinuities can affect the frequency 
response through the shape functions. Therefore, in order to achieve more accurate dynamic model 
for actuator piezoelectric NMC, section surface discontinuities should be considered in modeling. 
The length of NMC is divided into four uniform beams consisting of a multilayer beam with a pie-
zoelectric layer and three plain beams with different cross sectional area in tip. In order to solve 
partial differential Eq. (1) and obtain the frequency response, the Galerkin’s approximation is used 
to discretize the solution into following separable form: 
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where qn are the generalized time-dependent coordinates and φn(x) are nth mode shapes. Since total 
length of NMC is divided into four uniform beams, mode shapes can be written as: 
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where )()(24)( / rr
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nD  are constants which can be obtained by the 

boundary conditions of NMC, the continuity conditions as well as normalization condition respect 
to mass as follow:  
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The continuity conditions include deflection, slope of the deflection, bending moment and shear 

stress of NMC at the stepped points. Substituting Eqs.17 and 18 into Eq. 12, taking the inner prod-
uct of the resulting equation with mode shapes φn(x), integrating over the length of NMC and con-
sidering the orthogonality of mode shapes, the time dependent part of the equation of motion can 
be expressed as: 
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3 FREQUENCY RESPONSE ANALYSIS 

The frequency response analysis of NMC to primary resonance excitations is performed here to 
show the softening phenomenon in frequency response. For this reason, we choose the method of 
multiple scales (Jalili, 2010) which seeks a uniform second-order nonlinear approximate solution of 
Eq. 20 near ωn in the form: 
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where Tn =εnt and ε is introduced as a small book keeping parameter to show infinitesimal quantity 
in the equation. The time derivative becomes: 
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where Dn=∂/∂Tn . To obtain the frequency response, the cubic nonlinearities and linear damping 
terms are scaled to become at the same order of perturbation problem as direct and nonlinear pa-
rameter excitations. Therefore we let: 
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Substituting Eqs. 22-24 into Eq. 20 and separating similar powers of ε, yields: 
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The solution of Eq. 25-a can be assumed as: 
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where An is a complex amplitude and cc represents the complex conjugate of the preceding terms. 
Substituting Eq. 26 into 25-a yields: 
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To get steady-state solutions, the secular terms of Eq. 27 which have coefficients of ti ne ω , must 

be eliminated as a consequence D1An=0. An will be a function of T2 only. Considering this result, 
the solution of Eq. 27 can be obtained as: 
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The harmonic excitation voltage is taken to be ccPeTP Ti += Ω 02/1)( 0 , in which Ω denotes the ex-

citation frequency. It is assumed that excitation frequency remains near the natural frequency of 
vibration by the following relation: 
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where σ is detuning parameter which indicates the farness of the excitation frequency to any of 
natural frequencies. By substituting assumed excitation into Eq. 27 and eliminating the secular 
terms, the solution of Eq. 13 is given by: 
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γf is a coefficient that indicates nonlinearity in system. When this coefficient is positive, softening 
phenomenon appears in frequency response and when γf is negative, large amplitude motions would 
occur at excitation frequencies greater than natural frequency. Since γf in Eq. 31 is positive, it can 
be concluded that nonlinear interaction force between tip and sample always causes the softening 
phenomenon in frequency response. It is better that An express in the polar form: 
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Substituting Eq. 32 into Eq. 30 yields the following modulation equation of amplitude and fre-

quency: 
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in which τn=σT2-βn. In order to investigate the steady-state amplitude response, the coefficients na
and nτ must be set zero. By eliminating τn, the following nonlinear frequency-response equation can 
be obtained:  
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4 NUMERICAL SIMULATION AND RESULTS 

In order to study the obtained differential equation numerically, it is supposed that NMC is made 
of silicon and a piezoelectric layer, which is made of different materials, is regarded to be on it for 
the following analyses. Piezoelectric layer has been confined between the two electrodes made of 
Ti/Au with the thickness of 0.25 μm. The required geometric information and mechanical properties 
are provided in Table 1. The coefficients of Lennard-Jones are selected as σ=0.34(nm) and  
H=10-18(J) (Wolf and Gottlieb, 2002). 
 

Table 1   Specifications of simulated NMC 
 

 Material E  
(Gpa) 

ρ  
 (Kg/m3) 

h  
 (μm) 

W  
(μm) 

L  
 (μm)  

22β  
(Mm/F) 

h12  
(MV/m) 

Base Layer Si 105 2330 4 250 375 - - 
Lower Electrode Ti/Au 78 19300 0.25 130 330 - - 

Piezoelectric Layer 

Zno 104 6390 4 130 330 45.5 500 
PZT-5H 60.6 7500 4 130 330 39.15 730 
PZT-5A 61 7750 4 130 330 78.7 730 
PZT-4 81.3 7500 4 130 330 102.4 920 

Upper Electrode Ti/Au 78 19300 0.25 130 330 - - 
tip Si 105 2330 15 55 125 - - 
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Natural frequency of discontinuous NMC can be calculated through boundary conditions equations, 
continuity of deformation, slope, bending moment, shearing force, and taking the coefficients deter-
minant equal to zero. To make sure that the calculations made for obtaining the natural frequency 
are correct, we have used a Veeco DMASP cantilever. Practical results show that the first natural 
frequency of this NMC is equal to 50 (kHz). The theoretical calculations which were made with 
regard to the discontinuous beam method for NMC show that the first natural frequency is equal to 
50.6(kHz) with only 1.2% error in proportion to the practical results.  

Wolf and Gottlieb (2002) examined actuator piezoelectric cantilever with throughout piezo layer 
and uniform cantilever near the sample surface. Taking into account the piezoelectric actuator mo-
ment and the force between the tip and the sample at the boundary conditions of motion differen-
tial equation, they offered another formulation for frequency response. To compare the solution 
made in this paper with that of Wolf and Gottlieb, we assume that the piezoelectric layer on NMC 
is made of PZT-5H, it has covered its entire surface and NMC is uniform. Figure 2 shows NMC 
frequency response at the two equilibrium distances of (d) 1 and 2 nm. In these two conditions, the 
input voltages to the piezoelectric layer are 0.018 and 0.04 mV respectively. Comparison of the re-
sults shows a very good agreement between the two solving methods.  

 

 
 

Figure 2   Comparing the frequency response of solved NMC vibrating amplitude and Wolf and Gottlieb solution 
 
The force between the sample surface and the probe tip based on the Lennard-Jones model de-

pends on the distance between them at the static equilibrium condition. By decreasing the distance, 
the nonlinear behavior will be increased. This nonlinear force, on one hand, leads to lowering the 
resonant frequency of cantilever and on the other hand, by affectingγf nonlinear dimensionless coef-
ficient, it will lead to the bending of frequency response curve or the softening phenomenon. This 
represents the cantilever nonlinear vibrating behavior at the time it encounters this force. There-
fore, with the decrease of equilibrium distance between the sample surface and the probe tip, soften-
ing phenomenon will be increased. Increasing the amount of frequency response softening at the 
time of decreasing equilibrium distance can be seen in Figure 2 and in both of the computational 
methods. With the presence of ZnO or PZT-5H piezoelectric layer, the effect of equilibrium distance 
change and nonlinear force on discontinuous NMC can be seen in Figure 3. Since theγf coefficient is 
positive, nonlinearity effect on the NMC appears in all cases as softening. As seen nonlinearity of 
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cantilever response with PZT-5H layer in small values of d is more than cantilever response with 
ZnO layer. This indicates that cantilever with PZT-5H layer is more sensitive to nonlinearity of the 
system. 

 

 
(a) 

 
(b) 

 
Figure 3   Frequency response of NMC vibrating amplitude, (a)d=3 nm (p=0.018(mV) for PZT-5H and 0.35(mV) for ZnO), (b)d=5 nm 

(p=0.03(mV) for PZT-5H and 0.58(mV) for ZnO) 
 

Not only does the equilibrium distance affect the amount of created moment by contraction 
force, but also the probe height affects this moment. In fact, the larger this angle is, the more the 
moment will be. Therefore, to study the effect of probe height on the motion, the greatest possible 
angle should be selected for simulation. To do so, 60-degree angle is chosen. The distance between 
the tip and the sample surface is 2 nm, and actuating voltage in ZnO option is chosen as 25 μV and 
in PZT-5H as 11 μV.  Figure 4 shows the probe height effect on the frequency response. As it is 
seen, increasing the height leads to the reduction of response softening. This shows that by increas-
ing the height, the effect of interaction force on the vibrating motion is slightly decreased. Since the 
increase of height leads to greater moment of force, and regarding the fact that this moment acts in 
the opposite direction of shearing force at the attraction condition, height increase will lead to de-
creasing of the force effect on the motion. In fact, decreasing the angle of cantilever and increasing 
the distance between the tip and sample will fade the effects of this parameter. Therefore, it can be 
concluded that at low equilibrium distances, to make the cantilever’s vibrating motion range more 
sensitive to the attraction, the height of probe and the angle of beam should be selected as low as 
possible.   
 
 
 
 
 
 
 
 
 
 



R. Ghaderi et al. / Nonlinear mathematical modeling of vibrating motion of nanomechanical cantilever active probe	
  	
  	
  	
  	
  	
  379 

Latin American Journal of Solids and Structures 11 (2014) 369 - 385 
 

 
(a) 

 
(b) 

 
Figure 4   Effect of probe length on frequency response, (a)ZnO,(b)PZT-5H 

 
One of the effective factors on the vibrating motion is the actuating voltage. In fact, the more 

the piezoelectric layer is increased, the more the amplitude of vibration will be. This phenomenon 
will happen at any equilibrium distance of NMC and for any type of piezoelectric layer. The only 
difference that can exist in these situations will be the manner of the increase. Figure 5 shows the 
effect of voltage increase on the maximum amplitude in frequency response. The graphs of this Fig-
ure have been drawn in the two equilibrium distance of two and five nanometers. As the graph 
related to PZT-5H is more slanting, it indicates that this substance is more capable to actuate the 
cantilever. 

Considering the slope of lines, it can be concluded that after PZT-5H, PZT-5A, PZT-4 and ZnO 
are of high actuating capability. However, the effect of different piezoelectric materials on the ap-
pearance of frequency response curve can be seen in Figure 6. Piezoelectric materials which are of 
high actuating capability, further demonstrate the curvature of the curve by increasing the ampli-
tude.   

 

 
(a) 

 
(b) 

 
Figure 5   Effect of actuating voltage on the maximum amplitude of frequency response, (a)d=2 nm,(b)d=5 nm 
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(a) 

 
(b) 

 
Figure 6   Frequency response of cantilever’s first resonance amplitude to different piezoelectric materials  

(a)d=2(nm),(b)d=5(nm) 
 
Figure 7 shows that by increasing the voltage while the equilibrium distance is chosen low (2 nm), 
by increasing the amplitude, the frequency response curve curvature will be more obvious. This is 
when at longer distance (5 nm), the increase of voltage will show the increase of amplitude further. 
Therefore, in order to make the curvature of curve more clearly at shorter distances, it is necessary 
to use the maximum possible actuating voltage.  
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 7   Effect of actuating voltage on frequency response, (a) ZnO-d=2(nm), (b) ZnO-d =5(nm), (C) PZT-5H- 

d=2(nm), (d) PZT-5H-d=5(nm) 
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4.1 Reviewing the effects of geometric dimensions of piezoelectric layer on frequency re-

sponse 

The piezoelectric layer on NMC is the vibrating actuation agent. Changing geometric dimensions of 
this layer will on one hand change the spring constant and mass per unit length of NMC and on the 
other hand will change the amount of imposed moment from piezoelectric layer in equation of mo-
tion through )(xCe′′  coefficient. Simulation of the effects of these parameters will be discussed here to 
make clear the effects of geometric dimension of piezoelectric layer on vibrating motion.  

The increase of piezoelectric thickness with regard to Eq. 10 will lead to intensification of the 
imposed moment on the NMC. However, raising this parameter can lead to greater spring constant 
and mass per unit length of the beam and the consequent increase of resistance against actuation. 
Thus, by solving the equation of motion for different values of this parameter, one can specify its 
effect on the beam vibration. To simulate, two materials including ZnO and PZT-5H are selected 
from among the piezoelectric materials. They were selected because they are frequently used in 
making NMCs, and actuating characteristic of PZT-5H is significant. In this section, d=2(nm) and 
actuating voltages of ZnO and PZT-5H are 0.16 and 0.009 mV respectively.  

In Figure 8, the way the NMC frequency response changes occur in terms of thickness has been 
given. It can be concluded that increasing amplitude of vibration and softening of frequency re-
sponse are due to the decrease of thickness. Despite the fact that decreasing piezoelectric layer 
thickness causes reduction of actuation, results show that decreasing spring constant (or frequency) 
and mass per unit length play a more effective role in determining the amount of amplitude. De-
creasing thickness along with the reduction of NMC frequency and increasing the amount of dimen-
sionless amounts of f1 and f2 in Eq. 18 will increase the γf nonlinearity coefficient, and will conse-
quently increase the softening of NMC frequency response.  

 

 
 

Figure 8  Effect of piezoelectriclayerthicknessonfrequency response 
 

Regarding Figure 9, it can be found out that the increase of piezoelectric layer width does not 
have a remarkable effect on the frequency response. It has just led to the slight decrease of curve 
curvature. Therefore, it can be concluded that the change of piezoelectric layer width may have 
little effect on the nonlinear vibrating motion quantities, i.e. the amplitude, and frequency response 
curve curvature. Figure 10 shows the changes of first natural frequency of cantilever based on the 
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width of piezoelectric layer. As seen, width changes in both ZnO and PZT-5H do not have a signifi-
cant effect on the natural frequency. Therefore, it can be concluded that the change of piezoelectric 
layer width may have little effect on the nonlinear vibrating motion quantities, i.e. the amplitude, 
natural frequency, and frequency response curve curvature. 

 

 
(a) 

 
(b) 

 
Figure 9   Effect of piezoelectriclayerwidthonfrequency response, (a)ZnO- P=0.21(mV),(b)PZT-5H-P=0.01(mV) 

 

 
 

Figure 10   Changes of first natural frequency of cantileverbasedonthewidth of piezoelectriclayer 
 
Yet another geometric parameter of piezoelectric layer, which can have an effect on motion frequen-
cy response, is the length of the layer. Changing the length not only changes the place of imposing 
the moment on the cantilever, but also will increase the amount of the imposed moment on NMC 
by increasing the length of piezoelectric. However, the increase of piezoelectric layer leads to the 
increase of mass per length, spring constant and therefore its resistance against vibrations will be 
greater.  

Simulation results (Figure 11) show that with the increase of ZnO and PZT-5H piezoelectric lay-
er, at the beginning, the first natural frequency of cantilever will keep rising, and after reaching its 
maximum amount, it starts the decreasing process. This phenomenon can be observed for both of 
the selected materials. Since ZnO is higher than the elasticity module and has less density, reaching 
higher amounts of frequency is more feasible in this condition.  
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Figure11   Changingthefirst natural frequency of cantilever in terms of thelength of piezoelectriclayer 
 

Figure 12 shows that change of vibrating amplitude in the length changes of piezoelectric layer has 
a process similar to that of frequency; that is, for small amounts of length of piezoelectric layer and 
with the increase of this parameter, the amplitude will be greater. With the increase of the length 
near the maximum amounts of natural frequency, amplitude keeps decreasing. Meanwhile, the curve 
curvature decreases as well. As the Figure 12 shows, this process occurs at the amounts before the 
decrease of amplitude.  
 

 
(a) 

 
(b) 

 
Figure12   Effect of piezoelectriclayerlengthonfrequency response, (a)ZnO, (b)PZT-5H 

 
5 CONCLUSION 

Flexural vibration motion equation of inclined NMC under the nonlinear force between the tip and 
the sample surface and near the sample was used to study the nonlinear frequency response. Multi-
ple method scale was applied on the equation of motion and frequency response was offered in a 
closed form. The first resonance frequency response was analyzed and softening phenomenon was 
observed. The effect of different parameters on the frequency response was studied, and the follow-
ing results were obtained: 
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1) Vibrating motion near the sample surface will cause the softening phenomenon in the frequency 
response, and the more this motion happens around the closer equilibrium distances to the sample 
surface, nonlinearity of the system increases, and frequency response will suffer more curvature.  
2) The increase of NMC steep in proportion to the sample surface decreases the amount of frequen-
cy response curvature, and the reduction amount is more intense at the distances closer to the sam-
ple surface. This issue is seen in the presence of both types of PZH-5H and ZnO actuators.  
3) As the probe length is increased and the amount of force moment is intensified, softening phe-
nomenon is reduced and this reduction is little with regard to smallness of probe length. 
4) Comparing the actuation ability of selected piezoelectric materials show that PZT-5H is the best, 
and PZT-4A is the weakest actuator. The behavior of ZnO and PZT-5A are similar to each other. 
5) The results of geometric dimension effect of piezoelectric layer on the selected NMC showed that 
the width of layer does not have a considerable effect on the frequency response. By increasing 
thickness, the bending of frequency response curve is diminished.  
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