
790	
  

 

Abstract 
An axial follower force acting on the free end of a beam-column is 
known to remain tangential to its elastica at that point. Elastic 
beam-columns exhibit infinitely high buckling resistance to static 
compressive follower load. Loss of their dynamic stability is known 
to occur at critical follower loads, by flutter characterized by 
vanishing lateral displacement and infinitely high natural 
frequency. Classical theory deals with physically linear 
nonconservative beam-columns. Physical nonlinearity exhibited by 
concrete beam-columns under service loads is caused by the 
closing and reopening of the extant transverse cracks. In this 
Paper, analytical expressions for the lateral displacement and 
lateral stiffness of such concrete beam-columns are derived. Using 
these expressions, the stability of physically nonlinear elastic 
flanged concrete beam-columns under the action of a follower 
compressive axial force and a lateral force is investigated. The 
significance of the analytical approach and the theoretical 
predictions is discussed. 
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1 INTRODUCTION 

Like dead loads, many types of live or imposed loads acting on the structures are gravitational 
forces. During the deformation of the structures, the points of action of such loads do not shift and 
their directions also remain same. The stiffness matrix of structures under such loads is symmetric. 
The energy is unique path-independent reversible additive function of the state variables and is 
conserved during closed load cycles. Such conservative forces are also called gradient or potential 
forces because they can be derived as gradients of a potential in the space of state variables. Energy 
theorems are valid for these conservative or self-adjoint structures.  

In contrast, the fluid-structure interactions impose some nonconservative forces on the 
structures. Either the point of action of these forces shifts on the structures during their 
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deformation or motion, or their direction of action does not remain invariant. For example, the line 
of action of a follower force remains parallel to the deformed centroidal axis of a beam-column. 
Viscous fluids flowing past a surface of a deformable structure impose a tangential drag force on it. 
Examples of follower forces include a fluid-conveying cantilevered pipe, rocket thrust caused by 
solid propellant fuel, powered jets, rockets or missiles, etc. Aeroplane wing flutter caused by 
aeroelastic follower forces is well known in aeronautical engineering (Bazant and Cedolin, 2010; 
Bolotin, 1964; Chen, 1976; Thomsen, 2003; Leipholz, 1978; Sugiyama, et al, 1999). Follower forces 
are also encountered, though as yet not recognized as such, even in the machine foundations and 
structures supporting rotating or reciprocating machinery (Srinivasulu and Vaidyanathan, 1976). A 
cantilever type beam-column supporting a rotating machine at the top end can also be considered 
to be under the action of pulsating tangential and transverse follower forces. As a special case, two 
motors with opposite direction of motion result only in sinusoidal tangential follower force. Long-
span cable-stayed and suspension bridges are shown to be vulnerable to flutter instability at critical 
wind velocities (Kreis and Andre, 2005). The extensive literature available till that time on the 
theoretical and experimental studies on the dynamic stability of columns subjected to follower 
forces has been evaluated (Langthjem and Sugiyama, 2000).    

The stiffness matrix of the nonconservative structures being asymmetric, the work done by these 
forces is not a unique function of the state variables. Instead, it is path-dependent resulting in 
energy deficit or excess in the closed load cycles. Invalidity of the principle of conservation of energy 
implies the invalidity of energy theorems for structural analysis. To be specific, theorems of 
Maxwell, Betti and Castigliano as well as principle of minimum potential energy are invalid. Euler’s 
method of buckling of elastic structures is equivalent to the energy-based methods. Hence, it is valid 
only for investigating the stability of conservative structures. For example, the critical buckling load 
of a column under a follower force is predicted by the Euler method to be infinitely high. This 
implies that column under a follower force is always stable. However, Euler method can only 
determine states of static equilibrium adjacent to the given equilibrium state. For determining the 
alternative states of dynamic equilibrium, the methods of dynamic stability analysis have to be 
employed. Indeed, the elastic columns have been observed to lose their dynamic stability by flutter. 
Such stability analysis has proved to be useful in the design of many types of structures like 
aeroplanes (Bazant and Cedolin, 2010; Bolotin, 1964; Chen, 1976; Thomsen, 2003; Leipholz, 1976; 
Sugiyama, et al, 1999; Langthjem and Sugiyama, 2000). Interestingly, even in the presence of 
abundant literature dealing with the stability of structures under follower forces published in the 
past few decades, the admissibility of the concept of static follower force has recently been 
questioned on operational grounds (Elishakoff, 2005; Sugiyama, et al, 1999).         

With increase in applied loads, concrete structures exhibit cracking of concrete, yielding and 
debonding of reinforcement, crushing of concrete, etc., prior to failure. Being design-oriented, the 
popular methods of concrete structural analysis attempt to incorporate the effect of all the above 
factors (Chopra, 2007). Such is also the case with stability analysis of concrete columns and beam-
columns subjected to conservative loads. To the best of Authors’ knowledge, stability of 
nonconservative concrete structures has not yet been analysed. Exceptionally, Aristizabal-Ochoa 
has emphasized the significance of investigating the behaviour of beam-column connections 
undergoing finite rotations under the action of tangential follower forces (Aristizabal-Ochoa, 2004, 
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2005). Need has been felt for carrying out more accurate analysis of concrete structures including 
the effects of material and geometric nonlinearity (Nogueira et al, 2013). Stiffness degradation 
caused by fire (Caldas et al, 2014) can render such concrete structures vulnerable to static and 
dynamic instabilities. Concrete structures are cracked in flexural tension even under service loads. 
Fully cracked concrete structures undergoing small deformations exhibit physically nonlinear elastic 
behaviour. Conventional stability analysis generally deals with physically linear structures. Static 
and dynamic stability of fully cracked concrete columns and beam-columns subjected to 
conservative loads has been earlier investigated by the Authors. Two values of the critical axial and 
lateral loads are identified for the concrete beam-columns in the form of cantilever. Concrete beam-
columns are predicted to fail by brittle mode at peak axial loads and small lateral displacements. 
For constant lateral load, quite complex axial load-lateral displacement behaviour is exhibited. For 
lesser lateral loads, two equilibrium displacements are possible, out of which the one with lesser 
displacement is dynamically stable while the other is dynamically unstable. In this latter case, the 
loss of dynamic stability occurs by divergence. At two critical axial loads, the loss of stability occurs 
by vanishing natural frequency. The load space and the phase plane of initial conditions are 
partitioned into stable and unstable regions (Sharma et al. 2010; 2012a; 2012b).   

The objective of the present Paper is to investigate the elastic stability of such beam-columns 
under the action of a conservative lateral force and a tangential follower force. Expressions for the 
lateral displacement and lateral stiffness are derived and the nonlinear differential equation of 
motion is formulated. The theoretical predictions using the analytical-computational methodology 
are discussed.     

 
2 THEORETICAL FORMULATION 

Consider a fully cracked flanged concrete beam-column in the form of a vertical cantilever under 
the action of an tangential follower force 𝑃 and a conservative lateral force 𝑄. The cross section has 
equal reinforced flanges with concentrated areas of concrete and reinforcement as shown in Fig. 1. 
For some load combinations, the upper segment BC of the beam-column can have existing cracks in 
the closed state, while the tension flange of the lower segment AC has cracks in the open state. 
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(a) Loading details                                                     (b) Cross section details 

 
Figure 1   Flanged beam-column model 

 
Here, these upper ‘uncracked’ and lower ‘cracked’ segments and  their section properties, like 

moments of inertia and the location of the centroids, are denoted by subscripts 1 and 2 respectively.   
As in the earlier derivations (Bolotin, 1964 ; Bazant and Cedolin, 2010), the tangential follower 
force P is resolved into vertical and horizontal  components. Assuming the slope 𝜃 of the elastica at 
the free end to be small, these components turn out to be 𝑃 and (−𝑃𝜃) respectively. 

In this Paper, the moments of inertia of the uncracked as well as cracked sections are determined 
in reference to their respective elastic centroids. Also, the same centroidal axes play the role of the 
reference axes for measuring the eccentricity of vertical load component for determining the flexural 
moment introduced by it. The flexural moment at any section in the uncracked segment BC yields 
the following second order differential equation: 

 

−𝐸𝐼!𝑦"+ 𝑃(𝑤 − 𝑦)+ (𝑄 − 𝑃𝜃)(𝐿 − 𝑥) = 0 (1) 

 
Or equivalently, 
 

y"− k!!(w− y)− (τ!! − k!!θ)(L− x) = 0   (2a) 
 

y"′+ k!!y′+ (τ!! − k!!θ) = 0 (2b) 
  

y""+k!!y" = 0       (2c) 
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Here, the prime denotes differentiation with respect to space coordinate x. Also, 𝑘!! =
!
!!!

 , 

𝑘!! =
!
!!!

 , 𝜏!! =
!
!!!

, 𝜏!! =
!
!!!

 . Similarly, 𝑦(𝐿) = 𝑤 and 𝑦’(𝐿) = 𝜃. The general solution for the abo-

ve differential equation (2c) is of the form: 
 

y x = C! + C!x+ C! cos k! x+ C! sin k! x (3) 

 
Using equations (2), the boundary conditions at the free end (𝑦" 𝐿 = 0 and   𝑦"′ 𝐿 = −𝜏!!) yields 
the following expressions: 

 
C! = − !

!!!
sin k!L                      C! = − !

!!!
cos k!L (4) 

 
Similarly, the differential equation of flexural equilibrium in the cracked segment AC is stated as   
 

−EI!y"+ P(w− y− a)+ (Q− Pθ)(L− x) = 0 (5) 
 
Or equivalently, 
 

y"− k!!(w− y− a)− (τ!! − k!!θ)(L− x) = 0     (6a) 
 

y"′+ k!!y′+ (τ!! − k!!θ) = 0     (6b) 
 

y""+k!!y" = 0 (6c) 
 
The general solution is obtained as        
 

y x = D! + D!x+ D! cos k! x+ D! sin k! x     (7) 
 

The boundary conditions at the fixed end (𝑦 0 = 0  𝑎𝑛𝑑  𝑦! 0 = 0) yields the following expres-
sions  

 
D! = −D!                                                      D! = −k!D! (8) 

 
The following two more equations are obtained by using continuity conditions for displacement 
and slope at C (x=g): 

 
(y!)!" = (y!)!"          (y!′)!" = (y!′)!" (9) 
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Elementary structural mechanics requires that, for nil strain in the ‘tension’ flange, the moment 
at C in CB and CA segments must amount to 𝑃𝑟! and 𝑃𝑟! respectively. In view of this, equations 
(2a) and (6a) respectively yield the following expressions: 
 

EI!(y!")!" = P w− y! + Q− Pθ L− g = Pr!   (10a) 
 

EI!(y!")!" = P w− y! − a + Q− Pθ L− g = Pr! (10b) 
 

!!
!!
= !!

!!
= B                                            (y!")!" = (y!")!" (11) 

 
Similarly, the equations (2b) and (6b) respectively yield the following expressions 
 

(y!"′)!" = −k!!(y!′)!" − τ!! − k!!θ = −
P(y!′)!" + (Q− Pθ)

EI!
 (12a) 

 
(y!"′)!" = −k!!(y!′)!" − τ!! − k!!θ = − !(!!!)!"!(!!!!)

!!!
     (12b) 

 
One obtains the equality 
 

(y!"′)!" = B(y!"′)!"   (13) 
 

Using equations (4), (8), (9), (11) and (13), the unknown coefficients are determined as  
C! =

!
!!!

X!,            C! =
!
!
X!,               C! = − !

!!!
sin k!L,              C! =

!
!!!

cos k!L  

X! = B cos k!g + 1 − B sin k! L − g + B   sin k!g   cos k! L − g  
X! = cos k!g cos k! L − g − B   sin k!g   sin k! L − g  
X! = sin k!g cos k! L − g + B   cos k!g   sin k! L − g  

 
D! = −D! =

!
!!!

X!  ,                    D! = − !
!
X!                  D! =

!
!!!

X! (14) 

 
Thus, the expression for the lateral displacement 𝑤, rotation 𝜃 and the lateral stiffness 𝐾 are 

determined as follows: 
 

w = !
!!!

(X! − k!L  X!)                                          θ =
!
!
(1− X!)                            K =

!!!
(!!!!!!  !!)

 (15) 

 
Another useful expression in terms of loads is obtained from equation (10a) for determining the 

length ‘𝑔’ of the cracked segment AC as  
 

Q sin k! L− g = Pk!r! (16) 
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P! =
!! !"# !!!
!!!!

     (17) 

 
When the cracks at all the sections are closed, the expressions for the lateral displacement and 

lateral stiffness for such uncracked concrete beam-columns are obtained as 
 

w =
Q
k!P

(sin k!L− k!L cos k!L) (18) 

 
K = !

!
= !!!

!!!!! !"#!!!
     (19) 

 
These expressions derived for physically linear beam-columns are identical to the well-known ex-
pressions for the physically linear columns under the action of the axial follower force (Bolotin, 
1963; Bazant and Cedolin, 2010). Clearly, the lateral stiffness of the physical linear beam-columns 
is independent of the magnitude of the lateral force. The flutter loads for the fully uncracked 
beam-columns can be obtained using the conventional theory as 20.19 !!!

!!
, while for the fully un-

cracked state, the corresponding flutter loads are 𝐵  times lower. 
For this SDOF nonlinear dynamical system, the stiffness and damping coefficients are vibra-

tion amplitude-dependent. The instantaneous values of the natural frequency 𝜔! and the dam-
ping coefficient 𝐶 depend upon the instantaneous stiffness coefficient 𝐾 and the constant mass 𝑀 
lumped at the free end as 

 

ω! =
!
!
                                    C = 2ξMω! (20) 

 
where 𝜉 is the damping ratio. 

Thus, the second order nonlinear differential equation of motion of the SDOF partly-cracked 
beam-column subjected to forcing function 𝐹 𝑡  is stated as 

 
Mw + C w w + K w w = F t    (21) 

 
The above analysis is intended for cracked concrete flanged beam-columns is also valid for flanged 
beam-columns composed of bimodular solids. Concrete or ferrocement with distributed reinforce-
ment can be modelled as bimodular solids. Let the bimodular ratio 𝑐 be defined as !!

!!
 where 

𝐸!  and 𝐸! denote the values of Young’s moduli of elasticity in tension and compression respecti-
vely. This bimodular ratio 𝑐 is related to the parameter 𝐵 as 𝐵 1 + 𝑐 = 2𝑐.  
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3 STABILITY ANALYSIS 

The theoretical predictions presented below pertain to a particular concrete beam-column with 
following numerical details: 
 

L = 20m        d = 4.45m       B = 0.18006        M = 450,000  kg         ξ = 0.03 
 
The results apply to a bimodular ratio of 0.099. The adopted computational algorithm is based 

upon average acceleration Newmark-Beta method. When only the lateral force 𝑄  is acting, the 
concrete beam-columns are cracked all through their length. Application of an axial follower force 
𝑃 results in the closure of extant cracks in the upper segment. The lateral force remaining cons-
tant, the typical axial-load lateral displacement (𝑃 − 𝑤) and axial load-end rotation (𝑃 − 𝜃) cur-
ves are shown in Fig. 2.  With increase in axial force, the lateral displacement initially decreases. 
With further increase in axial load, quite complex response is predicted. Segment AB of the 
(𝑃 − 𝑤) curve is associated with an increase in axial load upto 𝑃!"# and a decrease in the length 
‘𝑔’ of the cracked segment of the concrete  

 

 
 

Figure 2a   Typical P-w curve for constant lateral force 
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Figure 2b   Typical P-θ curve for constant lateral force 
 

beam-column from its length 𝐿 to a certain value. To be specific, cracks at all the sections do not 
close up at 𝑃!"#. Further decrease in ‘𝑔’ along segment BC of (𝑃 − 𝑤) curve is accompanied by a 
decrease in axial load from 𝑃!"# to 𝑃!. Here, 𝑃! signifies the magnitude of axial load corresponding 
to vanishing ‘𝑔’as per Eq. (17). The segment CD of the 𝑃 − 𝑤   
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Figure 3   Variation of 𝑃! and 𝑃!"# with lateral force 
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Figure 4   Variation of 𝑃! and 𝑃!"# with lateral displacement 
 

curve pertains to uncracked beam-columns.  
The variation of end rotation with 𝑃 resembles that of the lateral displacement. The variation 

of 𝑃!"# and 𝑃! with 𝑄 is shown in Fig.3. Equation (17) gives an expression for 𝑃! in terms of 𝑄, 
while 𝑃!"# has been determined by numerical computations. It can be observed that 𝑃!"# exists 
only for lateral load exceeding 𝑄!. For this particular case the magnitude of 𝑄! turns out to be 
0.437  𝑥  10! N with the corresponding value of 𝑃! as 2.352𝑥10! N. Systematically varying the 
magnitude of the lateral force, the variation of 𝑃!"# and 𝑃! with their corresponding lateral dis-
placements is plotted in Fig.4. With increase in 𝑄, both 𝑃!"# and 𝑃! are predicted to increase. 
Similarly, 𝑃! increases monotonically with 𝑤!. The displacement 𝑤! corresponding to the peak 
load 𝑃!"# first increases, but reaches a maximum value at 𝑄 = 1.34𝑥  10!  𝑁 before decreasing with 
further increase in 𝑄. The lateral displacement vanishes when 𝑄 attains the magnitude 𝑄! given 
by 3.014    10!𝑁. For higher values of 𝑄 the lateral displacements can be negative as discussed 
later.  

From the enlarged view of the 𝑃 − 𝑤 curve in Fig.2 presented in Fig.5, it can observed that for 
𝑃 < 𝑃! and for 𝑃 > 𝑃!"#, the concrete beam-columns are predicted to exhibit unique response. 
However, for 𝑃! ≤ 𝑃 ≤ 𝑃!"#, three equilibrium states with different lateral displacements are pos-
sible. Corresponding to the segments AB, BC and CD of the 𝑃 − 𝑤 curve discussed in Fig.2 abo-
ve, these three displacements are denoted as 𝑤!, 𝑤! and 𝑤! respectively. For a particular load set 
(𝑃 = 6.25𝑥  10!𝑁,𝑄 = 2𝑥  10!  𝑁) the above three equilibrium displacements turn out to be 3793 
mm, 5433.5 mm and 6646.7 mm respectively. Further, the dynamic stability of these three alter-
native equilibrium states is studied. This is achieved by analysing the phase plane representations 
of the dynamic response of concrete beam-columns taking the above equilibrium displacements as 
the initial displacements in different cases. In all these investigations, vanishing initial velocity  
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Figure 5   Enlarged view of 𝑃 − 𝑤 curve in Figure 2 

 

             
Figure 6   Phase plots for different equilibrium displacements as initial displacements 

 
is assumed. Phase plane plots shown in Fig.6 reveal that, irrespective of the particular initial dis-
placement for each case, the lateral displacement asymptotically attains the same value 𝑤!. It can 

2000 3000 4000 5000 6000 7000 8000 9000

5

5.5

6

6.5

7

7.5

8

x 109

w (mm)

P 
(N

)

P = 6.25x109 N

Q = 2x109 N

                         w1 
                     (Unstable)

w3
(Ustable)

Uncracked

Cracked

w1=3793mm
w2=5433.5mm
w3=6646.7mm

                         w2 
                     (Stable)

Pmax

Pc

4 4.5 5 5.5 6 6.5 7

0

10

20

w (m)

v 
(m

/s)

5.433 5.4331 5.4332 5.4333 5.4334 5.4335 5.4336
-5

0

5 x 10-3

w (m)

v 
(m

/s)

5 5.5 6 6.5 7
-20

-10

0

10

w (m)

v 
(m

/s)

P = 6.25x109 N
Q = 2x109 N

w(0)=3.793m=w1
v(0)=0
t=100s

w(0)=5.433m=w2
v(0)=0
t=100s

w(0)=6.647m=w3
v(0)=0
t=100s

w2

w2

w2



G. S. Benipal et al. / Stability of concrete beam-columns under follower forces      801 

Latin American Journal of Solids and Structures 11 (2014) 790-809 
 

be observed that the trajectories originating from the other equilibrium displacements 𝑤! and 𝑤! 
diverge, i.e., are repelled away. It implies that the equilibrium states corresponding to displace-
ments 𝑤! and 𝑤! are dynamically unstable. Such a dynamic instability is called divergence. It has 
been verified, but not presented here, that the above conclusion deduced for a particular case is 
valid for other magnitudes of the axial and lateral loads as well.       

It is worth mentioning here that purely static structural response is a theoretical construct. In 
fact, under ‘static’ load variations, structures exhibit quasi-static behaviour. Real structures loca-
ted in the natural environment as well as the structural models in the laboratory are subjected to 
small perturbations. Obviously, the dynamically unstable equilibrium states are de facto inacces-
sible to measurement and the structures are observed to exhibit only dynamically stable ‘static’ 
response. In view of this argument, the 𝑃 − 𝑤 curve discussed above can be reinterpreted. Fig.7 
depicts the observed static response of a concrete beam-column subjected to a constant lateral 
force and a monotonically increasing axial follower force. Here, the observed 𝑃 − 𝑤 curve is iden-
tified as AcCBbD. As the axial load is increased upto 𝑃!, the segment Ac of the curve depicts the 
stable structural response. When the axial load slightly exceeds 𝑃!, a sudden increase cC in the 
lateral displacement is predicted. For 𝑃! < 𝑃 < 𝑃!"#, only the segment CB of the curve is rele-
vant. Another sudden increase Bb in lateral displacement occurs as the axial load crosses 𝑃!"#. 

 For 𝑃 > 𝑃!"#, the structure again exhibits unique mechanical response. Such also happens to 
be the case when the constant lateral force exceeds a value (3.0134𝑥  10! N). For lower magnitu-
des of constant lateral force, slightly different 𝑃 − 𝑤 curve is obtained. As shown in Fig.8, jump 
phenomenon in the form of sudden changes in the response at 𝑃! and 𝑃!"# are predicted in this 
case as well. Here, again the observed 𝑃 − 𝑤 curve is AcCBbD. However, in this case, there is a 
sudden decrease cC in larteral displacement occurs at 𝑃!. It can be observed from Fig. 2 that the 
sudden increase/decrease in the lateral displacement is accompanied by the sudden increa-
se/decrease in the rotation at the free end of the beam-column.  

 
 

Figure 7   Jump phenomenon 
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Fig.9 shows the 𝑃 − 𝑤 curves for the special case of the fully uncracked concrete beam-column 
subjected to different lateral forces. The magnitudes of the axial force corresponding to vanishing 
lateral displacements are denoted by 𝑃!!" < 𝑃!!" < 𝑃!!", etc. For fully uncracked beam-columns 
the values of 𝑃!!" and 𝑃!!" are respectively obtained as 20.036x109N and 60.189x109N. The co-
rresponding values of the follower forces for the  

 
 

Figure 8  Jump phenomenon  
 
fully cracked beam-column turn out to be B times the values for the uncracked beam-columns. 
These values of axial follower force are independent of the magnitude of the constant lateral for-
ce. In the classical theory of columns under the action of an axial follower force, vanishing lateral 
displacement is interpreted to imply infinitely high lateral stiffness and so infinitely high natural 
frequency. Such a dynamic instability is called flutter. For 𝑃 < 𝑃!!", the positive natural frequen-
cy implies dynamic stability of the system. When 𝑃!!" < 𝑃 < 𝑃!!", the lateral stiffness assumes 
negative values implying dynamic instability. This system again exhibits dynamically stable 
behaviour when axial load 𝑃 is in the range 𝑃!!" − 𝑃!!", and so on.  

To recapitulate, for 𝑃 < 𝑃!"#, the lateral displacement of partly cracked concrete beam-
columns do not vanish at lower magnitudes of the constant lateral force. When the lateral force 
exceeds a particular value 𝑄! = 3.014𝑥  10!  𝑁, displacement vanishes at two values 𝑃! and 𝑃! of 
the axial follower force. Fig.10 shows the P-w curve for a particular case when 𝑃! and 𝑃! are ob-
tained as 4.987𝑥  10! N and 9.888𝑥  10! N respectively. It can be observed that these values of the 
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flutter loads for the partly cracked concrete beam-columns lie between their corresponding values 
for the two limiting cases of fully uncracked and fully cracked concrete beam-columns discussed 
above. When the axial load is increased beyond 𝑃!"#, the lateral displacement also vanishes as 
and when the flutter loads (𝑃!, 𝑒𝑡𝑐.) for the fully uncracked concrete beam-columns are reached.       

   
 

Figure 9   Effect of Q on the P-w curve for the uncracked concrete beam-columns 
 

The corresponding variation of the lateral stiffness of concrete beam-columns with the axial fo-
llower force is plotted in Fig. 11.  Here, the flutter loads 𝑃! is the same as the lowest flutter load 
of the uncracked beam-columns.  For 𝑃 < 𝑃!, the stiffness increases with increase in the axial 
force. As the axial force reaches 𝑃!, the stiffness, as expected, attains infinitely high values. When 
axial force crosses 𝑃! or 𝑃!, the stiffness is expected to change discontinuously form infinitely high 
positive values to infinitely high negative values. Such indeed happens to be the case here as well. 
However, the stiffness of concrete beam-columns is predicted to vary in complex manner when the 
axial force varies in the range 𝑃! − 𝑃!.       
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Figure 10   P-w curves showing flutter loads (𝑄 > 𝑄!) 
 
An enlarged view of Fig. 11 around 𝑃! is presented in Fig.12. For proper interpretation of this 

plot, it must be remembered that the points 𝐷 and 𝐺 marked on the 𝐾 − 𝑃 curve correspond to 
axial forces 𝑃!"# and 𝑃! respectively. Thus, the flutter load 𝑃! lies within the range 𝑃! − 𝑃!"#. In 
this range, there are three values of stiffness corresponding to the three equilibrium lateral displa-
cements. As the axial force is increased from 𝑃! to 𝑃!"# along  
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Figure 11   Variation of lateral stiffness with axial force 

 
 

Figure 12   Enlarge view of Fig.10 (𝑃! − 𝑃!"#   range) 
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nitely high positive value to a certain positive finite value at 𝑃!. When axial force is increased 
along GH from 𝑃! to 𝑃!, the stiffness again increases to infinitely high positive value. Thus, con-
trary to expectations, as axial force increases across 𝑃!, the stiffness varies from infinitely high 
positive value to infinitely high negative value.  

Further, the dynamic stability of concrete beam-columns is investigated in reference to magni-
tude of the axial follower force relative to the flutter loads 𝑃!, 𝑃!, 𝑃!, etc. This is achieved by 
analysing their dynamic response on being perturbed from their equilibrium state. The forcing 
function 𝐹(𝑡) has been assumed to equal constant lateral force 𝑄.  When the axial force lies out-
side the range 𝑃! − 𝑃!"#, there is only one equilibrium state. However, within this range of axial 
force, there exist three equilibrium lateral displacements. The segments ABCD, DEFG and 
GHIJK of the K-P curve pertain respectively to the lateral displacements 𝑤!, 𝑤! and 𝑤!. 

For appreciating the following dynamic stability analysis, the relative magnitudes of follower 
loads for this particular case should be noted: 𝑃! < 𝑃! < 𝑃! < 𝑃!"# < 𝑃!. From the analysis of 
dynamic stability of equilibrium states, the following conclusions can be drawn: For 𝑃 < 𝑃!, the 
unique equilibrium state (𝑤 = 𝑤!) corresponds to the positive stiffness and hence is stable. This 
equilibrium state is rendered dynamically unstable because of negative lateral stiffness in the ran-
ge 𝑃! − 𝑃!. It has been discussed earlier that, of the three equilibrium displacements within the 
range 𝑃! − 𝑃!"#, only that corresponding to displacement 𝑤! is stable. Such happens to be the 
case here as well as in range 𝑃! − 𝑃! because of the corresponding positive stiffness. Negative 
stiffness in the range 𝑃! − 𝑃!"# even destabilizes this one otherwise stable equilibrium state.  It 
implies that in the ranges 𝑃! − 𝑃! and 𝑃! − 𝑃!"# of the tangential follower force, there are no dy-
namically stable equilibrium states. Of course, 𝑃!"# − 𝑃!, the unique equilibrium state (𝑤 = 𝑤!) 
continues to be stable. As expected, there exist other dynamically unstable and stable states of 
the uncracked beam-columns at higher follower loads.  It can be concluded that cracking lowers 
the magnitude of the flutter loads for the concrete beam-columns.  
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Figure 13   Partitioning of load-space into stable and unstable regions 
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Based upon the above results, the load space is shown to be partitioned into dynamically sta-
ble and unstable regions in Fig.13. Here, the variation of various flutter loads, 𝑃! and 𝑃!"# with 𝑄 
is plotted. While the flutter loads 𝑃!!" = 𝑃! for the uncracked structures remains constant, the 
flutter loads for the partly cracked structures vary with 𝑄 > 𝑄!. Specifically, the lower flutter 
load 𝑃! decreases with 𝑄 to asymptotically reach the flutter load 𝐵𝑃!!" for the fully cracked 
structures. The higher flutter load 𝑃! increases with 𝑄 while the flutter load 𝑃! equals that 𝑃!!" 
for the uncracked structure. For 𝑄 < 𝑄!, no flutter occurs for  𝑃 < 𝑃!. Based upon their vulnera-
bility to flutter instability, the ranges 𝑃! − 𝑃! and 𝑃! − 𝑃!"# of the follower force corresponds to 
dynamically unstable equilibrium states. In contrast, the ranges 𝑃! − 𝑃! as well as 𝑃!"# − 𝑃! re-
present dynamically stable behaviour. Within the range 𝑄! −   𝑄! of the lateral force, 𝑃!"# exceeds 
𝑃!. In this range, out of the three equilibrium states, only one 𝑤! is dynamically stable. As discus-
sed earlier, snap-through-like discontinuities in the 𝑃 − 𝑤 curves are predicted in this range as 
and when 𝑃 equals either 𝑃! or 𝑃!"#. Thus, based upon the vulnerability to divergence instability, 
in the load space bounded by 𝑃! < 𝑃 < 𝑃!"# and 𝑄!   < 𝑄 < 𝑄! is also dynamically unstable. It can 
be observed that for 𝑄 ≳ 𝑄!, 𝑃! and 𝑃!"# are below even the lowest flutter load 𝐵𝑃!!" for the 
fully cracked concrete beam-columns.     

        
4 DISCUSSION     

To recapitulate, the classical theory deals with physically linear beam-columns subjected to tan-
gential follower force only. In contrast, the present Paper deals with the physically nonlinear 
beam-columns subjected to lateral force in addition to the follower force. Concrete beam-columns 
cracked a priori at all the sections exhibit such physical nonlinearity. Beam-columns composed of 
bimodular solids with Young’s modulus of elasticity in tension being smaller than that in com-
pression constitute another example. Thus, in this Paper, the conventional theory of beam-
columns is extended by incorporating the effect of physical nonlinearity. In this respect, this Pa-
per can claim to constitute a definite significant contribution to structural stability theory.  
However, the hypothesis of small end rotations at the basis of the classical theories as well as the 
proposed theory does not seem to hold specifically at lower magnitudes of the follower force. 

The predicted behaviour of concrete beam-columns turns out to be quite interesting as discus-
sed below: 

Conventional beam-columns subjected to tangential follower force only are known to exhibit 
infinitely high resistance to static buckling. In contrast, when subjected to lateral forces exceeding 
𝑄!, concrete beam columns exhibit finite resistance to quasi-static follower force. The jump 
phenomenon resembles static instability called snap-through and occurs at follower forces lower 
than the lowest flutter load for the fully cracked beam-columns.         

When the concrete beam-columns are either uncracked or cracked all through their length, 
their axial load-lateral displacement curves are qualitatively similar to those of the conventional 
beam-columns. However, in the latter case, the magnitudes of the flutter loads are not affected by 
the magnitude of the lateral force, even through the P-w curves depend upon it. Generally, the 
concrete beam-columns are partly cracked. When 𝑄 < 𝑄!, even these physically nonlinear beam-
columns have the same flutter loads as the fully uncracked beam-columns. Otherwise, the two 
more values of the flutter loads are predicted. These values lie between the lowest values of the 
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flutter loads for fully uncracked and fully cracked concrete beam-columns. These flutter loads are 
in addition to those for the fully uncracked case. In other words, cracking reduces the magnitudes 
of the flutter loads for concrete beam-columns under sufficiently high lateral loads. From the de-
sign point of view, when the lateral force is lesser than 𝑄!, the lowest flutter load equals 𝑃!!" 
while, for higher lateral forces, it reduces to 𝐵𝑃!!". However, snap-through like jump phenomenon 
can occur even at lower loads for the lateral force in the range  𝑄! −   𝑄!.   

As discussed above, concrete beam-columns supporting machine foundations are subjected to 
sinusoidal tangential follower forces. The scope of the present Paper is restricted to constant fo-
llower forces. Also, the theoretical predictions have not yet been empirically validated. Typical 
qualitative predictions of the concrete beam-columns subjected to a tangential follower force and 
a lateral force are presented in this Paper. The theory of concrete beam-columns presented here 
has to be extended further and validated before it can be of any relevance to structural design.                                        
 

5 CONCLUSION     

In this Paper, motivated by cracked concrete beam-columns, the stability of physically nonlinear 
elastic beam-columns subjected to a tangential follower force and a conservative lateral force is 
investigated. Analytical expressions for the lateral displacement and stiffness are derived. For 
certain range of follower loads lesser than the lowest flutter load for the uncracked structures, the 
beam-columns are predicted to exhibit three equilibrium states out of which only one is dynamically 
stable. The loss of dynamic stability of the remaining two equilibrium states is of divergence type. 
Consequently, snap-through type behaviour of static instability is predicted under quasi-static 
increase of the follower axial force. Such instabilities are predicted to occur even below the lowest 
flutter load for the fully cracked concrete beam-columns. Quite complex flutter instability response 
is exhibited. For higher values of the lateral force, the flutter loads turn out to be lesser than those 
for the uncracked beam-columns. The load space is partitioned into flutter-based dynamically stable 
and unstable regions. The proposed theory is shown to be valid for bimodular beam-columns as 
well.    
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