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Abstract

The use of simple bar elements in nonlinear structural finite element formulations has the academic
advantage of uncoupling element technology issues from the structural phenomena to be observed. In this
work, we present a finite element setting for the formulation of different nonlinear material models applied
to the transient analysis of trusses. While nonlinear elasticity is considered by studying a Hooke-like linear
relationship between different pairs of nonlinear measures of stress and strain, hyperelasticity is formulated
using Ogden’s model. Viscoelasticity is introduced using a generalized Kelvin rheological model to account for
strain rate effects. The finite kinematics is set in a corotational total Lagrangian description where the virtual
work is described using the Second Piola-Kirchhoff and the Green Lagrange measures. Although the derivation
is omitted, the consistent tangent moduli are given for all these cases. Numerical problems involving
simultaneously different truss models are studied and made available as benchmarks since little comparative
data is found in literature.
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1 INTRODUCTION

Due to their relative simplicity, truss elements are frequently employed as a first step to study nonlinear
formulations. Some examples are the works of Driemeier et al. (2005), Greco et al. (2006), Carniel et al. (2015), Pascon
(2016), Rabelo et al. (2018), Guggenberger and Krenn (2019), Ananthapadmanabhan and Saravanan (2020), Endo et al.
(2021) and Rezaiee-Pajand et al. (2023). In this work we describe the kinematics of a bar element using concepts of
continuum mechanics and develop a finite element framework to study different material models in nonlinear elastic
and viscoelastic transient analyses. Particularly, we extend the Saint-Venant-Kirchhoff material model, which relates
linearly the Second Piola-Kirchhoff stress to the Green-Lagrange strain tensors, to consider linear relationships between
other stress-strain measures. This behavior is possible provided the strains are finite, but relatively small. We also
introduce the incompressible Ogden hyperelastic material law, which admits larger strains. Then, we use a generalized
Kelvin rheological model to consider rate dependent effects in each of the nonlinear Hooke-like elastic material models.
In the hyperelastic case, structural damping is introduced using a Rayleigh damping matrix. The formulation is set in a
corotational total Lagrangian description where the virtual work is described using the Second Piola-Kirchhoff and the
Green Lagrange measures. One of the contributions of this work is the presentation of the consistent tangent moduli for
all these cases. Although the derivations are omitted, the expressions have been carefully validated by verification of
quadratic convergence tests.

The bases for the formulation framework developed in this article are summarized as follows: the nonlinear analysis
involving different constitutive models is based on Mufioz-Rojas (2023); the considerations involving Rayleigh damping
are based on the discussions found in Charney (2008), Jehel et al. (2014) and Chen et al. (2015); the time discretization
follows the principles of the Newmark family methods (Subbaraj and Dokainish, 1989); the hyperelastic material law is
the Ogden model (Ogden, 1972) which is particularized to truss analyses as, for example, in Fonseca and Gongalves
(2022); as for the viscoelasticity algorithm, after studying several integration methods, such as those presented by
Evangelista (2006), Araujo et al. (2010), Keramat and Ahmadi (2012), Kiihl et al. (2017). Chazal and Moutou Pitti (2009),
Chazal and Pitti (2011) and Ananthapadmanabhan and Saravanan (2020), the algorithm presented by Carniel et al. (2015)
is adapted to an explicit approach.

Although there are many publications describing the limitations of linear relationships between nonlinear measures
of stress and strain, particularly for bars (Crisfield, 1991), the corresponding discussion about a linear relationship
between nonlinear measures of stress and strain rates is not so frequent. In this work we explore both issues with
examples involving 2D and 3D trusses made of bars with different combinations of material models, all of them subjected
to suddenly applied loads and undergoing snap-through instabilities. Under such conditions, the consideration of inertia
forces is mandatory, implying the calculation of velocities and accelerations, which affect dissipation. The material
parameters adopted in the numerical examples follow those used by Ogden (1972), Abdelrahman and El-Shafei (2021)
and Endo et al. (2021).

2 BAR KINEMATICS

Consider a bar located in the three-dimensional space subjected to a uniform uniaxial stretch. The bar length, area
and volume are denoted by L, Ay and V; in the undeformed configuration, and L, A and V in the current configuration.
We define a global system of reference with origin O and base vectors {e;, e,, e3}, and a local corotational system of
reference with origin at the beginning of the bar and base vectors {ef, eg, eg}. Following classical notation, we use capital
letters to refer to coordinates in the original (undeformed) configuration and small letters to refer to coordinates in the
current (deformed) configuration. With this convention, in the undeformed configuration, each material point of the bar
has global and corotational local coordinate vectors X = (X,Y,Z) and X; = (X}, Y}, Z;). Accordingly, in the current
configuration, the coordinates of the same material point are given by the vectors x = (x,y,z) and x; = (x;, v, 2p),
as shown in Figure 1.

Under uniform uniaxial stretch, the location of a material point in the current configuration can be expressed with
respect to the corotational local system of reference as

X, = (xl'yl'zl) = (Xl+ul,Yl +vl'Zl+Wl) (1)
where (u;, v;, w;) corresponds to the displacement suffered by the point.

Assuming that the bar behaves the same way in any direction of the cross-sectional plane, we have (Holzapfel,
2002; Dunne and Petrinic, 2005)
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Figure 1: Global and corotational local systems of reference for the bar.
x; = (41X, A2Y1, A3Z)) (2)
where
=
A = X, (3)
and
12 - /’{3. (4)
Using the logarithmic strain measure to define the Poisson ratio, according to
_ In(4;) — In(43)
T () W@y (5)
it turns out that
AZ = A3 = AIV (6)
Hence, the relation between the updated and initial cross section areas is
dA = dy,dz; = (A,dY))(A3dZ)) = ,A3dY,dZ; = A7*VdA, (7)
and the strain gradient with respect to the corotational local system of reference is given by
A4 0 O A0 0
Fc=%=[0 A ol_ 0 AY 0 8)
“lo oo 2 0 0 A"

whose Jacobian is Jp, = det(F.) = 1 I(ZVH).

From the polar decomposition theorem, it turns out that the rotated right Cauchy strain tensor is

C = FLF; = U%, (9)
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where the elongation tensor U, is used to define the Seth-Hill family of strain tensors

1 (m)
- (W -1) 0 0
1 1 —
ot )= 0 teeoq o | 0
0 0 — [ 1]

Due to the hypothesis of uniaxial uniform stress state assumed for the bar, the only strain component that
produces work and must be considered is the axial one. The axial component of the Seth-Hill family of strain tensors can
be expressed as

L) — {% (A" —1), m=#0 (11)
In(4,), m=0
with m defining different measures. Some measures of strain are
e  Green-Lagrange strain (m = 2):
el = @ = %(/1% -1) (12)
e  Rotated engineering (Biot) strain (m = 1):
eRE =M =) —1 (13)
e  Logarithmic strain (m = 0):
el =@ =1n(1,) (14)

3 PRINCIPLE OF VIRTUAL WORK (PVW)

The virtual work principle establishes that, for every instant of time and every kinematically admissible virtual
displacement field, a body is in equilibrium if the sum of the internal virtual work performed by internal forces and the
inertial work equals the external virtual work performed by the external forces (Belytschko et al., 2014). Hence, for each
instant of time,

6Wext = SWmt + 5Wm, (15)
where §W,,, is the virtual work performed by the external load, §W;;, is the virtual work performed by internal forces
and 6W,, is the virtual work performed by inertia forces.

In order to account for structural dissipation, normally associated to friction among assembled parts, one can
introduce an additional term in Eq. (15), which then reads

Wesr = SWipe + Wy, + W, (16)

where § W, is the virtual work performed by structural damping forces. As depicted in Figure 2, for each bar element the
internal work expression is given by

§Wine = [[° FI (X)d(6w) = [} F™ (x,)d(6w,) (17)

with F being the axial internal force along the element length.
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Figure 2: External and internal virtual work performed forces F&*t and F™™ due to a virtual displacement 5u(L).

Within each bar, the axial stress can be defined by alternative measures, for instance

e the Cauchy stress:

o =Ft/4; (18)
e the rotated engineering or First Piola-Kirchhoff stress:

oRE = Fint /A = 272, (19)
e the Second Piola-Kirchhoff stress:

g?PK = 17V, (20)

These stress measures can be confirmed by the application of the classical continuum mechanics expressions

A7t 0 g 0 0 RE_A—ZV 0 0
P=Jp Fla=2;"""0 2 o [0 0 ol [ 0 ol (21)
0o o 2lo o o 00
and
g 0 o)A =2;%"Y 0 0
S=PF;"=| 0 0 0] 0 0 0 0 (22)
0 0 olfo 0 A” 0 0 0

where P and S are the First and Second Piola-Kirchhoff tensors respectively.

Although Eq. (17) can be expressed using any pair of energetically conjugate stress-strain tensors, the derivations
developed in this article employ the Green-Lagrange strain tensor and the Second Piola-Kirchhoff stress tensor. Hence,
we have (Crisfield, 1991)

Wiy = fVOO'ZPK 5ebtav,. (23)
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The damping and inertia virtual work parcels mentioned in Eq. (16) are respectively

SW, = fVO ct du,dv, (24)
and
SW, = fVOp i Su,dV, (25)

where ¢ and p are the specific damping and mass coefficients.

4 SPACE DISCRETIZATION OF THE PRINCIPLE VIRTUAL WORK

For each bar we define the interpolation matrix

N =[N(§) 0 0 Ny 0 0] (26)

based on a natural coordinate ¢ € [—1, 1] along the element axis. This matrix is used to approximate coordinates,
displacements, velocities and accelerations by

X; = NX,, (27)
x; = Nx;, (28)
w = Nu, (30)

where the asterisk stands for continuum expressions being discretized and X, X;, ;, &; and u; are the nodal values of
the corresponding element vectors. For a linear two-noded bar, the interpolation functions are

M) =2(1-9), (32)

N (&) =51 +9). (33)

4.1 Discretization of the virtual internal work

Replacing Eq. (12) and (13) into (23), the virtual internal work can be discretized by

§Wine = [1,(68)7 BT (X)1,027] (X)) AodE, (34)
implying

q =1, BT (X),027] (X)) AgdE, (35)
with

BE)=—) _ 1 401 0 0 (36)

JX)  d¢ JXD
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> dXx
and /(X)) = d—;.

The transformation of the internal force vector to the global system of reference is performed by
q=T'q, (37)

where T is the rotation matrix, composed by the direction cosines (Bathe, 2006).

4.2 Discretization of the inertia virtual work
Replacing Eq. (29) and (31) in Eq. (25), we obtain

W = fVO piidu,dVy = 5uj f_ll p @ NXDTN(X Ao (X)dEu, = 5u] m. i, (38)

where m, is the consistent element mass matrix and p(® is the specific mass of the material of the element. Further,

W, = sul m,u, = sul fIr, (39)
where
fi* =mu,. (40)

The global mass matrix is assembled as usual,
M= Nm,, )

where nel is the total number of elements and A is the assembly operator.

4.3 Discretization of the damping virtual work
Introducing Eq. (29) and (30) in Eq. (24), it results that

SW, = fVO cubwdVy = 5uj f_ll c@ NX)D'NX)A (X )dEiw, = 5] ¢, (42)

where ¢; is the consistent element damping matrix. Moreover,

SW, = sui fi, (43)
where
fi= ;. (44)

As for the mass, the global damping matrix is obtained applying the assembly operator over all the elements,
€= Nhe,, )

where ¢, = TT¢;T is the element damping matrix c; rotated to the global system of reference.

4.4 Spatially discretized equilibrium equations

To trace the equilibrium path along the load application, the total load is divided into a finite number of time steps At.
As the PVYW must be valid for an arbitrary virtual kinematically admissible displacement, for an external force in the
corotational local system of reference f2%!, we obtain that the discretized version of the equilibrium equations is
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Ani1(Upyq) + fn+1(un+1) + fn+1(un+1) fidh = (46)

valid for an arbitrary time or load step n+1. Summing up element contributions we can assemble the global form of
Eq. (46)(45), obtaining a residual equation for force balance as

Tnt1(Wn1) = Qi (Upyq) + Cﬁn+1 + Mﬁn+1 - F%ﬁtp (47)

which vanishes at equilibrium and takes non-zero values when an out-of-balance force occurs.

5 LINEARIZATION OF THE EQUILIBRIUM EQUATIONS

Owing to the term Q,,;,(U,,,1), the residual is a nonlinear function of the global displacement vector, so that the
solution of Eq. (47) requires the linearization

k+1 k+1 k K aQl®, \_(k+1 = =
rP (@) = 0l (7l + (;3“ Aa* D 4 €Ty, + Mk, — FE4 =0, (48)

where the derivative of internal force vector Q,,,1 with respect to the global displacement vector defines the tangent
(k+1) (k+1) (k)
Upia

matrix Ky and Au,, u,/.

5.1 Tangent matrix

Dropping the n + 1 index for neatness, we can express the tangent matrix as

k dQ(ﬁ ) nel
Ki = e = Nesikr,, (49)
where kr, is the element tangent matrix with respect to the global system of reference. Employing the chain rule of
differentiation on Eq. (49), this matrix can be written as the sum of two other matrices, kr, and kr, .

kr, = kr) + k., (50)
where

K =4 a BT (X,)o%PK HB(X,)A,](X,)d

T, f X)o (XDAoJ (X d¢, (51)

B(X,) and H are given by (Mufioz-Rojas, 2023)

B 100 100

B(X) = ZJ(X)[O -1001 ol (52)
0 0-1001

H= [1 - (%1)2 B()_(l)ﬁTBT()_(l)], (53)

I is the identity matrix and X is the vector of nodal current coordinates with respect to the global system of reference.
On the other hand,

k) =TS = TS g Sy - TR, (54)
2 da du; 2

u du; du

with
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1 *T ry N R*(VY v
tw=J,B "(XDEB* (XA, ] (X)) dE, (55)
where (Mufioz-Rojas, 2023)
E = BEr + o %7K, (56)

and Er is the tangent modulus

do2PK

Er =~ (57)

9eGL 7

where (2PK, £6L) is the conjugate pair adopted in this work.

Notice that the differentiation of 027X causes a dependence on the material model adopted. This important issue
will be further discussed in Sec. 7.
5.2 Simplifications on the damping matrices

It is usual to replace the consistent damping matrix by the so-called Rayleigh matrix, which is defined as a global
damping matrix obtained by the linear combination of global mass and stiffness matrices. For this, the literature displays
three alternatives (Charney, 2008; Jehel et al., 2014),

1. constant coefficients a and b in the linear combination between mass and the initial tangent stiffness (equal to the
linear stiffness matrix)

C = aM + bK; (58)
2. constant coefficients a and b in the linear combination between mass and the updated tangent stiffness
C=aM + bK; (59)
3. updated coefficients a; and b, in the linear combination between mass and the updated tangent stiffness
C = atM + btKT' (60)
In Eq. (58), (59) and (60), a and b are called Rayleigh constants and the lower index t indicates that the values are
updated at each load step and iteration.
The application of Rayleigh matrix is mainly for numerical convenience but allows to consider, in a simplified way,
both, material dissipation (viscous materials) and structural friction at joints and supports. However, it is frequent to

disregard dependence on K or Ky adopting b = 0 (Chen et al., 2015). Moreover, viscous materials are treated in a more
adequate way by employing appropriate material models, as those described in Section 7.3 .

6 TIME DISCRETIZATION

The Newmark family of time discretization methods is based on the expressions

My, + Cyyq + Ky = F335, (61)
- — = 1 K18 oo

Uy = U, + Atu, + (A t)z [(5 - ﬁN) u, + BNun+1]' (62)
Uppqy = Up + At[(l — YU, + VN ﬁn+1]' (63)

where By and y define the specific method adopted and At is the length of time steps. Isolating i,,,4 in Eq. (62), and
substituting Eq. (62) and (63) in (61) we find that, for each iteration k, the effective stiffness matrix I?’; and the effective
external force vector F¥ are defined as (Subbaraj and Dokainish, 1989)
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oo 1 YN

KT_ﬁN(At)ZM-l__ﬁNAtC-i-KT’ (64)
Tk _ (pext\k 1 —k 1 - 1 \=k 1 YW _ 4 \sk o ALY _ 5=k

Fk = (Fext) +M[BN(At)2u Fol +(2ﬁ~ 1)@ ]++C[3Nmu +(BN 1)a +2(B~ 2)iit), (65)

and the solution of the resulting global system via the Newton-Raphson method gives
Kkpauktt = —p(uktt) (66)
ﬁk+1 — ﬁk + A'l_,lk+1 (67)

In Eq. (66), ?'(ﬁ") is the residual given by Eq. (48) with the effective external force in Eq. (65) in place of F&*¢. It is
well known that, in the case of quasi-static problems, the use of the exact tangent matrix should result in quadratic
convergence (close to the roots). On the other hand, Chang (2004) shows that when using the Newmark family algorithms
to solve nonlinear problems involving inertia forces, quadratic convergence cannot be expected.

In this work we adopt the method of average accelerations, for which By = 1/4andyy = 1/2.

7 MATERIAL MODELS

In Section 5.1, the tangent modulus was defined by Eq. (57) as the derivative of the stress with respect to strain employed
to describe the internal virtual work, which depends implicitly on the material behavior. It is important to remark that the
constitutive behavior of a given material has nothing to do with the conjugate pair employed to describe the internal virtual
work. Considering that we are adopting the conjugate pair (62PX, €5L) to express the internal virtual work, for any given
stress-strain pair chosen to describe the material behavior, say (g%, €*), the tangent modulus will have the form

d002PK  9g2PK gg* gg*

Er = = 55 50 aeor (68)
7.1 Linear relationship between nonlinear stress and strain measures
Particularly, for a constitutive law that relates linearly the arbitrary stress and strain measures o and &,
c"=E¢* (69)
9 2PK 9 2PK de*
Er="_—=2_fp >~ (70)

deGL do* 0eGL’

Table 1 shows the tangent moduli for constitutive laws that relate linearly different stress-strain pairs, where the
well-known Saint-Venant-Kirchhoff model corresponds to 6%FX = E€%L (Mufioz-Rojas, 2023).

Table 1. Tangent moduli for linear relationships between different stress-strain measures and internal virtual work evaluated using

the conjugate pair (a2PX, £6L) .
Constitutive law Er
oRE — EgRE Ep = A72(E — 02PK)
g2PK — EgGL Er=E
o= Esl Ey = 152 (51;(2“1) -~ v+ 1)02”‘)

Noteworthy, the choice of a linear relationship between a given stress-strain pair implies in a nonlinear
relationship when considering a different pair. Also, adoption of a linear relationship between stresses and strains
normally produces an unphysical behavior for large compressive strains (finite stress for A; = 0). The exception is
o = E€, as shown in Figure 3. Notwithstanding, for moderate strains (represented by vertical lines in the range
between 4; = 0.6 and A1; = 1.4 for illustrative purpose), such linear relationships can be used to model different
material behaviors. Figure 4 shows the interesting fact that the linear relation o®f = E€RE can model an auxetic
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material (v = —0.1) respecting the physical condition that the Cauchy stress ¢ - —oo when A; = 0. As expected,
when small strain occurs, a linear relationship between any different stress-strain pairs leads practically to the same
material behavior.

Cauchy Stress

0 0.5 1 1:5 2
A

Figure 3: Unphysical behavior for large compressive strains (for stretch approaching zero) in the cases of 6%f = E&RF and %7K = E¢CL,

Cauchy stress
Cauchy stress

}\1 Aq
(a) (b)

Figure 4: Cauchy stress o versus stretch A, for different values of the Poisson ratio v: (a) 6®f = E<®E and (b) 02PX = E&¢L,

7.2 Hyperelasticity (Ogden's model)

When the work done by the stresses during a strain process depends only on the initial state at time t, and the final
configuration at time t, the material is termed hyperelastic (Bonet and Wood, 2008). The hyperelastic model proposed
by Ogden (Ogden, 1972) is defined in terms of the stretch tensor eigenvalues (principal stretches), A1, A5, A3, where the
elastic strain energy is given by

W =T (A + 25T+ 251 - 3), (71)

and y; and a; are material parameters. To obtain a physically consistent condition, the following constraints must
be satisfied

Ui oG > 0, (72)

YLy wa =2y, (73)
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Transient analysis of trusses considering nonlinear elastic and viscoelastic material models Débora Cristina Brandt et al.

where u is the shear modulus in the reference (undeformed) configuration. It is usual to consider that hyperelastic
materials are incompressible, in which case

det(Fc) =]Fc = 111213 = 1, (74)

where F . was defined in Eq. (8).

Introducing Eq. (6) into (74) we verify that for uniform uniaxial stretch, the incompressibility condition is met when
v = 0.5, so that the strain energy is given by

V0D =B (i 250 -3) o

Moreover, the Second Piola-Kirchhoff stress is obtained differentiating the strain energy with respect to the Green-
Lagrange strain,

&
2PK __ aw _ aw dﬂl _ N ai—Z _7_2
T de6L T dp, deGL T 4=l Hi A1 + 2)‘1 : (76)

g

Figure 5 shows that this incompressible material law respects the physical constraint that the Cauchy stress o —
—oo when A; = 0, hence allowing its use for large compressive strains. For comparison purpose, the relationships of
oRE = E€RE and 62PK = E£CL are also displayed for v = 0.5. The vertical lines at values 1; = 0.6 and 1; = 1.4 delimita
range of moderate stretches, where all material laws provide coherent, although different values.

Equation (76) is replaced in the expressions (35) and (51) of q; and kr,. Differentiation of Eq. (76) provides the
tangent modulus defined in Eq. (57)

dO.ZPK

ET=

deGL

_ . “Zig
=YV [((xl- N (S 2)A) ] (77)

which must be introduced in the expression (54) for k.

Cauchy stress

_2 I E I
0 0.5 1 1.5 2
A

Figure 5: Cauchy stress o versus stretch A; for incompressible hyperelastic and linear stress-strain relationships (v = 0.5).
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7.3 Viscoelasticity

7.3.1 Linear Viscoelasticity

In linear viscoelasticity, for given constant constitutive parameters, the material response depends only on time,
and it is possible to apply the Boltzmann superposition principle. This principle is given by the integrals

o(t) =[] 6(t — D)é(r)dr (78)
and
() = [ J(t - De(dr, (79)

where G(t) and J(t) are the stress relaxation and the creep-compliance functions, respectively (Kiihl et al, 2017).
Equations (78) and (79) completely define the material response since the linear viscoelastic material properties are
considered ideally constant.

Particularly, for creep-compliance response, a stress o, is suddenly applied at time t, and kept constant, while the
stress is observed over time, that is

o(t) = H(t — ty)o, (80)
and
6(t) =22 (t — to)o. = 8(t — o), (81)

where H(t — t,) and 6(t — t,) are the Heaviside and Dirac delta functions respectively, and o, is the creep stress.
Replacing Eq. (81) in (79) and applying the filter property, it turns out that

e(t) = J(t —ty)a, (82)
or
Jt—1ty) = ? (83)

where frequently time ¢, is taken as t, = 0 (see Figure 6).

Notice that the compliance is defined by Eq. (83) and in linear viscoelasticity this function does not depend on
the creep stress o, applied. A typical curve of linear creep-compliance (nonlinear in time) for any value of g, is given
in Figure 7.

o(t) (t)! J(t) = &(t)
- Oc
o, o o,
to t to t to t

Figure 6: A constant stress suddenly applied at instant t, the resulting strain profile in time and the corresponding creep-compliance function.
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Figure 7: Compliance | = ¢/o, is independent of the creep stress level.

7.3.2 Nonlinear Viscoelasticity

When we work with finite strains, the use of the pairs (627K, %) and (6FE, £RE) in Eq. (82) implies a nonlinear

relationship between the Cauchy stress and the logarithmic strain. For example, if the chosen constitutive measures are
the second Piola-Kirchhoff stress and the Green-Lagrange strain, Eq. (82) becomes

9L (t) = J(t — ty)a2PK. (84)

As it is possible to denote the Second Piola-Kirchhoff stress in terms of the Cauchy stress and the GL strain in terms
of the logarithmic strain, it follows that

2" 1 (2 — 1) = 2/(t — t)o,, (85)
which can be expressed as
g(eh) = ez"eL“(esz —1) = 2J(t —ty)o. = 0. (86)

Similarly, if a linear viscoelastic behavior is defined between the engineering stress and strain, Eq. (82) in terms of
the Cauchy stress and logarithmic strain is given by

ez"gL(egL —1) =J(t — to)o, (87)
which can be rewritten as

g(eh) = eZVSL(eZSL —1)—J(t —tg)o, = 0. (88)
In both cases (Eq.(87) and (88)) we can define the compliance as

Root ofg(eL). (89)

Oc¢

In (@t —tp) =

where g is the Cauchy creep stress.
Figure 8 exemplifies the difference between the creep-compliance curves defined in terms of Cauchy stress and
logarithmic strain when linearity is considered between other stress-strain pairs for given Cauchy stress values.

Latin American Journal of Solids and Structures, 2024, 21(1), e521 14/31



Transient analysis of trusses considering nonlinear elastic and viscoelastic material models Débora Cristina Brandt et al.

3.5 7
3 6
. 25
S
Z 2y
z
L=
1.5
—og=1 PR——
—0oc=10 —0oc=10
1 ¢ =100 2 oc =100
J(t) given by Eq.(85) J(t) given by Eq.(87)
05 ' : . ! 1 ' . ' !
0 20 40 60 80 100 0 20 40 60 80 100

Time Time
(a) (b)
Figure 8: Compliance Jy, = &'/a, for finite strains considering the linear relationship between (a) Green-Lagrange strain
Second Piola-Kirchhoff stress and (b) engineering strain and stress, both with v = 0.

7.3.3 Generalized Kelvin-Voigt rheological model

The simple Kelvin-Voigt rheological model consists of a spring of elastic constant E; arranged in parallel with a
dashpot of viscosity constant 1;, as shown in the detail of Figure 9 (Ward and Sweeney, 2004). The generalized Kelvin-
Voigt model consists in a series arrangement of a sole spring with a finite number of Kelvin-Voigt blocks, as shown in the
same figure. For our purpose we consider that the springs obey a linear relationship between nonlinear stress and strain
measures according to Eq.(69). Damping in the dashpots is given by a linear relationship between the same measures for
stress and strain rate. To avoid an excessive number of superscripts, in this Section we drop the asterisks that indicate
the choice of a given stress-strain pair in Eq.(69).

The stress-strain relationship for a single Kelvin block i is given by

o(t) = Eigl°(t) +n;€°(b), (90)

where £¥¢(t) and £V¢(t) are the viscoelastic strain and its time rate. Equation (90) can be rewritten as

ére(t) = (=) o(e) - (l) v (D), (91)

TE;

where T; = % is the relaxation time of the rheological block.
L

i El EZ Enrb
6 W/ W W
o VYV N P _‘ |— b o
Kelvin-Voigt
rheological block
Figure 9: Simple and generalized Kelvin-Voigt rheological models.
Because we have a series arrangement, in each rheological block it holds that
a(t) = a5,;(t) + op (1), (92)
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where

{Us,i(t) = E;ef°(t); i=12,...,nrb  (spring stress) (93)

op,i(t) =n;él¢(t); i=12,...,nrb (dashpot stress)

and nrb is the number of rheological blocks involved in the material model. On the other hand, the stress of the
sole spring is

a(t) = Eole(t) — ™ (o)), (94)

where the viscous strain corresponds to the sum of the viscous strains of each rheological block, so that
a(t) = Eo[e(t) — T8 72 (). (95)

If a stress is applied to the model, it acts on each rheological block and on the sole spring in the same way. Then Eq.
(90) and (94) can be compared, resulting in

. 1 i i
£Pe(t) + T—ie;’e ) + ‘:—ie;’e(t) = (:—iel-(t), (96)

where w; = Ey/E;.

In the case of viscous behavior, we define a linear relationship between stress and strain rate (o = né), as displayed
in Figure 10. Notice that the strain rate depends on the stretch suffered by the material, yielding the expressions given
in Eq. (97)

EL = ln(/ll) = éL = %Al
1
ERE = )'1 -1 = éRE = j’l ’ (97)
k(":GL = %(ALZ - 1) = éGL = }.121

which replaced in the Hooke-like material relationships lead to

g=nét > 0=90Dh,  withe@) =T
1
oRE =neRE = g =), withe(l) =91 . (98)

oK = et = 0=9) A, withe() = 77/1?(1/“)

o g

o =né

Figure 10: Purely viscous system.

The discussion made here on the implications of adopting different stress-strain rate pairs is relevant, since there
are studies such as Douven et al. (1989) and Kaliske and Rothert (1997), that relate linearly pairs that are different than
the Cauchy stress and the logarithmic strain rate.

Figure 11 shows the graphs of the auxiliary function ¢(A,) defined in Eq. (98) for the (o, &l), (oRE, eRE) and
(02PK, £6L) material models. As well as when there is a linear relationship between stress and strain (Fig. 3), each of the
constitutive laws represents a different material for moderate strains (for example, 1, between 0.6 and 1.4). In the case
of large strains in compression, the relationships exhibit non-physical behavior. We would expect that, as the stretch
approaches zero, the stresses would take on increasing values, as happens in the case of (g, c!). However, for both
constitutive laws (o®E, eRE) and (02PK,£C), when the stretch tends to 0, the values of ¢(A1,)also tend to O.
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Since, according to Eq. (98) the stresses are obtained by multiplying ¢ (1,) by the strain rates, it follows that the stresses
tend to zero independent of )11 values, contrary to the expected behavior.

10 [ I S O I S SN S
i Constitutive laws:
.. {—o=nde'/dt
E — of€ = 1y deRE/dt
1 02K = de/dt
6 ! n=1, v=05)
z | |
5 4 ! :
2 | ' | -
EEE mseseSEa
0fF— H :
0 0.5 1 15 2

A

Figure 11: Unphysical behavior for large compressive strains (for stretch approaching zero) in the cases of 0*f = n&RE and g2PK = n&6t
consideringn = 1 andv = 0.5.

Figure 12 shows the behavior of (62PX, £L) and (o RE, £RE) for different values of v. Although (o RE, £RE) presents
physical sense for auxetic materials, the (627K, £%L) constitutive law does not give coherent results for any of the Poisson
ratio values tested when large strains in compression are considered.

7.3.4 Numerical Integration of viscous strains

The numerical integration of viscous strains used in this work follows the explicit approach (Backward Euler
Method), which was based on the adaptation of the three-dimensional formulation of Nedjar and Le Roy (2013) of
implicit integration presented by Carniel et al. (2015). Other approaches are proposed by Zienkiewicz et al. (1968),
Evangelista (2006) and Araujo et al (2010).

We assume that, for the numerical implementation, time is discretized into N steps of equal size At. For each step
0 < n < N, the next stepn + 1 will be equal to the time elapsed until the previous time step n, t,,, plus the time interval,
i.e., the1 = t, + At. Also, the total strain at step n + 1 is known and therefore will be constant throughout this time
step. Then for time step n + 1, eq. (96) is such that

1 wi Wi
sve ve Love — 1 ] —
Eimr1 T &int & = Enyp i =12 .., nrb, (99)
A A
where
ve ve
gve, gt
ve — Sin+1 in
Elhgy = I, (100)

0 05 1 1.5 2 ¢
A Ay
(a) (b)
Figure 12 : Cauchy stress o versus stretch 1, for different values of the Poisson ratio v in the viscoelastic model:
(a) oRE = n&RE and (b) 02FK = nelt,
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Replacing Eqg. (100) into (99), for each rheological block i,

Débora Cristina Brandt et al.

EVS 41 = E16 + AL ()yy — —ElE — AL (101)
with
g;{e — nrb gve (102)
or
Ti€ ne1 = [T — At]els + Atw;gnyq — Atw; ’]Zl{ gy = [t — At(1 — wy)]efy + Atwignyy — Atw; ’]Zl{,]-ii &p-  (103)
Eqg. (103) can be written as a linear system A€Y’%, = b where
ve
oo 09 o)
|0T20“ O | I 82,71.+1 |
" [9 073 0 | = | eh | (104
PEE : [ ]
000 T Lexey i
Tl - At(l + (1)1) _(l)lAt _(DlAt [ Ef% ] (1)1
— — —w, At )
b= "JZA{ :At(l +w;) @2 n | ype| @2 Eni1 (105)
—WppAt — At Topr — At(1 + wppp) LGrb’n Wnrb

Note that matrix A being diagonal implies that the cost of solving the system is zero. Despite this, there would be
an operational cost due to the need to allocate space to store it, which is unnecessary. Therefore, although the equations
are presented as a system, it is more efficient to solve them in a decoupled way,

ve
EL n+1 =

= [(rl — AD)elE + Atw;(en4q —

anb ve ] : 1’2’

,nrb.

(106)

The consistent tangent modulus of a viscoelastic material (not to confuse with the tangent modulus defined in

Eq.(68)) in the time step n + 1 is, by definition,

Ve, = ZS”“ (remember that the asterisks have been dropped agn Lin Eq. (68)) (107)
where 0,41 = Eg(€p41 — €051)- Then
Ex$i=Eo (1 - Z?Ll{ %)- (108)
Using Eq. (105) we can write
EpSi = Eo(1 - X118 ), (109)

where a; are the rows of the vector given by
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w1 /T4
W, /T,

Wnrp / Tarb

8 NUMERICAL EXAMPLES

Inspired in the work of Driemeier et al. (2005), Greco et al. (2006) and in the analyses of Carniel et al. (2015), we study
two and three-dimensional trusses subjected to large displacements and strains under an unstable behavior (snap-through)
along the strain path. The structures achieve high accelerations and require inclusion of inertia forces. Hence, within the
framework of finite elements, we require to consider the kinematics of finite strains associated with the proper material
model and transient geometric nonlinear formulation to obtain a response consistent with the physical phenomena
involved. These structures are analyzed with different material laws and stress-strain pairs for material description.

For the viscoelastic analyses, we considered bars made of a hypothetical polymeric material introduced by Keramat
and Ahmadi (2012) and used by Abdelrahman and El-Shafei (2021) with parameters shown in Table 2. As a numerical
exercise this material was also analyzed neglecting the viscous effect in purely elastic simulations. In this case, in order
to find the corresponding coefficient of elasticity, we considered the complete release of the dampers, leading to a
regular series association of the springs. Thus, the value of the coefficient of elasticity considered for the elastic model
corresponds to 10° MPa.

Table 2 Viscoelastic material properties (Abdelrahman and El-Shafei, 2021)

v plkg/m?] Ey[MPa] E;[MPa] T[s]
0.50 12000.00 1.0035E +13 1.086957 E +11 1.101 E-03
9.049774 E +09 3.0115 E-02
1.281558 E +09 1.50784 E -01

The material parameters for hyperelastic bars correspond to natural rubber (Endo et al., 2021; Ogden, 1972). These
parameters are given in Table 3. Damping can be introduced by inclusion of the Rayleigh damping matrix which, when
considered, is taken as 10M.

Table 3 Hyperelastic material properties of natural rubber (Endo et al., 2021)

u;[MPa] o;
0.7.7817 E +05 2.7971
-1.1229 E +04 -2.7188

1.269 E -01 10.505
1.6169 E +07 0.33382

To simplify and standardize the nomenclature in the graphs that display results in this section, we have chosen to
use the abbreviations Cauchy-Log, Eng - Eng and 2PK-GL, which correspond to Cauchy stress and logarithmic strain (and
strain rate), engineering stress and strain (and strain rate) and Second Piola-Kirchhoff stress and Green-Lagrange strain
(and strain rate) material laws, respectively. In addition, to make it easier to compare the behavior of the different stress
measures over time, they were all converted to the Cauchy stress using Eq. (19) to (20). Viscous strain rate measures
were all converted to logarithmic viscous strain rates, using Eq. (97).

Finally, all the algorithms used here have been validated with the results presented by Abdelrahman and El-Shafei
(2021) for small strains. The results obtained for both small and large strains were consistent with those expected.

8.1 Two-bar symmetric structure

The first problem consists of the classical two-bar truss subjected to a vertical load (Figure 13). The simulation time
is divided into two parts: for 0 < t < 0.2s, the timesteps length is At = 10™*s and for 0.2s < t < 1.0s, At = 8 x 107 °s.
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Figure 13: (a) Two-dimensional truss structure: initial geometry and (b) load history.

8.1.1 Two viscoelastic bars

Figure 14 presents the vertical displacement history of node 2 when both bars are viscoelastic, using the properties
of Table 2. Comparing the plots obtained for each of the linear relationships, it is noticeable that after the snap-through,
the behavior for the three models is similar, although displaced with respect to time (Figs.14(a) and (b)). On the other
hand, the oscillatory motion of the 2PK-GL material model appears first in relation to the others, followed by the Eng-
Eng and the Cauchy-Log material models. As time evolves, the displacement values get closer, coinciding at 0.33s. From
then on, the Cauchy-Log model presents a smaller displacement in relation to the others, tending to 0.33 m in the vertical
direction. The 2PK-GL model is less rigid, tending to a displacement of 0.32 m (Fig.14(c)).

Figure 15 shows that the Cauchy stress curves for the different constitutive laws present a behavior similar to the
displacements in the sense that the curves are shifted with respect to time. The snap-through happens first for the 2PK-GL
material model, which shows the lowest Cauchy stress value in compression, followed by the Eng-Eng material model and
the Cauchy-Log material model.

Finally, Figure 16 presents the comparison between total and viscous logarithmic strain rates over time. Note that the
viscous contribution is much smaller than the elastic one for all three material laws. Furthermore, while the rate of total
deformation is nearly symmetric in traction and compression, this is not the case for the viscous strain rate, where the rate
of traction is much higher than that of compression. Over time, the total strain rate and the viscous strain rate tend to 0.
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Constilutive laws: Constitutive laws: Conslitutive laws:
-0.05 — Cauchy - Lag 005 e - — Cauchy - Log N\ — Cauchy - Log
—  Eng-Eng X e —  Eng-Eng R — Eng-Eng
£ -0l - 2PK - GL z B 2PK - GL T 0.28 S 2PK - GL
£ £ 01 ‘ 1 £ S
5 5 -0.15 ft £ -0.29 -
§ o2 g | § =~
o o 8 —r
2 2 -02 2 iy 8
5 028 a] HMWM B a -
03 025 (ISR — o
-0.35 -
¢ 0.2 0.4 0.6 0.8 1 0.18 0.18 0.2 0.22 0.24 03 0.35 0.4 0.45
Time (s} Time (s) Time {(s)
(a) (b) (c)

Figure 14: 2D truss: displacement history of node 2 for both bars viscoelastic. (a) Whole time range evaluated (from 0 to 1 seconds),
(b) detail in the neighborhood of the snap-throughs and (c) the moment when curves change position.
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Figure 15: 2D truss: (a) Cauchy stress history for both bars viscoelastic; (b) detail of the plot between 0.15s and 0.3s.
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Figure 16: 2D truss: (a) Total logarithmic strain rate and (b) viscous logarithmic strain rate histories of node 2 for both bars viscoelastic.

8.1.2 Two elastic bars

As mentioned in the introduction of this section, we performed a numerical exercise in which the viscous part of
the material was disregarded in the model described by Eq. (68). The displacements of node 2 are depicted in Fig. 17 and
the Cauchy stress in Fig. 18. The main difference between the curves is the amplitude of the displacements, with the one
corresponding to the Cauchy-Log model being larger, followed by the Eng - Eng model and the 2PK-GL model. The
opposite trend is observed in the stress amplitude, as Fig. 18 shows increasing amplitude and nominal values in the same
sequence of the material models.

[, 0 — 0~
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Figure 17: 2D truss: Displacement history of node 2 for both elastic bars with (a) Cauchy-Log, (b) Eng-Eng and (c) 2PK-GL material models.
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Figure 18: 2D truss: Cauchy stress history for both elements with (a) Cauchy-Log, (b) Eng-Eng and (c) 2PK-GL material models.

8.1.3 Two hyperelastic bars

We now consider both members composed of the hyperelastic material defined by the properties in Table 3. This
material model has no dissipation in the formulation, but the introduction of Rayleigh damping matrix, where € = 10M
causes both the displacement of node 2 and the element stresses to decrease considerably over time. Note that in Figure
19 it is not possible to identify the snap-through. This is because, given the material properties, the snap-through occurs
very quickly. For illustration, some intermediate configurations of the truss are shown for the undamped case. When
damping is considered, the positions are different.
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Figure 19: 2D truss:(a) Displacement and (b) stress history of node 2 for both bars hyperelastic (undamped and damped).

8.1.4 One bar viscoelastic and one bar hyperelastic

When the truss is composed of one viscoelastic and one hyperelastic members, node 2 moves in both directions
and two vertical peak amplitudes can be identified, as shown in Fig. 20.

In this example, the choice of the material law has a negligible influence on the results found for both, the
displacement, and the stress values over time. For this reason, we have chosen to display only the graphs that adopt the
Cauchy-Log constitutive relation.

el \m £

" L

" T e —
L

(a) (b)
Figure 20: 2D truss structure with hyperelastic and viscoelastic materials: (a) horizontal and (b) vertical displacements of node 2.

Figure 21 shows the displacement of node 2 in the x-y plane as time elapses. Figure 21(a) displays a sequence of
geometric configurations for the instants t = 0, t = 0.0068, t = 0.013, t = 0.7766 and t = 0.7786, where the path
followed by node 2 is shown in blue (show the node numbers in the figure). The initial position of the truss is depicted
in black. As time elapses, node 2 starts to move down and rightwards, producing traction in the viscoelastic bar and
compression in the hyperelastic bar, until a snap-through occurs in the instant t = 0.068s (this configuration is depicted
in purple). From then on, the strain energy stored in the bars is released, causing node 2 to move to the left of the
initial position. As the stiffness of the hyperelastic bar is extremely low compared to the viscoelastic one, node 2 tends
to stabilize oscillating with respect to a vertical line passing through node 1 (configurations depicted in red, orange
and green in the plot). Notice that in this region, after a while, the length of the viscoelastic bar remains practically
unchanged, and dissipation becomes negligible. Hence, the oscillatory motion does not vanish and the length of the
hyperelastic bar continues to change along time. Figure 21(b) shows the same curve as above, now in 3 dimensions,
but taking time into account.

Due to the aforementioned behavior, the dissipation effect fades out rapidly and the choice of the viscoelastic
material law does not influence much the result. Figure 22 shows that the magnitude of the stress suffered by the
viscoelastic element is much higher than that of the hyperelastic one.
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Figure 21: 2D truss structure with hyperelastic and viscoelastic materials: relationship between X and Y displacements
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Figure 22: 2D truss: Cauchy stress history (a) Viscoelastic element (b) Hyperelastic element.

8.2 Three-dimensional star truss

The second problem consists of a 3D truss whose central node is subjected to a vertically applied force. As in the

previous example, the simulation time is divided into two

parts: for 0 <t < 0.2 we consider the timesteps length

At = 107%*sand for 0.2 <t < 1.0, At = 8 X 1055 (see Figure 23).

F [kN]
—25,0
F(t) hy = 230.9mm
h, = 120.4mm
Ay = 20mm?

(a)

0,2 1,0 t[s]

(c)

Figure 23: Three-dimensional star truss structure: initial geometry and corresponding (a) nodes and elements, (b) front and
perspective views and (c) load history.
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8.2.1 All bars viscoelastic

Figure 24(a) shows the vertical displacement of node 7 for the three Hooke-like material laws when all the bars
are viscoelastic (Table 2). In the beginning, all the curves follow a similar pattern and present a lag according to the
material law considered, as displayed in the detail given in Fig. 24(b). As time goes by, the models start to distance
from each other. The material model 2PK-GL presents the highest stiffness, while the Cauchy-Log material model is
the less stiff. The star-shaped truss has two snap-throughs that occur very close to each other, which are highlighted
in Fig. 24 by a diamond and a square marker, respectively. The first snap-through occurs at t = 0.0044s, followed by
the second one at t = 0.0047s. From then on, the structure starts to oscillate, with the amplitude of the movement
decreasing over time.
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Figure 24: 3D truss: (a) vertical displacements of node 7 for all bars viscoelastic; (b) detail of the plot in the oscillatory region.

Figure 25 shows some configurations and the time at which they occur when the Cauchy-Log material model governs
the behavior of the bars.
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Figure 25: 3D truss: some configurations for the viscoelastic case (Cauchy-Log material model).

Owing to their different positions in the truss layout, elements 1, 10 and 23 are representative of the whole
structure. Figures 26 to 28 display the Cauchy stress for such elements, where we notice the difference between the
compression and tension peaks of the different stress measures. Again, all the curves show a similar behavior, although
shifted, with a small difference in amplitude according to the material law considered, which is evinced by Figures 26(b)
to 28(b). Cauchy stress in elements 1 and 23 increase until t = 0.2s, when it becomes constant. This instant coincides
with the moment when the load applied to the truss becomes constant as well.
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Figure 26: 3D truss: (a) Cauchy stress history for element 1. All bars viscoelastic; (b) detail of the plot in the oscillatory region.
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Figure 27: 3D truss: (a) Cauchy stress history for element 10. All bars viscoelastic; (b) detail of the plot in the oscillatory region.
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Figure 28: 3D truss: (a) Cauchy stress history for element 23. All bars viscoelastic; (b) detail of the plot in the oscillatory region.

The viscous strain rate values (Figures 29 to 31) are much lower than those of the total strain rates, indicating the
predominance of elastic behavior during the process. Over time, up to t = 0.2s, they tend to a value close to 1.0MPa/s,
while the total strain rate is already zero, i.e., they start to act strongly in damping the oscillations. From the instant t =
0.2s - which corresponds to the instant when the applied load becomes constant - the viscous rates decrease to zero.
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Figure 29: 3D truss: (a) total and (b) viscous logarithmic strain rates for Cauchy-Log material model.

400

—_
o

l—- Element 1: Eng - Eng ‘ |— Element 1: Eng - Eng ‘

200

200 | |

Total logarithmic strain rate (Pa/s)
o
Total logarithmic strain rate (Pa/s)

-400 L ‘ : ‘ -4 : ‘ : :
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
Time(s) Time(s)

(a) (b)

Figure 30: 3D truss: (a) total and (b) viscous logarithmic strain rates for Eng-Eng material model.

400 (¢ 1 10
Q T — Element 1:2PK - GL |
g I
D L oty
E 200 QRU;
£ ot |
w
o 0 - S
: : =
.“E 8 B S S i SN T O —
] 5}
5200 | 2
©
o
'_
-400 : : , ] ‘ | | |
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time(s) Time(s)

(a) (b)

Figure 31: 3D truss: (a) total and (b) viscous logarithmic strain rate for 2PK-GL material model.

8.2.2 All bars hyperelastic

Considering the entire 3D truss composed of hyperelastic bars (Table 3), a drastic difference is observed for the
vertical displacement of node 7, as expected. Figure 32(a) shows such displacement for an undamped structure and the
same displacement but with the introduction of a damping matrix C = 10M. Figure 32(b) shows a detail of the plot in
the initial 0.3 seconds, where damping clearly reduces considerably the amplitude of the oscillations. Also, Figure 33
shows the evolution of the Cauchy stress in elements 1, 10 and 23 for the hyperelastic model with and without damping.
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Notice that while elements 1 and 23 only suffer traction, element 10 suffers traction and compression, as it is not
so demanded due to its position in the truss.
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Figure 32: 3D truss: (a) vertical displacements of node 7 for all bars hyperelastic; (b) detail of the plot in the first 0.3 seconds.
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Figure 33: 3D truss: Stress history for element (a) 1, (b) 10 and (c) 23 with and without structural damping. All bars hyperelastic.

8.2.3 Mixed viscoelastic and hyperelastic bars

We now consider elements 1, 5, 8, 18, 19 e 22 being hyperelastic and the remaining ones viscoelastic. Once again,
there is no significant difference between the displacement history of node 7 for different material models in the
viscoelastic laws. However, in the presence of bars made of different materials distributed non symmetrically, horizontal
displacements occur in directions X and Y, as shown in Figure 34. The initial position is marked with a red diamond while
the final position is marked with a red square.
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Figure 34: 3D truss: Relationship between the displacements of node 7 in the (a) X and Z, (b) Y and Z and (c) X and Y directions.
Mixed viscoelastic and hyperelastic bars.

Latin American Journal of Solids and Structures, 2024, 21(1), e521 27/31



Transient analysis of trusses considering nonlinear elastic and viscoelastic material models Débora Cristina Brandt et al.

Figures 35 and 36 present the Cauchy stresses for the viscoelastic element 4 and for the hyperelastic element 1
respectively, which geometrically occupy similar positions in the truss. Once again, the choice of the constitutive model
for the viscoelastic material does not influence the results. While Figures 35(a) and 36(a) show the general behavior of
the Cauchy stress curves along time, Figs. 35(b) and 36(b) detail the corresponding plots from the beginning up to 0.1
seconds. It is noticeable that both frequency and amplitude of the stress oscillations are considerably higher for the
viscoelastic bars compared to the hyperelastic ones. Furthermore, the difference in stiffness between the two materials
is evident, since the stress values acting on the viscoelastic bar are much higher than on the hyperelastic bar. Figure 37
shows the geometric behavior of the 3D truss over time.
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Figure 35: Mixed 3D truss: Cauchy stress for viscoelastic element 4; (b) detail of the plot in the first 0.1 seconds.

30 | 8

25t 61
F 20t 4T NJJ\
o \
= b=
é 15 9_3) 2
% »
=10 e
.
Q [&3
- >
T @
D 5 & O -2F

0 Element 1: “ T Element 1:

—— Cauchy-Log —— Cauchy-Log
5 I 1 | 6 | ‘
0 0.2 0.4 0.6 0.8 1 0 0.02 0.04 0.06 0.08
Time (s) Time (s)
(a) (b)

Figure 36: Mixed 3D truss: (a) Cauchy stress for hyperelastic element 1; (b) detail of the plot in the first 0.1 seconds.
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Figure 37: 3D truss structure with hyperelastic and viscoelastic materials: behavior over time.

9 CONCLUDING REMARKS

In this paper, we present a finite element formulation for trusses made of different elastic and viscoelastic materials
in transient nonlinear analyses. In the formulation, we emphasize the fact that the energy-conjugate pair considered in
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the VWP need not necessarily be the same as the stress-strain measure related by the constitutive equation and that the
choice of the conjugate pair does not affect the results, regardless of the choice of the material law used. In this sense,
we study different material behaviors by linearly relating different stress and strain measures, which we consider
admissible if the compressive and tractive strains are moderate. We extend the derived geometric and material nonlinear
formulation to account for rate effects using a generalized Kelvin rheological model. The numerical integration of the
viscous strain rate is given by explicit uncoupled equations and is simpler than other methods found in the literature. We
also present the Ogden hyperelastic model in the framework of the proposed formulation with dissipation introduced
using a Rayleigh matrix proportional only to the mass. Transient problems are solved using the mean acceleration
method. Two numerical examples involving different arrangements of trusses with members made of different materials
are studied. The results obtained for the numerical problems studied are highly dependent on the properties of the
materials adopted for the bars and the material law chosen to describe them.

It is noteworthy that the usual practice of adopting the same stress-strain pair as a work-conjugate measure and for
the material behavior is not always the most appropriate approach, since the former is arbitrary, and the latter should
match experimental results. Furthermore, in the case of finite strains, the constitutive model does not always provide a
physically realistic result. In the compressive case, the only material law that has a coherent behavior for both elastic and
viscoelastic materials is the linear relationship between Cauchy stress and logarithmic strain (and strain rate).

The article is focused on bar elements as an attempt to observe the implications of different choices of nonlinear
material models in a simple finite element setting. Interesting insights are obtained which can be useful for extending
the analyses to continuum finite elements. For instance, Figs. 14(a) and (c) of example 8.1.1 show that in the beginning
of the phenomenon, the Cauchy-Log and the 2PK-GL material models yield the stiffest and the less stiff structures,
respectively. However, this condition reverted completely along time, which is not directly intuitive. In example 8.2.1,
another interesting issue can be remarked: according to the Hooke-like material model adopted, the viscous strain rate
changes its qualitative pattern of evolution. Figures 29(b), 30(b) and 31(b) show increasing, constant and decreasing
values for the Cauchy-Log, Eng-Eng and 2PK-GL material models, respectively. The relative simplicity of the bar element
formulation, which does not demand complexities associated to element technology, allows focusing on structural
effects of particular choices for the material model.
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