
 ORIGINAL ARTICLE 

 

Received: December 07, 2023. In revised form: January 18, 2024. Accepted: January 24, 2024. Available online: January 26, 2024 
https://doi.org/10.1590/1679-78257962 

 
Latin American Journal of Solids and Structures. ISSN 1679-7825. Copyright © 2024. This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Latin American Journal of Solids and Structures, 2024, 21(2), e532  1/26 

Dynamic response analysis of layered saturated frozen soil foundation 
subjected to moving loads 

Huaiyuan Chena , Qiang Maa,b*  

aSchool of Civil Engineering and Water Resources, Qinghai University, Xining 810016, China Email: hy_chen2023@163.com, 
maqiang0104@163.com 
bQinghai Provincial Key Laboratory of Energy-saving Building Materials and Engineering Safety, Xining 810016, China Email:  
hy_chen2023@163.com, maqiang0104@163.com 

*Corresponding author 

https://doi.org/10.1590/1679-78257962 

Abstract 
Based on the theory of solid porous media with pores, the dynamic response of layered saturated frozen soil 
under uniform moving load is studied. Firstly, the governing equation of saturated frozen soil is established. 
Then, the Fourier integral transform is used to decouple the governing equation of saturated frozen soil, and 
the general solution of the potential function is obtained, and the corresponding force and displacement of 
each layer of saturated frozen soil are derived. Finally, using the transfer matrix method, combined with the 
continuous condition, the semi-analytical solution of the layered saturated frozen soil medium in the 
frequency domain under the surface permeable condition is derived. After verifying the accuracy of the 
solution by comparing the model degradation with the existing literature, the effects of soil shear modulus, 
load moving speed, temperature, contact parameter and frequency on the dynamic response are analyzed in 
detail. The results show that the order of soft and hard soil layers is of great significance to accurately evaluate 
the dynamic response of saturated frozen soil. 
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1 INTRODUCTION 

Frozen soil is prevalent across various regions worldwide, predominantly concentrated in Europe and northern Asia. 
With the rapid development of economy, many infrastructure projects such as bridges, highways and railways have been 
built, under construction and proposed in permafrost regions. With the continuous improvement of the basic 
transportation network, the vibration problem of frozen soil foundations caused by high-speed railway and automobile 
traffic is becoming more and more serious. Frozen soil changes the constitutive relationship and general mechanical 
properties of soil due to the presence of pore ice phase, making it different from unsaturated soil and saturated soil. 
Therefore, in order to ensure the stability and safety of the foundation in frozen soil area, it is urgent to study the dynamic 
response of frozen soil under moving load. 

In an early study of the dynamic response of foundations under moving loads, the site soil medium is often simplified 
as either an elastic or viscoelastic medium (Eason, 1965; Yang et al., 2003; Sheng et al., 2004; Beskou and 
Theodorakopoulos, 2011;). Due to the sedimentation of geology, the soil often presents layered characteristics. Following 
Thomson's pioneering (Thomson, 1950) use of the transfer matrix method (TMM) to address wave propagation in layered 
elastic media, many scholars have carried out theoretical research on the dynamic response of layered foundation (Li et al., 
2015; Dong et al., 2021; Fan et al., 2022). Considering the influence of liquid in soil on dynamic response, Biot (1956a, 1956b, 
1962) first simulated geotechnical materials as saturated media for research and proposed the wave equation of saturated 
media. Subsequently, more and more scholars have investigated the dynamic response of saturated ground under moving 
loads based on Biot's theory (Theodorakopoulos et al., 2004; Zhang et al., 2014b). Ai and Ren (2016) used the moving 
coordinate system to transform the dynamic problem of the moving load into a static problem, and used the analytical layer 
element method to study the plane strain response of the transversely isotropic saturated soil foundation surface with 
vertical moving load. Ba et al. (2017) used the stiffness matrix method to obtain the analytical solution of the harmonic load 
acting on the surface or interior of the two-dimensional foundation. Liu et al. (2022) studied the dynamic response of two-
dimensional saturated soil foundation with moving strip load by using Fourier series and dual variable and position method. 
In recent years, in order to make the model more practical, more and more scholars have extended the foundation dynamic 
response problem to three dimensions. Li et al. (2020) developed a more practical transversely isotropic foundation model, 
and obtained the analytical solution of the foundation under moving load or pore water stress by using Fourier integral 
transform and stiffness matrix method. Ai et al. (2021) and Yang and Jia (2023) simplified the vehicle load as a vertical 
rectangular moving load, studied the dynamic response of the porous elastic medium surface with a vertical rectangular 
moving load, and obtained the exact solution of the dynamic response of the porous elastic medium surface with a vertical 
rectangular moving load. 

However, the geotechnical medium in nature is partially saturated, that is, unsaturated soil, which consists of three 
phases and the influence of the presence of the pore gas phase on the dynamic response of the soil body cannot be 
disregarded (Steeb et al., 2014; Zhang et al., 2014a; Wang et al., 2015). Ye and Ai (2021) used the double Fourier 
transform to study the dynamic response of layered unsaturated soil under moving harmonic loads and compared it with 
the results of saturated porous elastic media. Tang et al., (2020) investigated the dynamic response of the coupled system 
of pavement and unsaturated soil foundation under traffic load. Ma et al. (2023a) explored the influence of surface soil 
softness and stiffness on the dynamic response of layered unsaturated foundations under moving loads using the transfer 
and reflection matrix method and found that the arrangement order of the soil layers had a notable impact on the surface 
displacement.  

By combing the above-mentioned foundation dynamic response work, we can find that the above-mentioned 
foundation dynamic response problems often simplify the site soil medium into single-phase elastic soil, saturated soil 
and unsaturated soil. However, in regions with high latitudes and high altitudes, the predominant soil type is frozen soil. 
The dynamic response of frozen soil differs significantly from that of unfrozen soil due to the presence of the ice phase. 
Leclaire (1994), Leclaire et al. (1998) ignored the interaction between pore ice and porous skeleton in saturated frozen 
soil, established the theory of wave propagation in frozen soil, namely the LCA model, and verified the rationality of the 
theory by experiments. Carcione and Seriani (2001), Carcione et al. (2000, 2003) modified the saturated frozen soil model 
proposed by Leclaire by further considering the coupling effect between soil particle skeleton and pore ice. At present, 
the research on saturated frozen soil is mostly focused on wave propagation (Jiang et al., 2023a, 2023b) and the dynamic 
response of piles (Li et al., 2019; Cao et al., 2019; Chen et al., 2023). The layered characteristics of foundation soil are not 
considered. Few literatures study the dynamic response of layered saturated frozen soil foundation under moving 
harmonic load based on the governing equation of saturated frozen soil. Therefore, it is undoubtedly of great theoretical 
and practical value to study the dynamic response of layered saturated frozen soil foundation for engineering 
construction in frozen soil area. 
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In this paper, the frozen soil medium is simplified as saturated frozen soil, and the transfer matrix method is used 
to solve the dynamic response problem of layered saturated frozen soil under moving harmonic load. Firstly, the dynamic 
governing equation of 2D saturated frozen soil foundation under moving load is established. By introducing the potential 
function and using the Helmholtz principle, and then through the coordinate transformation and Fourier transformation, 
the control equation is decoupled, and the general solution of the displacement and stress of each layer expressed by 
the potential function is obtained. Then the analytical solution of stratified saturated frozen soil foundation subjected to 
moving loads in the frequency domain is derived by using the transfer matrix method and combining it with the continuity 
condition. Finally, the dynamic response of each phase in the time domain is obtained by Fast Fourier Transform (FFT). 
After verifying the model degradation and comparing it with existing literature solutions, a comprehensive analysis is 
conducted on the effects of soil shear modulus, load moving speed, temperature, contact parameters, and load 
frequency on the dynamic response. 

2 GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

The analysis model of layered saturated frozen soil foundation under moving harmonic load is shown in Figure 1. 
The frozen soil foundation is simplified to saturated frozen soil foundation for the study. Adopting the definitional 
approach of Zhou and Lai (2011), ice is considered to form in pores and coexist with liquid water in the pores, and assumes 
that each layer of the saturated frozen soil foundation as homogeneous isotropic frozen saturated porous medium 
consisting of the soil particulate phase, the pore ice phase, and the pore water phase. A Cartesian coordinate system is 
established with the horizontal direction as the 1( )x x  axis and the vertical direction as the 3( )x z  axis, where is the fixed 
coordinate system and the origin of the coordinates are placed on the surface of the foundation, i.e., z=0 on the surface 
of the foundation, and ( , )x z  is the moving coordinate system. A layer of saturated frozen soil with a thickness H covers 
the impermeable bedrock. The foundation surface is under the action of a moving-line homogeneous simple harmonic 
load F(x,t), assuming that the moving load has a frequency of ω, a length of 2l, and an amplitude of q, 0 / 2q q l  , and 
is moving uniformly with a velocity c  along the positive direction of the x-axis. For N-layer saturated frozen soil 
foundations, water is assumed to be permeable at the surface and impermeable at the underlying bedrock, and the 
interfaces between the layers are horizontal and well-bonded. In this paper, the parameters of the solid, liquid, and ice 
phases in saturated frozen soil are denoted by the upper or lower subscripts "S ", "F " and " I ", respectively. 

 
Figure 1 A model of layered saturated frozen soil with impermeable rigid bedrock subjected to moving loads 

2.1 Basic equations 

The constitutive equations of the saturated frozen soil medium in the plane Cartesian coordinate system are 
(Carcione et al., 2000, 2003; Carcione and Seriani, 2001): 
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in which: 

u u u, , ,, 3, ( ) / 2a a a a a a
a i i ij ij a ij ij i j j id                                                                                                                                   (2) 

where 
S
ij , F , 

I
ij  denote the soil corresponding force, the stress borne by pore water, and ice corresponding force, 

respectively; 12C , 13C and 23C  are the bulk modulus between the three phases; 1K , 2K , 3K  are the bulk modulus of 

elasticity; 11 , 13 , 33 are the stiffness parameters; ij  is the Kroenke symbol; aθ , a
ijd , 

a
ij  denote the a (a=S, F, I) phase 

body strain, partial strain, and strain, respectively; au denotes the displacement of the a (a=S, F, I) phase. 11 , 13 , 33

, 12C , 13C , 23C , 1K , 2K , and 3K  are shown in Appendix 1 for details. 
The motion equation based on solid porous media with pores can be expressed as follows (Carcione et al., 2000, 

2003, Carcione and Seriani, 2001): 

, 11 12 13 12 13

, 12 22 23 12 23

, 13 23 33 13 23

( ) ( )

( ) ( )

( ) ( )

S S F I S F S I
ij j i i i i i i i
F S F I F S F I
i i i i i i i i
I S F I I S I F
ij j i i i i i i i

u u u b u u b u u

u u u b u u b u u

u u u b u u b u u

   

   

   

      

      

      

      

      

      

                                                                                                      (3) 

where  , 1,  2,  3ij i j   are the coupling inertia coefficient between each phase; 12b , 23b , 13b  are viscosity 

parameters; The specific values of ij , 12b , 23b  and 13b  are detailed in Appendix 1. 

Combining Eq. (1), Eq. (2), and Eq. (3), we can derive the governing equations for saturated frozen soil as follows: 
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where 11 1 11
4

3
R K   , 22 2R K , 33 3 33

4

3
R K   , 12 12R C , 23 23R C , 13 13 13

2

3
R C   (Qiu et al, 

2018, Qiu, 2019);    is scalar product (point product),    is vector product (fork product);  ,  1,  2,  3ijR i j   are 

detailed in Appendix 1. 

2.2 Boundary and continuity conditions 

Assuming good bonding between any adjacent layers in saturated frozen soil, for the saturated frozen soil layered 
system, consideration of the coordination conditions between the layers can be obtained:  
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In this paper, we consider that when the surface of a layered saturated frozen soil foundation is permeable (z=0), 
there: 

( ,0, ) ( ,0, ) ( ,0, ) ( , ), ( , 0, ) 0,

( ,0, ) 0, ( , 0, ) 0, ( , 0, ) 0

S F I S
zz zz xz
F I I

zz xz

x t x t x t F x t x t

x t x t x t

   

  

    

  
                                                                                    (6) 

The boundary conditions are expressed as follows at the bottom impermeable bedrock (z=H): 
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2.3 The relationship between temperature and pore ice content 

Carcione and Seriani (2001) used the normal distribution pore for the expression of ice content, and they postulated 
that at a specific temperature when the pore size is below a certain threshold, the water within the pore will not freeze, 
whereas pores larger than this size will experience complete freezing. Consequently, the correlation between 
temperature and unfrozen water content is computed as follows: 
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2
avr

r
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                                                                                                                                                                                          (10) 

where avr  is the average pore radius; 0 0kT T T  , 0kT  and T  are temperature, 0kT  is in Kelvin, T  is in Celsius, 0kT  = 

273.15K; The specific values of avr , r  and 0r  are detailed in Reference (Zhou, 2020). 

The volume fraction of each phase in saturated frozen soil as (Zhou and Lai, 2011): 

1 , (1 )S I rS                                                                                                                                                             (11) 

where rS  denotes the saturation level of pore liquid water, /r FS   ;   denotes the porosity of porous media; a  
(a=S, F, I) denotes the porosity of a phase. 
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3 SOLUTION OF THE SATURATED FROZEN SOIL LAYERED SYSTEM 

3.1 Solution in a homogeneous layer 

The potential functions a  and  ,  ,  a a S F I   are introduced. The displacement can be expressed by 

Helmholtz vector decomposition theorem as: 

ua
a a                                                                                                                                                                            (12) 

Substituting Eq. (12) into Eq. (4a), Eq. (4b) and Eq. (4c): 

 2 2 2
11 12 13 11 12 13 12 13 12 13S F I S F I S F IR R R b b b b                                                                  (13a)  

 2 2 2
12 22 23 12 22 23 12 12 23 23S F I S F I S F IR R R b b b b                                                                   (13b) 

 2 2 2
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                                                                                                        (14b) 

 2 2
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                                                             (14c) 

Under the action of moving harmonic load, all variables can be expressed as: 

* i( , , ) ( , )e tG x z t G x z                                                                                                                                                                      (15) 

where i is the imaginary unit, for the convenience of representation, the superscript ' * ' in the following text is omitted. 
As shown in Figure 1, the coordinate is transformed into 1x x ct  , 3z x  and  the potential functions   and 

  in the moving coordinate system can be expressed as follows: 

    ie1 3, , , tx ct x t x z                                                                                                                                                              (16a) 

    ii e1 3 ,, , t
xx ct x t c                                                                                                                                                         (16b) 

    i2i e2
1 3 , ,, , t

x xxx ct x t c c                                                                                                                                    (16c) 

where ,   , ,x  and ,xx  denote the partial differential of x . 

The Fourier transform of x  is: 

ie d( , ) ( , ) xf z f x z x
 


                                                                                                                                                                  (17) 

where the superscript ' ~ ' indicates that the spatial coordinate x is subjected to a Fourier transform. 
Combining Eq. (16a-16c) and Fourier transform of Eq. (13a), Eq. (13b), and Eq. (13c), we can obtain: 
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where  2
11 11 11 1 12 13 2A R b b        , 

2
12 12 12 1 12 2A R b       , 

2
13 13 13 1 13 2A R b       , 

 2
22 22 22 1 12 23 2A R b b        , 

2
23 23 23 1 23 2A R b       , 

2 2 2
1 2 c c         , i i2 c    . 

Let's assume that the solution of Eqs. (18) can be represented by the following form: 

[ ] exp( )
T S F I T

S F I c c c z         

                                                                                                                                (19) 

By substituting Eq. (19) into Eq. (18a), Eq. (18b) and Eq. (18c), the linear equations are obtained: 

2 2 2
13 13 12 12 11 11

2 2 2
23 23 22 22 12 12

2 2 2
33 33 23 23 13 13

0

I

F

S

R A R A R A c

R A R A R A c

R A R A R A c

  

  

  

        
         
   
        

                                                                                                                               (20) 

The following equation can be obtained: 

6 4 2
1 2 3 4 0                                                                                                                                                               (21) 

where 1 , 2 , 3  and 4  are shown in Appendix 2. 
Suppose that the root of Eq. (21) is  1,  2,  3n n  , then n  are given by: 

 Re 0, 1, 2, 3n n nd n                                                                                                                                               (22) 

The generalized solution of the potential function can be found as: 

 e e
3

1

n nz z
S n n

n

D E  



                                                                                                                                                       (23a) 

 e e
3

1

n nz zF
F pn n n

n

D E   



                                                                                                                                                (23b) 

 e e
3

1

n nz zI
I pn n n

n

D E   



                                                                                                                                               (23c) 
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where F
pn ,   1,  2,  3I

pn n   are given in Appendix 2; 1D , 2D , 3D , 1E , 2E , and 3E  are undetermined 

coefficients. 
The Fourier transform of Eqs. (14a), (14b) and (14c) yields the following: 

d d
d d

2 2

11 11 12 13 132 2
0S I

S F IB B B
z z

 
        

 

                                                                                                                                   (24a) 

21 22 23 0S F IB B B                                                                                                                                                           (24b) 

d d
d d

2 2

13 31 32 33 332 2
0S I

S F IB B B
z z

 
        

 

                                                                                                                                   (24c) 

where 
2

11 11 11 1 12 13 2( )B b b         , 12 12 1 12 2B b     , 
2

13 13 13 1 13 2B b        , 

21 12 1 12 2B b    ,  22 22 1 12 23 2B b b     , 23 23 1 23 2B b    , 
2

31 13 13 1 13 2B b        , 

32 23 1 23 2B b     ,  2
33 33 33 1 13 23 2B b b         . 

Suppose the solution of Eqs. (24) has the following form: 

[ ] exp( )
T S F I T

S F I h h h rz      
                                                                                                                                            (25) 

By substituting Eq. (25) into Eq. (24a), Eq. (24b) and Eq. (24c), the linear equations are obtained: 

2 2
13 13 12 11 11

23 22 21
2 2

33 33 32 13 31

0

I

F

S

hr B B r B

B B B h

r B B r B h

 

 

      
     
  
      

                                                                                                                                         (26) 

The following equation can be obtained: 

4 2
5 6 7 0r r                                                                                                                                                                         (27) 

where 5 , 6  and 7  are shown in Appendix 2. 
Suppose that the root of Eq. (24) is  1,  2nr n  , then nr  are given by: 

 Re 0, 1 , 2n n nr t r n                                                                                                                                                     (28) 

The generalized solution of the potential function can be found as: 

 e e
2

1

n nr z r z
S n n

n

M N 



                                                                                                                                                       (29a) 

 e e
2

1

n nr z r zF
F sn n n

n

M N  



                                                                                                                                                (29b) 
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 e e
2

1

n nr z r zI
I sn n n

n

M N  



                                                                                                                                               (29c) 

where 
F
sn ,  1,  2,  3I

sn n   are given in Appendix 2; 1M , 2M , 2N , 2N  are undetermined coefficients. 

In the right-angle coordinate system, each displacement component can be expressed as the potential function: 

,x zu u
x z z x

      
   

   
                                                                                                                                                                  (30) 

Combining Eq. (2) and Eq. (30) and substituting into Eq. (1), the constitutive equation for saturated frozen soil is: 

   
2 2 2 2

2 2 2
1 11 12 13 13 11 132 2

2 3 3 2S S S I I
zz S F IK C C

x z x zz z

   
       

                                 
 (31a) 

2 2 2 2 2 2

11 132 2 2 2

1
2 2

2
S S S S I I I
xz x z x zx z x z

     
  

                               
                                                                                 (31b) 

2 2 2
12 2 23

F
S F IC K C                                                                                                                                             (31c) 

   
2 2 2 2

2 2 2
13 13 23 3 33 13 332 2

3 2 3 2I S S I I
zz S F IC C K

x z x zz z

   
       

                                 
 (31d) 

2 2 2 2 2 2

33 132 2 2 2

1
2 2

2
I I I I S S S
xz x z x zx z x z

     
  

                               
                                                                           (31d) 

Fourier transform is applied to Eq. (30) and Eq. (31): 

,i ix zu u
z z

 
 

 
   

 





                                                                                                                                                (32) 

   
2 2 2

2 2 2
1 11 12 13 132 2 2

2 2

11 132 2

2 3 3

2 i i

S
zz S F I

S S I I

K C C
z z z

z zz z

        

   
   

                                          
                       

   

 

 

                                     (33a) 

2 2
2 2

11 132 2

1
2i 2i

2
S S S I I
xz S Iz zz z

   
        

                         

 



 

                                                                                    (33b) 

2 2 2
2 2 2

12 2 232 2 2
F

S F IC K C
z z z

      
                                        

                                                                                 (33c) 
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   
2 2 2

2 2 2
13 13 23 3 332 2 2

2 2

13 332 2

3 2 3

i 2 i

I
zz S F I

S S I I

C C K
z z z

z zz z

        

   
   

                                           
                      

   

 

 

                               (33d) 

2 2
2 2

33 132 2

1
2i 2i

2
I I I S S
xz I Sz zz z

   
        

                         

 

 

 

                                                                                   (33e) 

By substituting Eqs. (23) and (29) into Eqs. (32)-(33), expressions for the displacements and stresses of the phases 
in the saturated frozen soil medium in the Fourier transform domain are obtained: 

   i e e e e
3 2

1 1

n n n nz z r z r zS
x n n n n n

n n

u D E r M N   

 

                                                                                                          (34a) 

   e e i e e
3 2

1 1

n n n nz z r z r zS
z n n n n n

n n

u D E M N   

 

                                                                                                         (34b) 

   e e i e e
3 2

1 1

n n n nz z r z r zF F F
z n pn n n sn n n

n n

u D E M N     

 

                                                                                           (34c) 

   i e e e e
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1 1

n n n nz z r z r zI I I
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u D E r M N    

 

                                                                                              (34d) 

   e e i e e
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n n n nz z r z r zI I I
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 

                                                                                             (34e) 
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Dynamic response analysis of layered saturated frozen soil foundation subjected to moving loads Huaiyuan Chen et al. 

Latin American Journal of Solids and Structures, 2024, 21(2), e532 11/26 

where 
         2 2 2

11 11 12 13 13 11 132 2 1, 2, 3F I I
Sn pn pn n pn nf R R R n                     , 

         2 2 2
13 13 23 33 33 13 332 2 1, 2, 3F I I

In pn pn n pn nf R R R n                     . 

3.2 Solution of the saturated frozen soil layered system 

Based on the analysis conducted in the previous section, the stress and displacement in the k  layer of saturated 
frozen soil can be expressed in the following matrix form: 

 
 

 
L

S R
N

,

,

k
k k k

k

z
E z

z





 
               

                                                                                                                                                     (35) 

where the coefficient superscript 'k ' represents the k  layer of the soil, 

 L
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zz xz xz zz xzz                    ,  N
TS S F I I

x z z z zz u u u u u         ; S
10 10

    is shown in 

Appendix 3, T
1 2 3 1 2 1 2 3 1 2[ ]R D D D M M E E E N N    , 

  e e e e e e e e e e1 2 3 1 2 1 2 3 1 2diag[ ]z z z r z r z z z z r z r zE z           , 1D , 2D , 3D , 1M , 2M , 1E , 2E , 3E

, 1N , 2N  are undetermined coefficients. 

Then the stress and displacement of the adjacent k +1 layers can be written as similar to Eq.(35): 
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                                                                                                                                                        (36) 

To establish a local coordinate system, the following continuity conditions must be satisfied between adjacent soil 
layers in saturated frozen soils: 
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                                                                                                                                                 (37) 

where 1
k

k kh z z  . 

Substituting Eq. (36) into Eq. (37) gives: 

 R S S E R T R
11 1k k k k k k k kh

                                   
                                                                                                                                (38) 

where  T
10 10

k


 
    is the transfer matrix. 

According to the recurrence Eq. (38), the amplitude vector of any layer in saturated frozen soil can be related to the 
amplitude vector of the first layer: 

R T T T R1 1 1 1k k k                                                                                                                                                                             (39) 

The time domain expression for the moving harmonic load is given below: 
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Fourier transform of the load: 
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Combined Eq. (15), for moving simple harmonic loads subjected to a saturated frozen soil foundation surface with 
a rigid underlayment, the boundary conditions in the frequency domain can be obtained as: 

At z=0: 
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                                                                                           (42) 

At z=H: 

，( , ) 0, ( , ) 0, ( , ) 0, ( , ) 0 ( , ) 0S F I I S
z z z x xu H u H u H u H u H                                                                           (43) 

Substitute the formula (34) into the boundary condition formula (42) and the formula (43), and the arrangement 
can be obtained: 
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where  M1

5 10
 
    and  M

5 10

N


 
    are detailed in Appendix 4. 

The simultaneous Eq. (39) and Eq. (44a) can be obtained as follows: 
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where  
Q M T T

1 11 1 1j                     

. 
The simultaneous Eq. (44b) and Eq. (45) can be obtained as follows: 
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                                                              (46) 

By solving the system of Eq. (46), ten unknown coefficients can be obtained. Combined with Eq. (34), the stress and 
displacement of any point in the frequency domain can be obtained. Subsequently, the inverse Fourier transform is 
employed to obtain the corresponding values of stress and displacement in the time domain. 
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4 NUMERICAL RESULTS AND DISCUSSION 

4.1 Verification 

Tabatabaie et al. (1994) obtained the analytical solution of the vertical displacement of the soil when the harmonic 
load is applied to the surface of the single-layer saturated soil foundation by Fourier transform and compared it with the 
results of the finite element solution, which is in good agreement. In order to verify the accuracy of the numerical 
calculation in this paper, the dynamic response of layered saturated frozen soil under moving load can be reduced to the 
dynamic response of single-layer homogeneous saturated soil foundation under harmonic load. The speed of moving 
harmonic load is taken as 0m/s, and the same soil parameters as saturated soil are set in the layered soil model of 
saturated frozen soil. The volume fraction of pore ice in saturated frozen soil is taken as 0.001, and the contact parameter 
is taken as 1, so as to minimize the influence of pore ice content in saturated frozen soil on the dynamic response, so 
that the layered saturated frozen soil model is degraded into a single-layer homogeneous saturated soil model. It can be 
compared with the dynamic response solution of two-dimensional saturated soil under harmonic load obtained by 
Tabatabaie et al. (1994). In order to facilitate comparison with the literature, take H=15m, H/l=15, S =2×103kg/m3, F

=1×103kg/m3, S =3.85×107N/m2,  =0.4, I =0.001, rS =0.99, v =0.3, 0q =1kpa,  =1rad/s, c =0m/s,  =1. Figure 
2 shows the variation of vertical displacement with the horizontal direction and the comparison results with the literature 
(Tabatabaie et al., 1994). It can be seen that the solution in this paper has a high degree of conformity with the literature 
solution, which verifies the correctness of the theoretical analysis and calculation method in this paper. 

 
Figure 2 Comparison of changes in vertical displacement along the horizontal with Tabatabaie’s solution. 

Taking the two-layer foundation as an example, two typical layered saturated frozen soil foundation models of top-
soft and bottom-hard and top-hard and bottom-soft are selected to study the influence of surface soil shear modulus, 
temperature, load moving speed, contact parameters, and load frequency on the dynamic response of the foundation. 
In the numerical example, the uniform load amplitude 0q =1kpa, the load distribution length l=1m, and the thickness of 
the first layer of soil and the second layer of soil are h1= 4m and h2=8m, respectively. Taking the research method of 
Liu et al. (2022) on the dynamic response of top-soft and bottom-hard and top-hard and bottom-soft foundation, the 
shear modulus of the surface soil is changed, and the shear modulus of the second layer of soil remains unchanged. 
According to the different shear modulus of the surface layer of the soil layer, it is divided into five working conditions, 
that is, working conditions 1, 2, 3, 4, 5 are 1S =6.85GPa, 1S =13.7GPa, 1S =20.55GPa, 1S =27.4GPa, 1S =34.25GPa, 

respectively. The shear modulus 2S =20.55GPa of the second layer of soil remains unchanged under the five working 
conditions. Among them, Cases 1, and 2 belong to the top-soft and bottom-hard foundation, Case 3 belongs to the 
homogeneous foundation, and Cases 4,5 belong to the top-hard and bottom-soft foundation. The double-layer 
foundation model in the example is shown in Figure 3. Other physical and mechanical parameters of the upper and lower 
layers of saturated frozen soil are the same as those in Table 1 (Qiu et al., 2018; Li et al., 2019).  
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Figure 3 Schematic diagram of double-layer foundation model 

Table 1. Physical and mechanical parameters of saturated frozen soil foundation  

Material 
parameters 

Hydrodynamic 
Viscosity 

coefficient 

Density of soil 
particle 

Density of 
liquid 

Density of ice 
particles 

Bulk modulus of 
soil particles 

Bulk modulus of 
liquid 

Bulk modulus of 
ice particle 

Symbol (unit) 
F  Kg/(m·s)) S   (Kg/m3) F  (Kg/m3) I  (Kg/m3) SK

 (GPa) FK
 (GPa) IK

 (GPa) 
Magnitude 1.8×10-3 2580 1000 920 20.9 2.25 8.58 

Material 
parameters 

Shear modulus 
of soil particle 

Shear modulus 
of ice particle 

Reference value 
of soil skeleton 
permeability 
coefficient 

Reference value 
of ice 

permeability 
coefficient 

   

Symbol (unit) 
S  (GPa) I  (GPa) 0S  (m2) 0I  (m2) 

   

Magnitude 6.85-27.4 3.32 1.0×10-11 5.0×10-5    

 

4.2 Influence of soil shear modulus 

In order to study the influence of soil shear modulus on the dynamic response of saturated frozen soil 
foundation subjected to moving load, other parameters are kept unchanged (c=60m/s, T1=T2= −0.5°C, 1 = 2 = 0.5, 
f=10Hz). Figure 4 is the vertical displacement and pore water pressure of saturated frozen soil at z=4m with 
horizontal direction under different working conditions. It can be seen from Figure 4 that the vertical displacement 
curve is symmetrical about x=0, and the curve amplitude is directly below the action point. There are two critical 
points x=-3 and x=3 on both sides of the vertical displacement curve. Between the two critical points (-3< x <3), the 
vertical displacement decreases with the increase of soil shear modulus, while at both ends of the critical point (x 
>3 and x<-3), the vertical displacement increases with the increase of soil shear modulus. As the soil shear modulus 
increases, the amplitude of the pore water stress curve decreases gradually, and the amplitude point of the pore 
water stress curve gradually moves to the negative half-axis of the x-axis. The amplitude of the vertical displacement 
and pore water stress curve decreases with the increase of the shear modulus of the soil, which is due to the 
increase of the shear modulus of the surface soil, that is, the rigidity of the soil skeleton of the saturated permafrost 
soil is enhanced. On the one hand, the saturated frozen soil becomes more rigid, and the deformation of the soil 
skeleton decreases, resulting in the reduction of vertical displacement. On the other hand, the rigidity of the soil 
skeleton increases, the load borne by the soil particle phase in saturated frozen soil increases accordingly, and the 
load borne by the pore water and pore ice decreases. Therefore, the reinforcement of the surface soil in engineering 
practice can effectively reduce the vertical displacement of the foundation. In addition, when the top-soft and 
bottom-hard foundation tends to be uniform, that is, Case 1-Case 3, the dynamic response of saturated permafrost 
foundation decreases gradually, but when the top-hard and bottom-soft foundation tends to be uniform, that is, 
Case 3-Case 5, the dynamic response of saturated frozen soil foundation increases gradually, which shows that the 
arrangement order of soft and hard soil layers exerts a significant influence on the horizontal dynamic response of 
the foundation. 
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Figure 4 The influence of shear modulus of topsoil on (a) vertical displacement (b) pore water stress at z=4m 

Figure 5 is the curve of vertical displacement and pore water stress at x=0 with depth when changing the shear 
modulus of surface soil. It can be observed that the maximum value of the vertical displacement curve is at the 
foundation surface, and the vertical displacement continues to decrease with increasing depth, while the displacement 
curve then converges at the interface between the soil layers and then decreases synchronously. When the softer soil 
layer is located at the surface, the vertical displacement decays faster with depth than when the harder soil layer is at 
the surface, indicating that the stress concentration occurs in the top-soft and bottom-hard foundation, while the stress 
dispersion occurs in the top-hard and bottom-soft foundation. The pore water stress has a maximum value at z=0.8m, 
and its trend is to increase sharply from 0 near the surface and then decrease rapidly and finally increase slowly, showing 
an overall increasing trend, which is the same as the change of pore water pressure studied by Liu et al.(2022). The 
displacement and pore water stress curves of homogeneous foundation (Case 3) are very different from those of 
inhomogeneous foundation (Case 1, 2, 4, 5) at the interface of the soil layer (z=4m). The variation in shear modulus of 
the surface soil significantly affects the vertical dynamic response of the foundation. 

 
Figure 5 The influence of shear modulus of surface soil on (a) vertical displacement (b) pore water stress along the depth direction 

4.3 Influence of load moving speed 

To facilitate the study of the effect of load movement velocity on the dynamic response of layered saturated frozen soil 
foundation, the dimensionless velocity N0=c/cs is defined by referring to the treatment of velocity by Ma et al ( 2023a ), where cs 
is the shear wave velocity of surface soil and c is the load moving speed. When the shear modulus of surface soil is 6.85GPa, 
cs =1280m/s can be obtained according to Reference (Ma et al., 2023b). Figure 6 and Figure 7 illustrate the curves of vertical 
displacement and pore water stress at z=4m with dimensionless velocity N0=0.5, 0.8, 1.0, and 1.2 under Cases 1 and 5, and other 
parameters are kept unchanged (c=60m/s, T1=T2= −0.5°C, 1 = 2 = 0.5, f=10Hz). As depicted in Figure 6, the displacement and 
pore water stress exhibit an initial increase followed by a subsequent decrease in the case of top-soft and bottom-hard foundation. 
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At low speeds (i.e., N0=0.5, 0.8) the increase in displacement and pore water stress magnitude with increasing moving speed is 
small. When the moving speed closely approaches the shear wave velocity of the surface soil (i.e., N0=1), there is a sharp increase 
in both the amplitude of displacement and pore water stress, and the displacement and pore water stress of the soil appears the 
maximum value, indicating that the soil resonance is easy to occur when the moving speed is close to the shear wave velocity of 
the soil layer. When the moving speed exceeds the shear wave velocity (i.e., N0=1.2), the vertical displacement amplitude and 
pore water stress amplitude decrease with continued increase in velocity, but the vertical displacement amplitude at this point is 
still larger than the vertical displacement amplitude at low speed, and we observed a sharp decrease in the amplitude of pore 
water stress, even smaller than that at low speed (N0=0.8). In contrast, in the top-hard and bottom-soft foundation, the amplitude 
of vertical displacement continues to increase with the increase of the load movement rate, and the amplitude of its growth also 
increases. This phenomenon can be attributed to the fact that the surface soil modulus of the top-hard and bottom-soft 
foundation is larger compared with the top-soft and bottom-hard foundation, and the shear wave velocity of the topsoil increases 
with the increase of the shear modulus of the topsoil, so the vertical displacement does not change similar to that of the top-soft 
and bottom-hard foundation. The pore water stress varies with the rate of load moving similarly as in the case of top-soft and 
bottom-hard foundations. The amplitude of pore water stress increases first and then decreases with the increase in speed. 
Different from the top-soft and bottom-hard foundation, the maximum value of pore water stress in the top-hard and bottom-
soft foundation appears at N0=0.8. In addition, it can be found that the increase of the moving speed changes the pore water 
stress in the foundation and the vibration phase of the displacement curve in the top-soft and bottom-hard foundation, making 
the curve more and more complex. 

 
Figure 6 The influence of load moving speed on (a) vertical displacement (b) pore water stress of foundation at z=4m in Case 1. 

 
Figure 7 The influence of load moving speed on (a) vertical displacement (b) pore water stress of foundation at z=4m in Case 5.  

4.4 Influence of temperature 

From the Reference (Jamin et al., 2021), it is known that soil temperature in frozen areas is seasonally variable above a 
certain depth, with the upper soil temperature being higher than the lower layer in summer and the upper soil temperature being 
lower than the lower layer in winter, and that the temperature change also affects the changes in the components in the saturated 
frozen soils, so the influence of temperature on the dynamic response can not be ignored. Liu and Zhang (2012) pointed out that 
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the unfrozen water content and pore ice content of frozen soil change very sharply at T=0°C ~ -1°C. Even a small change in 
temperature will cause a large change in the unfrozen water content, and refer to the value of Li et al. (2019) on the temperature 
of saturated frozen soil, the temperature range studied in this paper is finally determined to be T=-0.3°C ~ -0.9°C. To investigate 
the impact of temperature on the dynamic response of both top-soft and bottom-hard foundations and top-hard and bottom-
soft foundations, and other parameters are kept unchanged (c=60m/s, 1 = 2 = 0.5, f=10Hz). Figure 8 shows the vertical 
displacement and pore water stress along the horizontal direction at z=4m under the condition of changing the surface soil 
temperature in top-soft and bottom-hard foundation (Case 1) and top-hard and bottom-soft foundation (Case 5). It can be seen 
from the figures that the displacement amplitude and pore water stress amplitude increase with increasing temperature in both 
working conditions. This is because as the temperature increases, the content of ice particles in the pores gradually decreases, 
and the interaction with the soil particle skeleton gradually weakens, the load it bears is correspondingly reduced, resulting in an 
increase in the load borne by the pore water and the soil skeleton, which in turn leads to an increase in the vertical displacement 
of the soil skeleton. By observing the magnitude of changes in the magnitude of vertical displacement and pore water pressure, 
it can be found that the increase in the magnitude of vertical displacement under Case 1 is smaller than that of vertical 
displacement under Case 5, while the increase in the magnitude of pore water pressure in Case 1 is larger than that in Case 5, 
which indicates that the vertical displacement in the top-hard and bottom-soft foundation and pore water pressure in the top-
soft and bottom-hard foundation are more sensitive to changes in temperature. In addition, in the top-hard and bottom-soft 
foundation, it can be observed that when the temperature of the surface soil approaches the lower soil (Case 5, T1=-0.3°C), there 
is only a slight increase in the amplitude of the pore water stress curve, and the point of maximum amplitude in the curve shifts 
towards the negative half of the x-axis. 

 
Figure 8 The influence of temperature on (a) vertical displacement (b) pore water stress at z=4m under different working conditions. 

4.5 Influence of contact parameter 

The contact parameter  , ranging from 0 to 1, represents the extent to which the soil particle skeleton in saturated frozen 
soil is supported by the pore ice. When  =1, the ice is suspended in the pores, and the ice has the smallest support to the soil 
particle skeleton; when  =0 the ice has the largest support to the soil particles. The contact parameter affects the loads carried 
by each phase of saturated frozen soil by influencing the modulus of the skeleton. Keep other parameters unchanged (c=60m/s, 
T1=T2= −0.5°C, f=10Hz), Figure 9 analyzes the effect of different contact parameters in the surface layer on the dynamic response 
at z=4m for different working conditions. The results show that vertical displacement and pore water stress amplitude in the three 
conditions are increased with the increase of contact parameters, the reason for this phenomenon is because with the increase 
of contact parameters, pore ice particles and soil skeleton of the contact is gradually reduced, the friction between the pore ice 
particles and soil particles is reduced, the relative movement amplitude in the gradual increase, so the pore water and soil particles 
skeleton bear the load increases, which in turn cause the foundation vertical displacement and pore water stress increase. The 
increase of the vertical displacement amplitude of the top-soft and bottom-hard hard foundation is less than that of the 
homogeneous foundation and the top-hard and bottom-soft foundation, while the increase of the pore water stress of the upper 
soft and lower hard foundation is just the opposite. In addition, it can be observed that the change of contact parameters has little 
effect on the vertical displacement, the possible reason is that the ice content in the saturated frozen soil is small at this 
temperature (T1=T2=-0.5°C), the solid ice does not fill the pores in the saturated frozen soil, and soil particles and pore water carry 
most of the loads, the pore ice particles bear very small stresses, so changing the contact parameters has little effect on the vertical 
displacement. 
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Figure 9 The influence of contact parameters on (a) vertical displacement (b) pore water stress at z=4m under different working 

conditions. 

4.6 Influence of load frequency 

The specification  (Technical Standard of Highway Engineering, 2015) points out that the frequency range of traffic 
moving load in road engineering is 0Hz-50Hz, so f=0Hz-50Hz is taken as the research range of load frequency in this paper. 
Keep other parameters unchanged (c=60m/s, T1=T2= −0.5°C, 1 = 2 = 0.5), Figure 10 analyzes the variation of dynamic 
response with load frequency at moving coordinate system (0,4) for different working conditions. The results indicate 
that the vertical displacement exhibits noticeable fluctuations with changes in load frequency, and the homogeneous 
foundation (i.e., Case 3) demonstrates maximum amplitude at approximately 18Hz. This is because the wave generated 
under vibration propagates and reflects between the foundation and the bedrock so that the vibration amplitude in some 
areas is strengthened, while the vibration amplitude in some areas is weakened. The vertical displacement of the 
foundation exhibits an increasing trend with the increase in load frequency. The pore water stress curve changes 
significantly in 0Hz-20Hz, and the amplitude of the curve in Case 4 reaches the maximum at about 8Hz. As the frequency 
gradually increases (20Hz-50Hz), the influence of the change of load frequency on the pore water stress in the 
inhomogeneous foundation gradually weakens, while the pore water stress in the homogeneous foundation is less 
affected by the change of load frequency. As a whole, the vertical displacement is greater for top-soft and bottom-hard 
foundations compared to top-hard and bottom-soft foundations, while the pore water stress is smaller than that of the 
top-hard and bottom-soft foundation, which aligns with the conclusion depicted in Figure 4. 

 
Figure 10 The influence of load frequency on (a) vertical displacement (b) pore water stress in different layered foundation at (0,4). 

5 CONCLUSIONS 

In this paper, the dynamic response of saturated frozen soil foundations under the influence of moving loads is 
investigated using the transfer matrix method. The analysis of shear modulus, temperature, load moving speed, contact 
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parameters, and load frequency on the displacement and stress of a layered saturated frozen soil foundation yields the 
following main conclusions: 

(1) The arrangement order of the soft and hard soil layers within the foundation soil layer has a notable influence on 
both vertical displacement and pore water stress. In the horizontal direction, the amplitude of the vertical 
displacement and pore water stress curves decreases as the shear modulus of the surface soil increases. In the 
vertical direction, the vertical displacement decreases with the increase of depth, and the pore water stress 
increases sharply near the surface and then decreases rapidly and then increases slowly. The changes of vertical 
displacement and pore water stress at the soil interface of the top-soft and bottom-hard foundation and the top-
hard and bottom-soft foundation are very different from those of homogeneous foundation. 

(2) With the increase of the load moving speed, the vertical displacement and pore water stress of the top-soft and 
bottom-hard foundation increase first and then decrease. When the speed is close to the shear wave velocity of the 
surface soil (N0=1), the vertical displacement and pore water stress reach the maximum value. In the top-hard and 
bottom-soft foundation, the vertical displacement increases with the increase of velocity, and the pore water stress 
increases first and then decreases with the increase of velocity. When N0=0.8, the pore water stress has the 
maximum value. 

(3) In both the top-soft and bottom-hard foundation, as well as the top-hard and bottom-soft foundation, the amplitude 
of vertical displacement and pore water stress increases with an increase in the temperature of the surface soil. The 
vertical displacement in the top-hard and bottom-soft foundation and the pore water stress in the top-soft and 
bottom-hard foundation are more sensitive to the change of temperature. 

(4) The amplitude of both vertical displacement and pore water stress increases with the contact parameter, and the 
increase in vertical displacement amplitude for the top-soft and bottom-hard foundation is smaller than the increase 
in vertical displacement for the homogeneous foundation and the top-hard and bottom-soft foundation, whereas 
the increase in pore water stress amplitude for the top-soft and bottom-hard foundation is the opposite.  

(5) The vertical displacement of the foundation increases as the load frequency increases. The pore water stress of the 
foundation is significantly influenced by the load frequency in the range of 0Hz-20Hz, but with increasing loading 
frequency (20Hz-50Hz), the influence gradually weakens. On the whole, the vertical displacement of the top-soft 
and bottom-hard foundation is larger than that of the top-hard and bottom-soft foundation, while the pore water 
stress is smaller than that of the top-hard and bottom-soft foundation. 
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Appendix 1 

Coefficients 11 , 13 , 33 , 12C , 13C , 23C , 1K , 2K , 3K , ijR  in Eq. (1), Eq. (2) and Eq. (4) 
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where SK , FK , IK  are three-phase bulk modulus; smK , imK  and sm , im  are the bulk modulus and shear 

modulus of soil particle skeleton and ice particle skeleton, respectively. avK  and av  are the undrained bulk modulus 

and shear modulus of the three-phase medium;   is the contact parameter; 1c , 3c  and 1g , 3g  are the consolidation 

coefficients of soil skeleton and ice skeleton, respectively. S  and  I  are the shear modulus of soil particles and ice 

particles, respectively.   is the cementation parameter; v  is Poisson's ratio, ( , , )a a S F I   denote the volume 
fraction of phase a. 

Coefficients ij  in Eq. (3) 
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where ija  are the tortuosity, which represents the tortuosity of j relative to i phase; ijr  characterize the microscopic 

characteristics of pores, for spherical particles ijr =0.5; ( , , )a a S F I   denote the density of phase a respectively. 

Coefficients 12b , 23b , 13b  in Eq. (3) 
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where F  is the fluid dynamic viscosity coefficient; S  and I  are the dynamic permeability coefficients of saturated 

frozen soil particle skeleton and ice skeleton, respectively; 0S  and 0I  are the reference values of dynamic 

permeability coefficient and ice permeability coefficient of saturated soil, respectively. 0
13b  is the reference value of the 

viscosity coefficient. All parameters in Appendix 1 are described in detail in Reference (Qiu et al. 2018). 



Dynamic response analysis of layered saturated frozen soil foundation subjected to moving loads Huaiyuan Chen et al. 

Latin American Journal of Solids and Structures, 2024, 21(2), e532 24/26 

Appendix 2 

Coefficients 1 , 2 , 3 , 4  in Eq. (21) 
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. 

Coefficients 5 ,  6 , 7  in Eq. (27) 

2
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Coefficients  F
pn ,  1,  2,  3I

pn n   in Eq. (23) 
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Coefficients F
sn ,  1,  2F

sn n   in Eq. (29) 

   
 

11 11 23 21 13 13

23 12 22 13 13

n nF
sn

n

t B B B t B

B B B t B

 




  


   ,

 
 

11 11 22 12 21

23 12 22 13 13

nI
sn

n

t B B B B

B B B t B






  


   . 



Dynamic response analysis of layered saturated frozen soil foundation subjected to moving loads Huaiyuan Chen et al. 

Latin American Journal of Solids and Structures, 2024, 21(2), e532 25/26 

Appendix 3 

The elements of matrix [S] in Eq. (35) are: 

0101 0106 1S S C  , 0102 0107 2S S C  , 0103 0108 3S S C  , 0104 0109 1S S O   , 0105 0110 2S S O   , 

0201 0206 1S S F   , 0202 0207 2S S F   , 0203 0208 3S S F   , 0204 0209 1S S G  , 0205 0210 2S S G  , 

0301 0306 1S S H  , 0302 0307 2S S H  , 0303 0308 3S S H  , 0304 0305 0309 0310 0S S S S    , 

0401 0406 1IS S f  , 0402 0407 2IS S f  , 0403 0408 3IS S f  , 0404 0409 1S S I   , 0405 0410 2S S I   , 

0501 0506 1S S J   , 0502 0507 2S S J   , 0503 0508 3S S J   , 0504 0509 1S S P  , 0505 0510 2S S P  , 

i0601 0606S S   , i0602 0607S S   , i0603 0608S S   , 0604 0609 1S S r   , 0605 0610 2S S r   , 

0701 0706 1S S     , 0702 0707 2S S     , 0703 0708 3S S     , i0704 0705 0709 0710S S S S     , 

0801 0806 1 1
F
pS S      , 0802 0807 2 2

F
pS S      , 0803 0808 3 3

F
pS S      , i0804 0809 1

F
sS S   , 

i0805 0810 2
F
sS S   , i0901 0906 1

I
pS S   , i0902 0907 2

I
pS S   , i0903 0908 3

I
pS S   , 0904 0909 1 1

I
sS S r    , 

0905 0910 2 2
I
sS S r    , 1001 1006 1 1

I
pS S      , 1002 1007 2 2

I
pS S      , 1003 1008 3 3

I
pS S      , 

i1004 1009 1
I
sS S   , i1005 1010 2

I
sS S   . 

where    11 13i 2 1,2,3I
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1,2
2

I
n n snO r n   

        
, 

   i 11 132 1, 2, 3I
n n pnF n       ,    2 2

11 13
1

1, 2
2

I
n n snG r n   

        
, 

    2 2
12 22 23 1, 2, 3F I

n pn pn nH R R R n        ,    i 13 332 1, 2I
n n snI r n       , 

   i 33 132 1, 2, 3I
n n pnJ n       ,    2 2

33 13
1

1, 2
2

I
n n snP r n   

        
. 
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Appendix 4 

The elements in the support stiffness matrix M1[ ]  are: 

1 1
0101 0106 1M M C  , 1 1

0102 0107 2M M C  , 1 1
0103 0108 3M M C  , 1 1 1

0104 0109 1M M O   , 1 1 1
0105 0110 2M M O   , 

1 1 1
0201 0206 1M M F   , 1 1 1

0202 0207 2M M F   , 1 1 1
0203 0208 3M M F   , 1 1 1

0204 0209 1M M G  , 
1 1 1
0205 0210 2M M G  , 1 1 1

0301 0306 1M M H  , 1 1 1
0302 0307 2M M H  , 1 1 1

0303 0308 3M M H  ,
1 1 1 1
0304 0305 0309 0310 0M M M M    , 1 1 1

0401 0406 1IM M f  , 1 1 1
0402 0407 2IM M f  , 1 1 1

0403 0408 3IM M f  ,
1 1 1
0404 0409 1M M I   , 1 1 1

0405 0410 2M M I   , 1 1 1
0501 0506 1L L J   , 1 1 1

0502 0507 2M M J   ,
1 1 1
0503 0508 3M M J   , 1 1 1

0504 0509 1M M P  , 1 1 1
0505 0510 2M M P  . 

The elements in the support stiffness matrix M[ ]N  are: 

i0101 0102 0103 0106 0107 0108
N N N N N NM M M M M M       , 0104 0109 1

N N NM M r   , 0105 0110 2
N N NM M r   ,

0201 0206 1
N N NM M     , 0202 0207 2

N N NM M     , 0207 0208 3
N N NM M     ,

i0204 0205 0209 0210
N N N NM M M M     , 0301 0306 1 1

NN N N F
pM M      , 0302 0307 2 2

NN N N F
pM M      ,

0303 0308 3 3
NN N N F

pM M      , i0304 0309 1
NN N F

sM M   , i0305 0310 2
NN N F

sM M   , i0401 0406 1
NN N I

pM M   ,

i0402 0407 2
NN N I

pM M   , i0403 0408 3
NN N I

pM M   , 0404 0409 1 1
NN N N I

sM M r   , 0405 0410 2 1
NN N N I

sM M r   ,

0501 0506 1 1
NN N N I

pM M      , 0502 0507 2 2
NN N N I

pM M      , 0503 0508 3 3
NN N N I

pM M      , i0504 0509 1
NN N I

sM M   ,

i0505 0510 2
NN N I

sM M   . 


