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Abstract 
The formulations of the boundary element method for dynamic problems, whether acoustic or 
elastodynamic, that use a more straightforward fundamental solution and consequently require the use of 
Radial basis functions to transform domain integrals into boundary integrals present instability when reduced 
time increments are used. This problem does not arise in numerical techniques like finite element and finite 
difference methods. Despite the higher quality of results presented by the Direct Interpolation Method 
(DIBEM), a new radial basis formulation, instability problems persist for very small time steps, demanding 
mesh refinement. Several factors were examined, such as the robustness of the inertia DIBEM matrix 
concerning conditioning and positivity, densification of the number of internal interpolation points inside, the 
type of radial basis function, the composition of the time marching scheme, and others. This work evaluates 
if the cause of this stability is linked to the modal participation of non-real frequencies, which arise in the high 
spectrum due to numerical inaccuracy when dealing with non-symmetric matrices. 
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1 INTRODUCTION 

Dynamics problems are among the most challenging for engineering and also for the powerful numerical methods 
currently used to solve them. Concerning BEM, its advantageous characteristics in reducing the dimension of the problem 
and other interesting features (Brebbia et al., 1984) are insufficient to meet specific demanding industrial sectors, which 
demand high computational performance solving large-size systems since the BEM matrices are full and asymmetric. 
Thus, many boundary element researches are directed to techniques for reducing computational time improving 
strategies such as the subdomain or sub-regions technique (Ramšak and  Škerget, 2007; Chai et al., 2022). This technique 
becomes attractive since it considerably decreases the necessary amount of memory and makes the application of 
efficient solvers suitable. Economy in time processing impulses iterative solution schemes, such as Adaptive Cross 
Approximation (ACA) (Bebendorf, 2000; Bebendorf and Rjasanow, 2003; Bebendorf and Grzhibovskis, 2006), Fast 
Multipoles (Rokhlin, 1985; Greengard and Rokhlin, 1987; Liu, 2006), and others. Also significant in this field is the 
development of several strategies concerning out-of-core programming (Shiara and Paschoalini, 2023). However, 
developing more accurate and reliable models is essential, particularly for solving dynamic problems. In this sense, new 
models have been continually presented in the literature, regarding the effective transformation of domain integrals into 
boundary integrals with greater accuracy, such as the Dual Reciprocity Method (DRBEM) (Nardini and Brebbia, 1983a), 
General Radial Basis Approximation (Wen et al., 1998), Radial integration Method (RIM) (Gao,2002), Boundary Element–
Rayleigh Integral Method (Kirkup et al., 2013), Meshless-based Integration Method (RBIM) (Narvaez and Useche, 2022), 
and Direct Interpolation Method (DIBEM) (Loeffler et al., 2015a). 

It is well-known that the classical formulation of the Boundary Element Method (BEM) employs fundamental 
solutions strictly related to the partial differential equation one wants to solve. Such solutions are known as Green's 
functions and, particularly in the case of acoustic problems, they consist of solving the scalar wave equation considering 
an infinite medium subject to concentrated and impact loads (Mansur and Brebbia, 1985). However, this formulation is 
complex despite its elegance, excellent results, and mathematical consistency. Beyond this, it demands large 
computational effort beyond being restricted to homogeneous media unless one uses the mentioned subdomains. Thus, 
aiming to provide further simplicity and versatility to BEM, some formulations were developed in which more 
straightforward fundamental solutions are used, which implies additional approximations related to transforming 
domain integrals into boundary integrals. 

Radial basis functions (Buhmann, 2003) are one of the most effective procedures for reaching this objective. In the 
case of elastodynamics, it was applied especially initially in free vibration problems and later in issues of response over time 
(Nardini and Brebbia, 1983b). Later, its extension to acoustic scalar problems and heat transmission problems was made 
(Loeffler and Mansur, 1987). However, particularly in dynamics, the DRBEM has presented extreme restrictions regarding 
the stability of the time advance scheme, based on the idea of discretization contained in the finite difference method, such 
as the Houbolt, Newmark, and Wilson-theta scheme (Castillo and Loeffler, 2003), used successfully with the Finite Element 
Method. For problems in which the response is dominated by the system's low and intermediate frequency components, 
all these incremental schemes produce satisfactory solutions. However, such integration schemes used by domain methods 
always induced uncertainties for impact problems in which more elevated modal content exists, motivated mainly due to 
the BEM discretization being limited exclusively to the boundary (Balista et al., 2023). 

It is known from simulations with DRBEM that there is numerical instability when using minimal time intervals 
(Loeffler and Mansur, 1987; Castillo and Loeffler, 2003). In domain discrete methods, instability problems occur for huge 
time increments, and, therefore, unconditionally stable integration schemes are adopted. However, precisely what 
causes this instability with the BEM is still not known. One hypothesis is the inaccuracy in the constitution of the mass 
matrix, which is constructed by approximations with radial basis functions; another hypothesis is related to the stability 
criteria of incremental schemes studied on domain discrete methods, which may not be suitable for BEM. Yet another 
possibility is related to the fact that the mass matrix of DRBEM is not symmetric, generating complex eigenvalues in an 
eigenvalue analysis. 

More recently, a new BEM formulation was developed based on Poisson's fundamental solution and radial basis 
functions called DIBEM (Loeffler et al., 2017a). The DIBEM technique, like DRBEM, also approximates non-self-adjoint 
kernels of domain integrals by sequences of radial basis functions. However, despite being similar to DRBEM in many 
respects, the DIBEM formulation does not require the construction of two auxiliary matrices that multiply the classical 
boundary elements matrices H and G since it directly addresses the integral domain, similar to what is done in an 
interpolation procedure using a primitive radial basis function. Therefore, the entire kernel of the domain integral is 
interpolated, including the fundamental solution. The DIBEM procedure was successfully applied to solve Poisson 
(Loeffler et al., 2017a), Helmholtz (Loeffler et al., 2017b), and Advection Diffusion (Pinheiro et al., 2022). 
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Regarding stationary wave problems, DIBEM's greater robustness and accuracy were demonstrated by comparison 
with DRBEM results (Balista et al., 2023), highlighting that both formulations use fundamental solutions independent of 
frequency. DIBEM model can also be successfully applied in consortium with RIM since this method requires an auxiliary 
technique for solving problems in which the kernel is composed of an unknown variable (Campos et al., 2020). However, 
in the dynamic response, the instability problem for reduced integration steps persisted for significantly smaller values. 
Aiming to understand this stability problem, the robustness of the inertia DIBEM matrix was analyzed concerning 
conditioning and positivity. Several conditioning norms were compared to several meshes constituted by linear boundary 
elements, used in the solution of classical problems of wave propagation in scalar fields. A positivity study was also 
undertaken, in addition to curves that relate the degree of mesh discretization as the minimum integration step capable 
of generating a stable solution. 

As for positivity, a large percentage of negative and complex eigenvalues was observed from an analysis of free 
vibration problems in syncretized systems by DIBEM. Despite DIBEM's superior results in calculating natural frequencies, 
the high percentage of non-real eigenvalues drew attention to the need for a precise study of its effect on the dynamic 
response problem. For this purpose, a DIBEM model based on modal superposition was implemented. It should be noted 
that the use of this technique, considering that the BEM matrices are not symmetric, is very different from what is found in 
the literature on structural dynamics (Clough and Penzien, 1975), as it uses the Modified Modal Method (MMM), which 
calculates the eigenvalues of the adjoint problem (Prodonoff and Zepka, 1983). The pioneering work of Nardini and Brebbia 
(1983a) using DRBEM also uses the MMM and so did several authors (Ouisse and Foltete, 2011; Zhang and Lallement, 1987; 
Zhang et al., 1988). However, the solution of the adjoint problem doubles the computational time for solving the eigenvalue 
problem, which could be done using the classical model presented in the linear algebra literature (Friedberg et al., 1992), 
from now on named CMM, in which the inverse of the matrix composed of the eigenvectors is used. 

Modal superposition is an expensive technique, as it involves the calculation of eigenvalues of the discrete system, 
which in dynamics must necessarily consist of numerous degrees of freedom. Furthermore, it becomes inadequate if 
there are physical or geometric non-linearities, as natural frequencies change under these conditions. This is why direct 
integration schemes, in which temporal discretization is done through finite difference-type approximations, are widely 
used in practice. In direct integration, the solution advances in time through successive increments, of small magnitude, 
to obtain precision, stability and convergence of the response. 

Thus, in this work, an original application is made in which the modal superposition method is applied to DIBEM to 
verify whether the effect of non-real modes and frequencies in solving the direct problem is effectively harmful, being 
the factor responsible for the instability of the answer for small integration steps. By comparing results with direct 
analysis, in which the matrix system is coupled, you can check whether or not the integration of separate equations 
presents the same pattern of instability for very restricted time increments. This work also compares two modal 
superposition methods for non-symmetric systems, MMM and CMM, to verify the reason for the massive use of the first 
in specialized literature without any justification or presentation of comparative results. 

2 GOVERNING INTEGRAL EQUATION 

Consider a homogeneous domain Ω(X), representing a system, a body, or a control volume of a given physical 
problem. The differential equation that describes the propagation of an acoustic wave in an isotropic medium is given 
(Graff, 2012) as follows: 

u,ii (𝐗𝐗) = �1
k2� � u(𝐗𝐗)  (1) 

The scalar k means the speed of propagation of the acoustic wave. Being a scalar equation, the effects of inertia and 
stiffness contribute to establishing a dynamic equilibrium given only by spherical contents of the stress state or pressure, 
which can be understood as a potential given u(X,t). The boundary conditions are provided by Dirichlet condition, in 
which the potentials are prescribed on Γu; and the Neumann conditions, given by the first derivative of the potential 
concerning the external normal direction to the boundary Γq, given by q(X,t). Thus, considering the well-known BEM 
mathematical procedures (Kythe, 1995), Eq. (2) represents the inverse integral form associated with the Laplacian 
operator on the left-hand side of Eq. (1): 

𝑐𝑐(𝝃𝝃)𝑢𝑢(𝝃𝝃) + ∫ 𝑢𝑢(𝑿𝑿)𝑞𝑞∗(𝝃𝝃;𝑿𝑿)𝑑𝑑𝑑𝑑 − ∫ 𝑞𝑞(𝑿𝑿)𝑢𝑢∗(𝝃𝝃;𝑿𝑿)𝑑𝑑𝑑𝑑𝛤𝛤 = − 1
𝑘𝑘2 ∫ �̈�𝑢(𝑿𝑿)𝛺𝛺 𝑢𝑢∗(𝝃𝝃;𝑿𝑿)𝑑𝑑𝑑𝑑𝛤𝛤   (2) 
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In Eq. (2), the term X represents the field point, any point related to the domain Ω(X), limited by the boundary Γ(X). The 
basis point of the integrations is called the source point ξ. The term c(ξ) is a coefficient related to the location of the 
source point ξ relative to Ω(X) and, considering that it can be located on the boundary Γ(X), inside or outside it. 
Smoothness also influences the term c(ξ) (Brebbia et al., 1984). It should be noted that u(X) is the scalar potential and 
q(X) is its normal derivative; u*(ξ;X) is the fundamental solution correlated with Laplace's problem, and q*(ξ;X) is its 
normal derivative: 

𝑢𝑢∗(𝝃𝝃;𝑿𝑿) = − 𝑙𝑙𝑙𝑙[𝑟𝑟(𝝃𝝃;𝑿𝑿)]
2𝜋𝜋

  (3) 

𝑞𝑞∗(𝝃𝝃;𝑿𝑿) = − 1
2𝜋𝜋𝑟𝑟(𝝃𝝃;𝑿𝑿) 𝑟𝑟𝑖𝑖(𝝃𝝃;𝑿𝑿)𝜂𝜂𝑖𝑖(𝑿𝑿)  (4) 

In Eq. (3) and (4), r(ξ;X) is the Euclidean distance between the source point ξ and any field point X; and ni(X) is the external 
normal on the boundary at field point X. 

3 DIRECT INTERPOLATION TECHNIQUE 

Using the DIBEM technique, all functions comprising the domain integral's kernel on the right-hand side of Eq. (2) 
are approximated by the sequence of radial functions. Thus, the fundamental solution is also included, which depends 
on the position of the source point. For this reason, DIBEM presents singularity problems if the source points coincide 
with the field point X, which is the usual procedure. Thus, to avoid this, the regularization procedure is used as a strategy 
(Loeffler and Mansur, 2017), adding two new integrals, as follows: 

𝑐𝑐(𝝃𝝃)𝑢𝑢(𝝃𝝃) + ∫ 𝑢𝑢(𝑿𝑿)𝑞𝑞∗(𝝃𝝃;𝑿𝑿)𝑑𝑑Γ − ∫ 𝑞𝑞(𝑿𝑿)𝑢𝑢∗(𝝃𝝃;𝑿𝑿)𝑑𝑑ΓΓ = 1
𝑘𝑘2

[∫ (�̈�𝑢(𝝃𝝃) − �̈�𝑢(𝑿𝑿))𝑢𝑢∗(𝝃𝝃;𝑿𝑿)Ω 𝑑𝑑Ω]Γ − 1
𝑘𝑘2
��̈�𝑢(𝝃𝝃)∫ 𝑢𝑢∗(𝝃𝝃;𝑿𝑿)Ω 𝑑𝑑Ω�  (5) 

The singularity in the domain integral approximation is removed in equation (5), but an additional domain integral is 
created. However, it is easily transformed into a boundary integral, through the Galerkin Tensor concept (Wrobel and 
Aliabadi, 2002): 

�̈�𝑢(𝝃𝝃)∫ 𝑢𝑢∗(𝝃𝝃;𝑿𝑿)Ω 𝑑𝑑Ω = �̈�𝑢(𝝃𝝃)∫ 𝐺𝐺,𝑖𝑖𝑖𝑖
∗ (𝝃𝝃;𝑿𝑿)Ω = �̈�𝑢(𝝃𝝃)∫ 𝐺𝐺,𝑖𝑖

∗(𝝃𝝃;𝑿𝑿)𝑛𝑛𝑖𝑖Γ 𝑑𝑑Γ  (6) 

Where: 

𝐺𝐺,𝑖𝑖
∗(𝝃𝝃;𝑿𝑿)𝑛𝑛𝑖𝑖 = 𝑃𝑃𝑋𝑋

𝜉𝜉(𝝃𝝃;𝑿𝑿) = 1
4𝜋𝜋

{0.5 − ln[r(𝝃𝝃;𝑿𝑿)]}𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖  (7) 

Considering the additional term for regularization, the approximation via radial basis functions Fi(Xi;X) consists of the 
following expression: 

[ �̈�𝑢(𝑿𝑿) − �̈�𝑢(𝝃𝝃)]𝑢𝑢∗(𝝃𝝃;𝑿𝑿) ≅ �̈�𝛼𝑖𝑖𝐹𝐹𝑖𝑖�𝑿𝑿𝒊𝒊;𝑿𝑿�  (8) 

Therefore, substituting Eq. (8) in the domain integral concerning the first domain integral on the right hand side of Eq. 
(5), one has: 

�∫ [�̈�𝑢(𝑿𝑿) − �̈�𝑢(𝝃𝝃)]𝑢𝑢∗(𝜉𝜉;𝑿𝑿)]𝑑𝑑𝑑𝑑Ω � ≈ �∫ 𝜉𝜉�̈�𝛼𝑖𝑖𝐹𝐹𝑖𝑖�𝑿𝑿𝑖𝑖;𝑿𝑿�𝑑𝑑ΩΩ � = �∫ 𝜉𝜉�̈�𝛼𝑖𝑖𝜓𝜓,𝑘𝑘𝑘𝑘
𝑖𝑖�𝑿𝑿𝑖𝑖;𝑿𝑿�𝑑𝑑ΩΩ � = 𝜉𝜉�̈�𝛼𝑖𝑖 ∫ 𝜂𝜂𝑖𝑖�𝑿𝑿𝑖𝑖;𝑿𝑿�𝑑𝑑ΓΓ   (9) 

DIBEM also uses an auxiliary interpolation function Ψi(Xj;X), primitive of Fi(Xj;X), transforming the domain integral into a 
boundary one. It is interesting to note at this point that the same radial basis functions (RBF) used in DRBEM can be 
employed. The function 𝜂𝜂𝑖𝑖 depends on the radial function used. In this article, the simple radial basis function is used, so 
that the 𝜂𝜂𝑖𝑖 function is given by: 

𝜂𝜂𝑖𝑖�𝑿𝑿𝑖𝑖;𝑿𝑿� = 𝑟𝑟(𝑿𝑿𝑖𝑖;𝑿𝑿)𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖  (10) 
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In Eq. (10) 𝑟𝑟𝑖𝑖 is the component of the radius vector and 𝑛𝑛𝑖𝑖  is the unit normal vector to the boundary. The surplus integral 
term can be easily rewritten as a boundary integral: 

∫ [�̈�𝑢(𝝃𝝃)𝑢𝑢∗(𝝃𝝃;𝑿𝑿)]𝑑𝑑ΩΩ = �̈�𝑢(𝝃𝝃)∫ �𝐺𝐺(𝝃𝝃;𝑿𝑿),𝑖𝑖𝑖𝑖
∗ �𝑑𝑑Ω =Ω �̈�𝑢(𝝃𝝃)∫ �𝐺𝐺(𝝃𝝃;𝑿𝑿),𝑖𝑖

∗𝑛𝑛𝑖𝑖�𝑑𝑑ΓΓ = �̈�𝑢(𝝃𝝃)𝑃𝑃𝜉𝜉   (11) 

Substituting Eq. (9) and (11) into Eq. (5) and using the standard BEM discretization procedures, where “n” source points 
are composed by the sum of internal values and boundary nodal points, the matrix system given by Eq. (12) is obtained. 
Details can be found in Loeffler et al.(2015b). 

�
H11 … H1n
⋮ ⋱ ⋮

Hn1 … Hnn

��
u1
⋮

un
� − �

G11 … G1n
⋮ ⋱ ⋮

Gn1 … Gnn
��

q1
⋮

qn
� = 1

k2
�

α1 1 … α1 n

⋮ ⋱ ⋮
αn 1 … αn n

��
N1
⋮

Nn

� − 1
k2
�

Z1
⋮

Zn
�  (12) 

The vector Z is composed by the following integrals: 

1 1 1 2 1
1 2

1 1 1
1 1

2 1 2 2 2
1 22 2

1 1 1

1 2
1 2

1 1 1

[ ... ] 0 ..... 0

0 [ ... ] ..... 0

... ...........

0 0 ... [ ... ]

n
n

n
n

n nn n n n
n

P d P d P d
Z

P d P d P dZ

Z
P d P d P d

 Γ + Γ + + Γ      Γ + Γ + + Γ  =         Γ + Γ + + Γ  

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

u
u

u

  (13) 

To explicit the potential in the discretized governing equation (see Eq. (12)), it is necessary to make the following 
substitution, considering new coefficients Aξ which is given by: 

( )
1

1 2.... ...m

m

A N N N

ξ

ξ
ξ

α

α




= 


 

  (14) 

In turn, the ξα can be calculated using the basic interpolation formula, that is: 

− −= =ξ 1 ξ 1 ξ[ α] [F] [ Λ][F]α [F] [ Λ][u]   (15) 

Thus, in this case: 

( )

( )

1
. 111 1 1

1

1 2

1
n

1
1

1 2

n

.u .. 0... ... 0 u
.... ..... ...... ......

u... 0 ... 0 ... u

... 0 u
.... ......

u0 ...

n

n

n nn n m

n

n

F F
A N N N

F F

S S S

ξξ
ξ

ξ

ξ ξ
ξ

ξ

ξ

−      ΛΛ         = − =            Λ Λ       

 Λ     Λ  

1.u .. 0
......

0 ... un

ξ
ξ

ξ
ξ

  Λ  −      Λ   

  (16) 

After applying this procedure, it is possible to write the domain integral of the term related to inertia only in terms of 
integral involving boundary variables. Therefore, the final system can be written as follows: 
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[H]{𝐮𝐮} − [𝐆𝐆]{𝐪𝐪} = [M]{�̈�𝐮}  (17) 

In Eq. (17), the matrices [H] and [G] are standard matrices that appear from the discretization operations involving the 
integral of the fundamental solution and its normal derivative, respectively. The matrix [M] corresponds to the acoustic 
inertia property, while {u} and {q} are vectors that contain the values of the potential and its derivative at the nodes. 

4 THE EIGENVALUE PROBLEM 

The Helmholtz equation can be interpreted as a simplification of the scalar wave equation (see Eq. (1)), when 
searching for a response produced in the system by an excitation variable whose frequency ω is known. In this condition, 
the potential U(X,t) is equivalent to a periodic response, composed of specific temporal content: 

( , ) ( ) i tU X t u X e ω−=   (18) 

In Eq. (18), "i" is the imaginary unit and u(X) is the space amplitude of the stationary system response to harmonic 
excitation, with frequency ω. Thus, considering the free vibration condition, one has: 

2( , ) ( , )U X t U X tω= −   (19) 

However, eigenvalue BEM matrices involve stationary amplitudes of potential U(X) and normal derivatives Q(X), such as 
the equations shown in Eq. (17) need to be adequately manipulated to formulate the eigenvalue problem, in which all 
natural frequencies ω can be calculated. In this sense, the prescribed u and q nodal values, which now mean amplitudes, 
depending just on the position X, are highlighted below: 

2uu uq uu uq uu uq

qu qq qu qq qu qq

H H G G M MQU U
U UQH H G G M M

ω
          − =             

  (20) 

It must be highlighted that the improvement of the DIBEM model is given not only by the mesh refinement but also with 
the insertion of internal source points, usually called poles, which improve the consistency of the DIBEM model, 
introducing a better approximation of inertia properties inside. Considering that the prescribed nodal values of U(X) and 
Q(X) are zero null for free vibration analysis, one has: 

2
uq uu uqH U G Q M Uω− =   (21) 

2
qq qu qqH U G Q M Uω− =   (22) 

Eliminating the normal derivative of potential Q from Eq. (21) and Eq. (22), a typical eigenvalue matrix system is obtained: 

2[H]{U} [M]{U}ω=   (23) 

In previous equation new BEM matrices are comprised by: 

-1
qq qu uu uq

-1
qq qu uu uq

[H] [H ]-[G ][G ] [H ]

[M] [M ]-[G ][G ] [M ]

=

=
  (24) 

New BEM matrices H and M can be interpreted as mass and stiffness matrices, which are asymmetric and fully populated. 
Therefore, the effectiveness of the BEM eigenvalue problem hinges on the availability of an efficient eigenvalue 
extraction method. Here, it was used the Hessenberg algorithm. Concerning the eigenvalues, the asymmetry of BEM 
matrices can produce negative and complex frequencies associated with inaccuracies in the numerical model. Such non-
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real eigenvalues, however, are related to the approximation of higher frequencies in the spectrum (Loeffler and Mansur, 
1987). The improvement of the BEM model, through the mesh refinement and insertion of poles, minimizes this problem 
but does not eliminate it (Barbosa et al., 2019). Comparisons performed with DRBEM have shown that DIBEM model 
results are meaningful superior, improving the quality of the Helmholtz problem's direct solution and producing 
eigenvalues calculation with more accuracy. 

It also must be pointed out that the mathematical steps of deduction of the integral BEM equation for the Helmholtz 
equation are different if the strictly correlated Green fundamental solution is employed. In this case, a transcendental 
characteristic equation is obtained, in which the matrix system appears nonlinear, depending on the frequency. In the 
case of eigenvalue problems, this naturally demands using iterative solution schemes. 

Eigenvalues such as presented in Eq. (23). However, in order to apply the modal superposition method with the 
BEM, a dynamic [D] matrix is usually generated, in the following form: 

( ){ } ( ){ } ( ){ }-1 2[D] [M] [H] [I]u X u X u Xω= =   (25) 

The eigenvalues are obtained relative to the dynamic matrix. If the stiffness and mass matrices were symmetric, such an 
operation would destroy the symmetry of the matrices, which is why it is not used with the Finite Element Method. 
However, the BEM matrices are asymmetric. Such an inversion, which implies an additional cost of the inversion, is not 
essential, but in this context it will greatly facilitate the understanding and comparison of the schemes shown below. 

5 MODAL SUPERPOSITION 

Modal superposition was a technique widely used in structural analysis in the 1970s. However, its use in standard 
form declined later due to computational cost issues and also because it was prohibitive in solving physically and 
geometrically non-linear problems. Several adaptations of the method were proposed in order to reduce the 
computation time by a selective approach to the load spectrum of frequencies or neglecting the participation of high 
modes. As mentioned, the modal superposition was performed in elastodynamics with DRBEM. Still, the results were 
unsatisfactory, corroborating that DRBEM does not work correctly in dynamics problems, whether in acoustics or 
elasticity, because its inertia matrix is not robust enough. 

To present the method to dynamics, it is necessary to consider the matrix system referring to the acoustic wave 
propagation model, see Eq. (17), and then partition the matrix system, as shown in Eq. (23). Due to the absence of time 
derivatives of tractions it is possible to rewrite the BEM system in a similar way to other methods, that is: 

[𝐻𝐻′]{𝑢𝑢(𝑋𝑋, 𝑡𝑡)} + [𝑀𝑀′]{�̈�𝑢(𝑋𝑋, 𝑡𝑡)} = {𝑓𝑓(𝑋𝑋, 𝑡𝑡)}  (26) 

In the previous Equation, the vector {f} contains the prescribed values. From now on the arguments will be omitted for 
simplicity. Then, a coordinate transformation is performed using the matrix of normalized automatic vectors [φ(X)]: 

{𝑢𝑢} = [𝜙𝜙]{𝑦𝑦}; �̈�𝑢{𝑋𝑋} = [𝜙𝜙]{�̈�𝑦}  (27) 

In the previous equation, {y} is the nodal vector of modal coordinates. Multiplication by [M’]-1 generates the dynamic 
matrix: 

[𝐷𝐷][𝜙𝜙]{𝑦𝑦} + [𝐼𝐼][𝜙𝜙]{�̈�𝑦} = [𝑀𝑀′]−1{𝑓𝑓}  (28) 

Pre-multiplication by the inverse of [φ] diagonalizes the system: 

[𝜙𝜙]−1[𝐷𝐷][𝜙𝜙]{𝑦𝑦} = [∧]{𝑦𝑦}  (29) 

The diagonal matrix [Λ] is composed of the various natural frequencies associated with the discrete system, now known. 
The new traction vector {p} is given by: 

{𝑝𝑝} = [𝜙𝜙]−1[𝑀𝑀′]−1{𝑓𝑓}  (30) 



A Stability Analysis of the Direct Interpolation Boundary Element Method applied to acoustic wave 
propagation problems using the Modal Superposition Technique 

Áquila de Jesus dos Santos et al. 

Latin American Journal of Solids and Structures, 2024, 21(1), e520 8/19 

The equation of motion is decoupled, consisting of n ordinary differential equations, where n is the number of degree of 
freedom, as shown below: 

{�̈�𝑦} + [∧]{𝑦𝑦} = {𝑝𝑝}  (31) 

Solution of Eq. (31) for each mode is given by: 

𝑦𝑦𝑖𝑖(𝑡𝑡) = 𝑝𝑝𝑖𝑖
𝜔𝜔𝑖𝑖
2  [1 − cos (𝜔𝜔𝑖𝑖 t)]  (32) 

In the case of using the solution of the adjoint problem, the eigenvectors referring to the transpose of the dynamic matrix 
must be calculated. Its transpose has the same eigenvalues, but its eigenvectors [φ*] are different. It should be noted 
that the eigenvector matrix of the original problem [φ'] is not normalized in the usual sense, that is, it does not have a 
unitary module. Thus, the modal coordinates are different: 

{𝑢𝑢} = [𝜙𝜙′]{𝑦𝑦′}  (33) 

However, it is demonstrated that there is a cross-orthogonality relationship (Atkinson, J. H., 1965; Prodonoff and Zepka, 
1983), in the sense that for each specific frequency the modes φ' and φ* are orthogonal. Based on this it can also be 
demonstrated that: 

[𝜙𝜙′]𝑇𝑇[𝜙𝜙∗] = [𝐼𝐼]  (34) 

For the previous identity matrix to be obtained, a particular metric must be used in the eigenvector matrix. Obeying this 
condition, one has: 

[𝜙𝜙′]𝑇𝑇[𝐷𝐷][𝜙𝜙∗]{𝑦𝑦∗} = [∧]{𝑦𝑦∗}  (35) 

Thus, the matrix governing equation is given by: 

{�̈�𝑦∗} + [∧]{𝑦𝑦∗} = [𝜙𝜙′]𝑇𝑇[𝑀𝑀′]−1{𝑓𝑓} = {𝑔𝑔}  (36) 

In this way, observing Eq. (33) and (36) the two methods can be compared. It can be seen that ordinary differential 
equations have a similar structure, but their modal coordinates are different, and, mainly, the forcing terms are 
completely distinct. In the CMM, this term is obtained by multiplying the inverse of the eigenvector matrix. In the MMM, 
the forcing term involves only the matrix product of the eigenvectors of the transposed matrix. The adjoint matrix 
method requires the solution of two eigenvalue problems and is therefore much more computationally expensive. 
However, the literature that applies the modal method uses it widely, without making any mention of its possible 
advantages compared to the classical method. Given this gap, the numerical simulations presented in this work will also 
include a comparison of these two methods, showing that they are radically different and the MMM is much more 
accurate, something not presented in the literature. 

6 TRACTIONS CALCULATION 

The BEM is a mixed numerical technique in which the primal variable and its normal derivative are calculated 
simultaneously. In the modal method, the matrix system is only arranged as a function of displacements. Thus, it is 
necessary to adapt the BEM matrices to use the displacement values already calculated. It is done through a new 
condensation of the BEM matrices to make the tractions explicit, considering the partitioning given by Eq. (37) as follows: 

[GB]{Q𝑢𝑢} = [GC]�Q𝑞𝑞� + [MC]{Q𝑢𝑢} + [HC]{Q𝑢𝑢} + [HD]{Q𝑢𝑢} = {Z(t)}  (37) 

The matrices shown in Eq. (37) are composed of submatrices based on Eq. (20), that is: 
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[GB] = [G𝑢𝑢𝑢𝑢] + �M𝑢𝑢𝑞𝑞��M𝑞𝑞𝑞𝑞�
−1
�G𝑞𝑞𝑢𝑢�  (38) 

[GC] = �M𝑢𝑢𝑞𝑞��M𝑞𝑞𝑞𝑞��G𝑞𝑞𝑢𝑢� − [G𝑢𝑢𝑢𝑢]  (39) 

[MC] = [M𝑢𝑢𝑢𝑢] + �M𝑢𝑢𝑞𝑞��M𝑞𝑞𝑞𝑞�
−1
�M𝑞𝑞𝑢𝑢�  (40) 

[HC] = [H𝑢𝑢𝑢𝑢] + �M𝑢𝑢𝑞𝑞��M𝑞𝑞𝑞𝑞�
−1
�H𝑞𝑞𝑢𝑢�  (41) 

[HD] = �H𝑢𝑢𝑞𝑞� + �M𝑢𝑢𝑞𝑞��M𝑞𝑞𝑞𝑞�
−1
�H𝑞𝑞𝑞𝑞�  (42) 

Then, one has: 

[GB]{Q𝑢𝑢} = {Z(t)} → {Q𝑢𝑢} = [GB]−1{Z(t)}  (43) 

It may be possible to calculate the tractions where the u values are prescribed using another methodology, but the 
proposal presented here is original and has not been shown in any previous work. It must be considered that all 
applications of the modal superposition method were made using the FEM or the techniques of matrix analysis of 
structures, according to a displacement formulation, without dealing with the calculation of stresses. It should be noted 
that the Qu values are obtained in the parts of the boundary where the potential was prescribed; therefore, the number 
of degrees of freedom involved in determining stresses is much smaller than that used in characterizing displacements. 

The tractions are strongly influenced by the high natural frequencies (Clough and Penzien, 1975; Loeffler and 
Mansur, 1987), which are poorly represented by any discrete matrix system. This leads to inaccuracies in the response 
of the tractions that appear as spurious fluctuations of small amplitude along the time. 

7 TIME MARCHING SCHEME 

Among the first conclusions obtained in the dynamics simulations with DRBEM is the need for an unconditionally 
stable time advance scheme. However, BEM is a mixed method in which potentials and their normal derivatives are 
calculated simultaneously. In dynamics, it is known that the derivatives of the potential, which represent the tractions, 
are strongly affected by the higher frequencies, which in turn are poorly calculated. Therefore, it is necessary to eliminate 
the contribution of the high-frequency spectrum, which can be done through incremental schemes equipped with 
fictitious damping. In this context, the Houbolt scheme stands out for its substantial incidence of numerical dissipation 
and has been widely used with DRBEM. 

On the other hand, as presented in the literature, the decoupled ordinary equations obtained by the modal 
superposition method can be solved analytically through the well-known Duhamell integral or numerically through an 
incremental time advance scheme. Aiming to compare the results of this article with those obtained by direct analysis, 
the Houbolt integration scheme is used to get an answer over time. Also, through the incremental scheme, the 
integration steps could be different for each equation, with the equations relating to high modes being imprecise and 
sensitive to the instability and precision of minimal steps, unlike the equations relating to more fundamental modes. 
However, a single value for the time step was used to integrate all equations. 

Thus, the Houlbolt time stepping scheme approximates the acceleration as follows: 

�̈�𝒖𝒏𝒏+𝟏𝟏 =  𝟐𝟐𝒖𝒖𝒏𝒏+𝟏𝟏−𝟓𝟓𝒖𝒖𝒏𝒏+𝟒𝟒𝒖𝒖𝒏𝒏−𝟏𝟏−𝒖𝒖𝒏𝒏−𝟐𝟐
∆𝑡𝑡2

  (44) 

In the last formula, Δt is the discretization time interval and n are the temporal instants. Houbolt scheme is 
unconditionally stable, but instability was observed with the reduction of the time interval in the computational DIBEM 
experiments using direct response with full matrices. 
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8 NUMERICAL SIMULATIONS 

8.1 First test 

Just to illustrate the differences between the methods, two non-symmetric matrices are taken as hypothetical 
stiffness and inertia matrices, whose composition is shown in Figure 1, with six degrees of freedom. The system is subject 
to a strong term capable of exciting all of its six natural modes of response. 

[H] =

⎣
⎢
⎢
⎢
⎢
⎡

19 −9 0 8 7 0
−9 17 −8 0 0 0
0 −8 15 −7 0 0
−3 0 −7 13 −6 0
1 0 0 −6 11 −5
0 0 0 0 −5 5 ⎦

⎥
⎥
⎥
⎥
⎤

;  [𝑀𝑀] =

⎣
⎢
⎢
⎢
⎢
⎡
10 0 0 0 0 0
0 9.5 0 0 0 0
0 0 9.5 0 0 0
0 0 0 8.5 0 0
0 0 0 0 8 0
0 0 0 0 0 7.5⎦

⎥
⎥
⎥
⎥
⎤

 

Figure 1 Hipotheticous discrete system. 

The CMM and MMM methods are used to calculate frequencies and obtain the response over time, which was 
obtained considering different modal contents, as seen in Figures 2, 3, and 4: 

 

Figure 2 Time response using one mode. 

 

Figure 3 Time response using three modes. 
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Figure 4 Time response using six modes. 

It is noted that the final result was the same. Still, the CMM constructs the response based on modal contents 
referring to the highest frequencies, which is an unusual procedure and has profound implications. This distinctive 
pattern of behavior is due to the multiplication of the forcing term by the inverse of the matrix composed of the 
eigenvectors. Naturally, these results imply severe numerical issues, as shown in the following example, whose 
dimension is more significant and represents a physical problem. This occurs because, unlike the lowest modes, the 
highest modes and their respective frequencies are not well represented by any discrete numerical method. 

8.2 Second test 

To verify the effectiveness of the Modified Modal Method in solving dynamic problems with DIBEM, computational 
tests were carried out on the solution of the system commonly known as embedded bar, which has analytics and is widely 
explored in the specialized literature. Figure 5 illustrates the geometry of the physical problem and its boundary 
conditions, which have unitary dimensions and unitary wave propagation velocity. 

 
Figure 5 Geometry of the physical problem and its boundary conditions. 

The initial conditions are also null. 160 linear boundary elements of equal size and double nodes at the corners were 
used, with a displaced source point. 144 internal interpolating points were allocated regularly. The integration step used 
was equal to 0.01s, and the size of each boundary element is 0.0286 units long. According to the CFL criterion, used as 
step estimation classifications in numerical domain methods, such as the FEM and the Finite Difference Method, this 
value (or even smaller values), would be sufficient for a good integration without losing stability in a direct integration 
process. 

In this problem, all odd modes are excited but composing an uneven response. As in the Variable Separation Method 
(Kreiszing, 2015), the modal superposition procedure allows evaluation of the importance of each vibrational mode in 
the dynamical response. Therefore, the contribution of two closely related parameters can be investigated: the 
frequency of each mode and the energy provided by all modes in the response. The amplitudes of the natural vibration 
modes are arbitrary. Still, for the set of initial conditions and typology of the forcing term, the ratio between the 
amplitudes is directly related to the level of influence of each mode. The most excited modes have greater vibration 



A Stability Analysis of the Direct Interpolation Boundary Element Method applied to acoustic wave 
propagation problems using the Modal Superposition Technique 

Áquila de Jesus dos Santos et al. 

Latin American Journal of Solids and Structures, 2024, 21(1), e520 12/19 

amplitudes, and their contribution to the final configuration of the system's motion is more significant. Therefore, use 
amplitude as a metric of the relevance of each mode in the composition of the system response, that is: 

𝐴𝐴𝑖𝑖 = �𝑓𝑓𝑖𝑖 𝜔𝜔𝑖𝑖
2⁄ �  (45) 

To better understand the hierarchy between the modes, all modes are normalized with respect to the fundamental 
mode. The result is shown in Figure 6. 

 

Figure 6 Normalized modes with respect to the fundamental mode. 

The results in Figure 6 clearly show the preponderance of the first modes over those associated with higher 
frequencies. Note that the amplitude value for the first mode is much greater than for all other modes. 

Figure 7 shows the amplitudes of the first three modes in the displacements where the traction is applied. As the 
Houbolt integration scheme was used, the effect of fictitious damping can now be visually seen in the attenuation of the 
amplitudes of the third mode and the lengthening of its period. A reduction in the step value would reduce this effect. 

 

Figure 7 Amplitudes of the first three modes. 

Figures 8, 9, and 10 show the displacement response where the traction is applied as a function of an increasing 
number of vibration modes, that is, adding up the responses obtained for each decoupled in the dynamic solution. It is 
noted that with 40 modes, the numerical response curve practically coincides with the analytical response. 
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Figure 8 MMM time response for displacements and tractions considering one, third and seventh modes. 

 
Figure 9 MMM time response for displacements and tractions considering twenty modes. 

 
Figure 10 MMM time response for displacements and tractions considering eighty modes. 

It is worth mentioning that the same problem was solved for various time increment values, reaching a value equal 
to 0.00001s without any issue of numerical instability. The graphs for these smaller time values were not shown because 
there is no noticeable change in what is shown in Figure 10. Obviously, the processing time in these extreme cases is 
prohibitive. Using the same mesh employing the direct integration method, in which modal decoupling is not performed; 
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the minor possible integration step to obtain a stable response was 0.001s. This fact is robust evidence that the 
asymmetry of DIBEM dynamic matrices produces instability problems. This means that non-real frequencies, which 
implicitly are present in DIBEM dynamic matrix restrict the minimum integration time step for integration. 

It should be noted that non-real frequencies only have physical meaning if the boundary element formulation using 
the complex fundamental solution is used. In this case, specific complex values may be associated with dispersive effects. 
However, the DIBEM uses the fundamental Poisson solution, which is real, so the complex frequencies are due exclusively 
to the non-symmetry of the BEM matrices. For example, the eigenvalue problem solved by the Finite Element with its 
symmetric matrices produces only real values, even for the high-frequency spectrum, which generally has low precision. 

Regarding the traction behavior, spurious fluctuations are expected due to the influence of higher modes. However, 
the Gibss phenomenon is also present in the response, and its effect remains in the time response indefinitely unless 
that time marching scheme has fictitious damping. In addition to the factors mentioned previously, the traction design 
is also less precise because it has fewer degrees of freedom for its solution, as the modal method is a technique aimed 
at displacement calculations. 

8.3 Third test 

This is a solution to the same problem, but examining the answer obtained by the CMM. In the following figures, 
the dynamic response for displacements is presented as a function of the number of modes. The response with one 
mode, twenty modes, 200 modes and, 245 modes, are presented respectively in Figures 11, 12, 13 and 14. 

 
Figure 11 CMM dynamic response for displacement calculated with one mode. 

 
Figure 12 CMM dynamic response for displacement calculated with 20 modes. 
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Figure 13 CMM dynamic response for displacement calculated with 200 modes. 

 
Figure 14 CMM dynamic response for displacement calculated with 245 modes. 

The response becomes closer to analytical only when using the totality of natural modes present. The system 
has a total of 268 degrees of freedom. However, this response could not be improved from this value, probably 
due to numerical inaccuracy. It should be noted that the sensitivity of this method is very high. The same problem, 
if discretized with an irregular arrangement of internal points, presents a much lower quality of response. 

A final experiment was carried out using a less refined discretization, with 40 linear boundary elements and 
64 interpolating points inside. The free displacements at the end for two different modal contents are shown in 
Figures 15 and 16. The integration step was the same, equal to 0.01s. Although the amplitude obtained has 
improved, the curves have become noisier due to the lower quality of higher modes. Figures 15 and 16 show the 
response for 20 and 70 modes. This suggests an additional conclusion in the sense that CMM is very sensitive to 
the mesh parameters used. 
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Figure 15 CMM dynamic response for a simpler mesh with 20 modes. 

 
Figure 16 CMM dynamic response for a simpler mesh with 70 modes. 

9 CONCLUSION 

This work is part of a line of research in which the DIBEM formulation is developed to solve acoustic wave 
propagation problems. One of the challenges in this field is identifying the factor responsible for the loss of stability of 
the direct response model for reduced time increments. This behavior is not presented in other numerical methods that 
discretize the domain but which, in turn, work with symmetric matrices. With DIBEM, using very limited steps direct time 
response model is subject to working with more refined meshes. Many factors have already been tested: the type of 
time advancement scheme, the effect of internal points, and the type of utilized radial function, among others. Despite 
the improved robustness of the DIBEM acoustic inertia matrix, a definitive conclusion has not yet been reached. Thus, 
the modal superposition technique was required since this method can easily identify and eliminate non-real frequencies 
in the response after solving the eigenvalue problem. A decoupled scheme of ordinary equations consisting of real 
frequencies is then created, which can be solved analytically or using incremental time advance schemes. 

Based on the experiments developed here, a robust conclusion can be reached in the sense that the complex 
frequencies, implicitly represented in the DIBEM dynamic matrix, are responsible for the instability of the model for 
reduced time steps using the direct integration method. In simulations using a less refined discretization, the instability 
problem must be credited to the bad quality of modal content. When there is a refinement of the mesh, the composition 
of frequencies becomes more accurate, and thus, smaller steps can be used to improve the accuracy of the numerical 
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solution; however, for small time steps, the effect of fictitious damping in eliminating spurious modes and frequencies is 
also reduced, causing instability. 

Thus, using the modal superposition procedure non-real frequencies were eliminated and time marching schemes 
that have not fictitious damping could be used, such as the Newmark. The use of the Houbolt scheme was solely due to 
its ability to dampen the action of spurious high modes in the response and to be able to make a comparison with the 
results previously obtained by the DIBEM using the direct integration method. 

On the other hand, in the studies that were carried out to use the modal method with BEM, two alternatives were 
presented: the possibility of using the classical method available in the literature and the technique that is used in the 
main references that deal with non-symmetric matrices called the modified modal method. The reason for choosing the 
latter, which is more computationally expensive, is not shown in any of the bibliographical references consulted. Both 
models are mathematically consistent. However, the reason for the choice was computationally proven: although the 
classical method is simple, it involves multiplying the vector of applied forces by the inverse of the eigenvector matrix. 
This results in physical behavior utterly opposite to what was expected. It differs entirely from the results obtained by 
the modal analysis of systems composed of symmetric matrices and from the results presented by the Variable 
Separation Method in solving partial differential equations of acoustic wave problems. Using a classical algebra strategy, 
there is a valorization of high vibrational modes, numerically poorly represented, which harm the dynamic response, as 
shown in this work. 

Regarding future works, the results presented here show that it is suitable to perform a review of the techniques 
related to the symmetrization of mass matrices and also to avail the application of dynamic condensation schemes with 
BEM, aiming to eliminate the contribution of non-real frequencies within the modal content, if the direct integration 
scheme is chosen for the numerical solution of the wave equation. 
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