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Abstract 
This paper is devoted to the study of propagation of Rayleigh 
waves in a homogeneous isotropic microstretch generalized ther-
moelastic diffusion solid half-space. Secular equations in mathe-
matical conditions for Rayleigh wave propagation are derived for 
stress free, insulated/impermeable and isothermal/isoconcentrated 
boundaries. The phase velocity, attenuation coefficient, the com-
ponents of normal stress, tangential stress, tangential couple 
stress, microstress, temperature change and mass concentration 
are computed numerically. The path of surface particles is also 
obtained for the propagation of Rayleigh waves. The computa-
tionally stimulated results for the resulting quantities are repre-
sented to show the effect of thermally insulated, impermeable 
boundaries and isothermal, isoconcentrated boundaries alongwith 
the relaxation times. Some particular cases have also been deduced 
from the present investigation. 
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1 INTRODUCTION 

Eringen [1966, 1968] developed the theory of micromorphic bodies by considering a material point 
as endowed with three deformable directions. Subsequently, he developed the theory of microstretch 
elastic solid [1971] which is a generalization of micropolar elasticity [1966]. The material points in 
microstretch elastic body can stretch and contract independently of the translational and rotational 
processes. The difference between these solids and micropolar elastic solids stems from the presence 
of scalar microstretch and a vector first moment. These solids can undergo intrinsic volume change 
independent of the macro volume change and is accompanied by a non deviatoric stress moment 
vector. 

Eringen [1990] also developed the theory of thermo microstretch elastic solids. The microstretch 
continuum is a model for Bravias lattice with a basis on the atomic level and a two phase dipolar 
solid with a core on the macroscopic level. For example, composite materials reinforced with 
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chopped elastic fibres, porous media whose pores are filled with gas or inviscid liquid, asphalt or 
other elastic inclusions and ‘solid-liquid’ crystals, etc., should be characterizable by microstretch 
solids. A comprehensive review on the micropolar continuum theory has been given in his book by 
Eringen [1999]. 

Iesan and Pompei [1995] discussed the equilibrium theory of microstretch elastic solids. Propaga-
tion of Rayleigh surface waves in microstretch thermoelastic continua under inviscid fluid loadings 
have been investigated by Sharma et. al.[2008]. Quintanilla [2002] also developed the spatial decay 
for the dynamic problems of thermomicrostretch elastic solid. The plane waves of generalized ther-
momicrostretch elastic half space under three theories have been developed by Othman and Lot-
fy[2010].The propagation of free vibrations in microstretch thermoelastic homogeneous isotropic, 
thermally conducting plate bordered with layers of inviscid liquid on both sides subjected to stress 
free thermally insulated and isothermal conditions have been investigated by Kumar and Pratap 
[2009]. In recent times, Kumar and Kansal [2011] construct the fundamental solution of system of 
differential equations in the theory of thermomicrostretch elastic diffusive solids in case of steady 
oscillations in terms of elementary functions. 

The thermodiffusion in elastic solids is due to coupling of fields of temperature, mass diffusion 
and that of strain in addition to heat and mass exchange with the environment. Nowacki 
[1974,1976] developed the theory of thermoelastic diffusion by using coupled thermoelastic model. 
Dudziak and Kowalski [1989] and Olesiak and Pyryev [1995] respectively, discussed the theory of 
thermodiffusion and coupled quasi-stationary problems of thermal diffusion for an elastic layer. 
Uniqueness and reciprocity theorems for the equations of generalized thermoelastic diffusion prob-
lem, in isotropic media, was proved by Sherief et al. [2004] on the basis of the variational principle 
equations, under restrictive assumptions on the elastic coefficients. Recently, Kumar and Kansal 
[2008] developed the basic equation of anisotropic thermoelastic diffusion based upon Green-Lindsay 
model. 

Kumar and Kansal [2009] discussed  the propagation of Rayleigh waves in a homogeneous trans-
versely isotropic, generalized thermoelastic diffusive half-space. Sharma [2007, 2008] discussed the 
plane harmonic generalized thermoelastic diffusive waves and elasto thermodiffusive surface waves 
in heat-conducting solids. In recent times, Singh et. al [2012] discussed the Rayleigh wave in a ro-
tating magneto-thermo-elastic half-plane. 

 Rayleigh surface waves have been well recognized in the study of earthquakes, seismology, geo-
physics and geodynamics. These types of surface waves propagate in half space. These waves have 
been of long standing interest in seismology, Richter [1958]. Keeping in view the above applications 
of microstretch thermoelastic diffusion processes, in what follows the propagation of Rayleigh waves 
in a homogeneous, isotropic, generalized microstretch thermoelastic diffusion half-space will be in-
vestigated. The phase velocity, attenuation coefficient, normal stress, tangential stress, microrota-
tion, microstress, temperature change, and mass concentration, specific loss and path of surface 
particles of wave propagation are obtained from the secular equations. The resulting quantities are 
computed numerically and presented graphically. 
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2 BASIC EQUATIONS 

Following Eringen [1999], Sherief et al. [2004] and Kumar & Kansal [2008], the equations of motion 
and the constitutive relations in a homogeneous isotropic microstretch thermoelastic diffusion solid 
in the absence of body forces, body couples, stretch force, and heat sources are given by  
 

   
λ + 2µ + K( )∇ ∇.u( ) − µ + K( )∇ × ∇ × u + K∇ ×

ϕ + λO∇ϕ
*
− β1 1 + τ1

∂

∂t

⎛
⎝⎜

⎞
⎠⎟
∇T − β2 1 + τ

1 ∂

∂t

⎛
⎝⎜

⎞
⎠⎟
∇C = ρ

∂
2 u

∂t
2 ,  (1) 

 

   
α + β + γ( )∇ ∇.

ϕ( )−γ ∇ × ∇×
ϕ( ) + K∇× u − 2K

ϕ = ρ j ∂
2 ϕ
∂t2 ,  (2) 

 

   
α0∇

2ϕ * +ν1 T +τ1
T( ) +ν2 C +τ 1 C( )− λ1ϕ

* − λ0∇.u =
ρ j0

2
∂2ϕ *

∂t2
 (3) 

 

   
K *∇2T = β1T0 1+ ετ 0

∂
∂t

⎛
⎝⎜

⎞
⎠⎟
∇.u +ν1T0 1+ ετ 0

∂
∂t

⎛
⎝⎜

⎞
⎠⎟
ϕ * + ρC* 1+τ 0

∂
∂t

⎛
⎝⎜

⎞
⎠⎟
T + aT0

C + γ 1
C( ),  (4) 

 

   
Dβ2∇

2(∇.u)+ Dν2∇
2ϕ * + Da∇2 T +τ1

T( ) + C + ετ 0 C( )− Db∇2 C +τ 1 C( ) = 0,  (5) 

 
and constitutive relations are 
 

  
tij = λur ,rδ ij + µ ui, j + uj ,i( ) + K uj ,i − ε ijrϕr( ) + λoδ ijϕ

* − β1(1+τ1

∂
∂t

)Tδ ij − β2(1+τ 1 ∂
∂t

)Cδ ij ,  (6) 

 

  
mij =αϕr ,rδ ij + βϕ i, j + γϕ j ,i + b0εmjiϕ,m

* ,  (7) 
 

  
λi

* =α0ϕ,i
* + b0ε ijmϕ j ,m ,  (8) 

 
where 
 
λ,µ,α ,β,γ ,K ,λ0,λ1,α 0,b0 , are material constants ρ , is the mass density,  is the 

displacement vector and  is the microrotation vector, ϕ *  is the scalar microstretch 
function, T and T0  are the small temperature increment and the reference temperature of the body 

chosen such that  C is the concentration of the diffusion material in the elastic body  

K *  is the coefficient of the thermal conductivity, C* the specific heat at constant strain, D is the 
thermoelastic diffusion constant. a, b are, respectively, coefficients describing the measure of ther-
modiffusion and of mass diffusion effects,  β1 = 3λ + 2µ + K( )α t1 , β2 = 3λ + 2µ + K( )α c1 , 

( )1 2 3, ,u u u u=r
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v1 = 3λ + 2µ + K( )α t2 , v2 = 3λ + 2µ + K( )α c2,α t1,α t2  are coefficients of linear thermal expan-
sion and α c1,α c2  are the coefficients of linear diffusion expansion. j  is the microintertia, j0  is the 
microinertia of the microelements, tij  and mij  are components of stress and couple stress tensors 

respectively, λ*i  is the microstress tensor, eij =
1
2
ui, j + uj ,i( )⎛

⎝⎜
⎞
⎠⎟  are components of infinitesimal 

strain, ekk  is the dilatation, δ ij   is the Kronecker delta, τ 0,τ 1  are diffusion relaxation times with  

τ 1 ≥ τ 0 ≥ 0  and τ 0,τ1  are thermal relaxation times with τ1 ≥ τ 0 ≥ 0 . Here 
τ 0 = τ

0 = τ1 = τ
1 = γ 1 = 0  for Coupled Thermoelasitc (CT) model, τ1 = τ

1 = 0,ε = 1,γ 1 = τ 0  for 
Lord-Shulman (L-S) model and  ε = 0,γ 1 = τ

0  where τ 0 > 0  for Green-Lindsay (G-L) model. 
In the above equations, a comma followed by a suffix denotes spatial derivative and a superposed 
dot denotes the derivative with respect to time respectively.   
 
3 FORMULATION OF THE PROBLEM 

We consider a homogeneous isotropic microstretch generalized thermoelastic diffusion half-space 
initially at uniform temperature T0 . The origin of the coordinate system   (x1,x2 ,x3)  is taken at any 

point on the plane horizontal surface with   x3 −  axis and pointing vertically downward to the half-

space, which is thus represented by   x3 ≥ 0 . The surface   x3 = 0  is subjected to stress free boundary. 

We choose the   x1  axis in the direction of wave propagation in such a way that all the particles on a 

line parallel to the   x2  axis are equally displaced. Therefore, all field quantities are independent of 

the   x2  coordinate. For the two dimensional problem, we take 
 

   
u(x1,x3,t) = (u1,0,u3),


ϕ = (0,ϕ2 ,0),ϕ *(x1,x3,t),Τ(x1,x3,t), C(x1,x3,t),  (9) 

 
We define the following dimensionless quantities  

 

( ) ( ) ( ) ( ) '

'

* 2 2 **
' ' ' ' ' * * ' '1 1 1
1 3 1 3 1 3 1 3 2 2

1 1 1 1 1 1 1

* *
* ' ' ' * ' * 0' * 0 ' * 1' * 12

1 12 2
1 1 1

, , , , , , , , , ,

, , , , , , , ,

ij
ij ij ij

o o o o o

i
i o o

o o

tc c cx x x x u u u u t m m
c T T T T c T

CTT C t t
c T T c

ρ ω ρ ρ ωω ϕ ϕ ϕ ϕ
β β β β β

λ ω βλ ω τ ω τ τ ω τ τ ω τ τ ω τ
β ρ

= = = = = =

= = = = = = = =

 

(10) 

 
where 
 

  
ω * =

ρC*c1
2

K * ,
  
c1

2 = λ + 2µ + K
ρ

,  ω
*  is the characteristic frequency of the medium,  
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Upon introducing the quantities (10) in equations (1)-(5), with the aid of (9) and after suppress-
ing the primes, we obtain 
 

  
δ 2 ∂e

∂x1

+ 1−δ 2( )∇2u1 − a1

∂ϕ2

∂x3

+ a2

∂ϕ *

∂x1

−τ t
1 ∂T
∂x1

− a3τ c
1 ∂C
∂x1

=
∂2u1

∂t2 ,  (11) 

 

  
δ 2 ∂e

∂x3

+ 1−δ 2( )∇2u3 + a1

∂ϕ2

∂x1

+ a2

∂ϕ *

∂x3

−τ t
1 ∂T
∂x3

− a3τ c
1 ∂C
∂x3

=
∂2u3

∂t2 ,  (12) 

 

  
a4∇

2ϕ2 + a5

∂u1

∂x3

−
∂u3

∂x1

⎛

⎝⎜
⎞

⎠⎟
− a6ϕ2 =

∂2ϕ2

∂t2 ,  (13) 

 

  
δ1

2∇2 − a7( )ϕ * − a8e+ a9τ t
1T + a10τ c

1C = ∂2ϕ *

∂t2 ,  (14) 

 

  
∇2T = a11τ e

0 ∂e
∂t

+ a12τ e
0 ∂ϕ *

∂t
+τ t

0 ∂T
∂t

+ a13τ c
0 ∂C
∂t

,  (15) 

 

  
a14∇

2e+ a21∇
2ϕ * + a15τ t

1∇2T +τ f
0 ∂C
∂t

− a16τ c
1∇2C = 0 ,  (16) 

 
where 

  
a1,a2( ) = 1

ρc1
2 K ,λ0( ),a3 =

ρc1
2

β1T0

, a4 ,a5,a6( ) = 1
jρ

γ
c1

2 , K
ω *2 , 2K

ω *2

⎛

⎝⎜
⎞

⎠⎟
,δ 2 = λ + µ

ρc1
2  

  
a11,a12 ,a13( ) = 1

K *ω *

T0β1
2

ρ
,
β1 T0ν1

ρ
,
ρc1

4a
β2

⎛

⎝⎜
⎞

⎠⎟
,
  

a14 ,a15,a16( ) = Dω *

c1
2

β1
2

ρc1
2 ,
β2 a
β1

,b
⎛

⎝⎜
⎞

⎠⎟

  
a7 ,a8,a9 ,a10( ) = 2

j0ω
*2

λ1

ρ
,
λ0

ρ
,
ν1c1

2

β1

,
ν2ρc1

4

β1β2T0

⎛

⎝⎜
⎞

⎠⎟
,δ1

2 =
c2

2

c1
2 ,c2

2 =
2α0

ρ j0

,a21 =
Dν2β2ω

*

ρc1
4  

  
τ t

1 = 1+τ1

∂
∂t

,τ c
1 = 1+τ 1 ∂

∂t
,τ f

0 = 1+ ετ 0 ∂
∂t

,τ t
0 = 1+τ 0

∂
∂t

,  

  
τ e

0 = 1+ ετ 0

∂
∂t

,τ c
0 = 1+ γ 1

∂
∂t

,e =
∂u1

∂x1

+
∂u3

∂x3

,∇2 = ∂2

∂x1
2 +

∂2

∂x3
2  
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We introduce the potential functions  φ andψ  through the relations 
 

  
u1 =

∂φ
∂x1

− ∂ψ
∂x3

,u3 =
∂φ
∂x3

+ ∂ψ
∂x1

,  (17) 

              
in the equations (11)-(16), we obtain 
 

   ∇
2φ + a2ϕ

* −τ t
1T − a3τ c

1C = φ,  (18) 
 

   
1−δ 2( )∇2ψ + a1ϕ2 = ψ ,  (19) 

 

   
a4∇

2 − a6( )ϕ2 − a5∇
2ψ = ϕ2 ,  (20) 

 

   
δ1

2∇2 − a7( )ϕ * − a8∇
2φ + a9τ t

1T + a10τ c
1C = ϕ *,  (21) 

 

   
∇2T = τ e

0 a11∇
2 φ + a12

ϕ *( ) +τ t
0 T + a13τ c

0 C,  (22) 

 

   
a14∇

4φ + a21∇
2ϕ * + a15τ t

1∇2T − a16τ c
1∇2C +τ f

0 C = 0  (23) 
 
 
4 SOLUTION OF THE PROBLEM 

We assume the solutions of the form 
 

  
φ,ϕ *,T ,C{ } x1,x3,t( ) = φ ,ϕ *,T ,C{ } x3( )eiξ x1−ct( )  (24) 

                                    
where ξ  is the wave number,  ω = ξc  is the angular frequency, and c is phase velocity of the wave. 
Using (24) in equations (18), (21)–(23), we obtain a system of four homogeneous equations in four 
unknowns   φ ,ϕ *,T  and  C  which for the nontrivial solution yields 
 

  D
8 + A1

*D6 + B1
*D4 +C1

*D2 + D1
* = 0  (25) 

                 
where   D = d dx3 ,  and the coefficients   A1

*, B1
*,C1

*  and   D1
*  are given in appendix A. 

Let the roots of equation (25) be denoted by 
  
mp

2 ( p = 1,2,3,4).  Four positive values of  c  in the 

descending order will be the velocities of propagation of  four possible waves, namely longitudinal 
displacement wave (LD), mass diffusion wave (MD), thermal wave (T) and longitudinal mi-
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crostretch wave (LM), respectively. Since we are interested in surface waves only, it is essential that 
the motion is confined to the free surface of   x3 = 0  in the half-space so that the characteristic roots 

satisfy the radiation conditions 
  
Re mp( ) ≥ 0,( p = 1,2,3,4) . Thus, the solution of field equations 

takes the form 
 

  
φ,ϕ *,T ,C{ } = Ap 1,n1p ,n2 p ,n3 p{ }e−mpx3⎡

⎣
⎤
⎦eiξ x1−ct( )

p=1

4

∑  (26) 

            
where 

  
Ap ( p = 1,2,3,4)  are arbitrary constants. 

The coupling constants 
  
n1p ,n2 p ,n3 p  are given in appendix B. 

Similarly, we assume the solutions of the field equations as 
 

  ψ ,ϕ2{ } x1,x3,t( ) = ψ ,ϕ2{ } x3( )eiξ x1−ct( )  (27) 

          
using (27) in equations (19) and (20), we obtain a system of two homogeneous equations in two 
unknowns ψ  and  ϕ2  which for the nontrivial solution yields 
 

  D
4 + A2

*D2 + B2
* = 0  (28)                                 

         
where 
 

  
A2

* = a4b26 + b27 (1−δ 2 )+ a1a5( ) a4(1−δ 2 ), B2
* = b26b27 − a1a5ξ

2( ) a4(1−δ 2 ),  

Let the roots of equation (28) be denoted by 
  
mp

2 ( p = 5,6).  Two positive values of c  in the de-

scending order will be the velocities of propagation of two coupled transverse displacement and 
transverse microrotational waves (CD I, CD II), respectively. Since we are interested in surface 
waves only, it is essential that the motion is confined to the free surface of   x3 = 0  in the half-space 

so that the characteristic roots satisfy the radiation conditions 
  
Re mp( ) ≥ 0,( p = 5,6) . Thus, the 

solution of field equations takes the form 
 

  
ψ ,ϕ2{ } = Ap 1,n4 p{ }e−mpx3⎡

⎣
⎤
⎦eiξ x1−ct( )

p=5

6

∑  (29) 

                         
where 

  
Ap ( p = 5,6)  are arbitrary constants. 

and 
  
n4 p = a5 mp

2 −ξ 2( ) b27 + a4mp
2( ),  for   p = 5,6( )  
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5 BOUNDARY CONDITIONS 

The appropriate boundary conditions at the surface   x3 = 0 , are 
 

  
t33 = 0,  (30) 

 

  
t31 = 0,  (31) 

    

  m32 = 0,  (32) 
                   

 λ3
* = 0,  (33) 

        

  

∂T
∂x3

+ h1T = 0,  

  

h1 → 0 corresponds to thermally insultated boundary

h1 →∞ corresponds to isothermal boundary

⎧
⎨
⎪

⎩⎪
  (34) 

       

  

∂C
∂x3

+ h2C = 0,

  

h2 → 0 corresponds to impermeable boundary

h2 →∞ refers to isoconcentrated boundary

⎧
⎨
⎪

⎩⎪
 (35) 

 
where 
 

  
t33 =

∂u3

∂x3

+ b1

∂u1

∂x1

−τ t
1T −τ c

1C + a2ϕ
*,  

  
t31 = b2

∂u1

∂x3

+ b3

∂u3

∂x1

− a1ϕ2 ,  

  
m32 = b4

∂ϕ2

∂x3

+ b5

∂ϕ *

∂x1

,
  
λ3

* = b6

∂ϕ *

∂x3

− b5

∂ϕ2

∂x1

,  

and  
  
b1,b2 ,b3( ) = 1

ρc1
2 λ,µ + K ,µ( ),

  
b4 ,b5,b6( ) = ω *2

ρc1
4 γ ,bo ,α0( )  

 
6 DERIVATIONS OF THE SECULAR EQUATIONS 

Making use of equations (26) and (29) in the equations (30)-(35), we obtain a system of six simul-
taneous linear equations:  
 

  
k1p

p=1

6

∑ Ap = 0, k2 p
p=1

6

∑ Ap = 0, k3 p
p=1

6

∑ Ap = 0, k4 p
p=1

6

∑ Ap = 0, k5 p
p=1

6

∑ Ap = 0, k6 p
p=1

6

∑ Ap = 0  (36) 

 
       



R. Kumar et al. / Rayleigh waves in isotropic microstretch thermoelastic diffusion solid half space      307    

	
  

 
Latin American Journal of Solids and Structures 11(2014) 299 – 319 

 

where  
 

  

k1p =
mp

2 − b1ξ
2 + a2n1p + n2 p iξcτ1 −1( ) + n3 p iξcτ 1 −1( ), for( p = 1,2,3,4)

iξmp b1 −1( ), for( p = 5,6),

⎧
⎨
⎪

⎩⎪
,  

  

k2 p =
−iξmp b2 + b3( ), for( p = 1,2,3,4)

− b2mp
2 + b3ξ

2 + a1n4 p( ), for( p = 5,6)

⎧
⎨
⎪

⎩⎪
, k3 p =

iξb5n1p , for( p = 1,2,3,4)

−b4n4 pmp , for( p = 5,6)

⎧
⎨
⎪

⎩⎪
,  

  

k4 p =
n1pmpb6 , for( p = 1,2,3,4)

iξb5n4 p , for( p = 5,6)

⎧
⎨
⎪

⎩⎪
,k5 p =

h1 − mp( )n2 p , for( p = 1,2,3,4)

0, for( p = 5,6)

⎧
⎨
⎪

⎩⎪
,  

  

k6 p =
h2 − mp( )n3 p , for( p = 1,2,3,4)

0, for( p = 5,6)

⎧
⎨
⎪

⎩⎪
,  

 
The system of equations (36) has a non-trivial solution if the determinant of amplitudes AP, 

(p=1, 2, 3, 4, 5, 6) vanishes which leads to the secular equation   
 

  

k11 k12 k13 k14 k15 k16

k21 k22 k23 k24 k25 k26

k31 k32 k33 k34 k35 k36

k41 k42 k43 k44 k45 k46

k51 k52 k53 k54 k55 k56

k61 k62 k63 k64 k65 k66
6×6

= 0  (37) 

          
Equation (37) is the frequency equation for the propagation of Rayleigh waves in a microstretch 

thermoelastic diffusion solid. This equation has complete information about the phase velocity, 
wave number, and attenuation coefficient of the surface waves propagating in such a medium. If we 
write 
 

  c
−1 = ν −1 + iω −1F  (38) 
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so that,  ξ = K + iF , where 
 
K = ω

ν
 , ν  and  F  are real. Also the roots of equations (25) and (28) 

are, in general complex, and hence we assume that 
 
mp = pp + iqp , so that the exponent in the 

plane wave solutions (26) and (29) for the half-space becomes 
 

  
iK x1 − mp

I x3 −νt( )− K
F
K

x1 + mp
Rx3

⎛
⎝⎜

⎞
⎠⎟

,   p = 1,2,3,4,5,6( )   (39) 

 
where 
 

  
mp

R = pp − qp

F
K

, mp
I = qp + pp

F
K

, p = 1,2,3,4,5,6( )  (40) 

         
This shows that ν  is the propagation velocity and  F  is the attenuation coefficient of wave. 
The equations (26) and (29) can be rewritten as 

 

  
φ,ϕ *,T ,C{ } = Ap 1,n1p ,n2 p ,n3 p{ }

p=1

4

∑ exp −Fx1 − λ p
Rx3( )exp i K x1 −νt( )− λ p

I x3( )⎡
⎣

⎤
⎦ , (41) 

 

  
ψ ,ϕ2{ } = Ap 1,n4 p{ }exp −Fx1 − λ p

Rx3( )exp i K x1 −νt( )− λ p
I x3( )⎡

⎣
⎤
⎦

p=5

6

∑ ,  (42) 

           
with 

  
λ p = K mp

R + imp
I( ) = λ p

R + iλ p
I say( ), p = 1,2,3,4,5,6( ) . Moreover, it is clear that  

 

  
λ p

R 2
− λ p

I 2
= K 2 mp

R( )2
− mp

I( )2⎡
⎣⎢

⎤
⎦⎥

, 
  
λ p

R λ p
I cosΦ* = 1

2
K 2mp

Rmp
I   (43) 

         
where  Φ*  is the angle between the real and imaginary parts of the complex vector 

 
λ p . 

Therefore the phase plane (the phase vertical to vector 
 
λ p

R ) and the amplitude plane (the phase 

vertical to vector 
 
λ p

I ) are not parallel to each other, and, hence, the maximum attenuation is not 

along the direction of wave propagation, but along the direction of vector 
 
λ p

R . 
 
 
 
 
7 SURFACE DISPLACEMENTS, MICROROTATION, MICROSTRETCH, TEMPERATURE 

CHANGE AND MASS CONCENTRATION 
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The amplitudes of surface displacements, microrotation, microstretch, temperature change, and 
mass concentration at the surface   x3 = 0  during Rayleigh wave propagation in case of stress-free 
boundaries of half-space are: 
 

{ } ( ) ( )
{ } ( ) ( )

* * * * *
1 1 1

* *
3 2 1 1

, , , , , , exp ,

, , exp ,

s s s s

s s

u T C H G F I Q iK x t

u L M R ik x t

ϕ ν

ϕ ν

= −⎡ ⎤⎣ ⎦
= −⎡ ⎤⎣ ⎦   

(44) 

           
where 
 

  

Q = A
1
exp(−Fx

1
), R = A

5
exp(−Fx

1
), H

1

* = iK − F( )(D
1
− D

2
+ D

3
− D

4
) D

1
,

G* = (n
11

D
1
− n

12
D

2
+ n

13
D

3
− n

14
D

4
) D

1
, F * = (n

21
D

1
− n

22
D

2
+ n

23
D

3
− n

24
D

4
) D

1
,

I * = (n
31

D
1
− n

32
D

2
+ n

33
D

3
− n

34
D

4
) D

1
, L

1

* = iK − F( )(D
5
− D

6
) D

5
, M * = (n

45
D

5
− n

46
D

6
) D

5
,

 (45) 

 
8 PATH OF SURFACE PARTICLES 

We shall now discuss the path of the particles at the surface   x3 = 0 . On the surface   x3 = 0 , we 
have 
 

{ } { }1 3exp ( ) , exp ( )s su XQ i q u YR i qα β= − − = − −  (46) 
            
where   H1

* = X exp −iα{ }, L1
* = Y exp −iβ{ }, q = K x1 −νt( ) . Using the Euler representation of 

complex numbers and simplifying, we obtain from Eq. (46) (retaining only real parts) 
 

  u1s = XQcos(α − q), u3s = YRcos(β − q),  (47) 
                                    

Eliminating q from Eq. (47), we get 
 

2 2
2 21 3 1 3

2 2 2 cos( ) sin ( ),s s s su u u u A
X Y XY

α β α β+ − − = −   

                       
(48) 

Since 

 
  
cos2(α − β )

X 2Y 2 − 1
X 2Y 2 = − sin2(α − β )

X 2Y 2 < 0 , 

Equation (47) represents an ellipse with semimajor axis   X *  semiminor axis   Y * , and eccentricity 
e which are given by 
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( )
2

2 2 2 2
*

1
2 22 2 2 2 2 2 2

2 sin ( ) ,
4 cos ( )

A X YX
X Y X Y X Y

α β

α β

−=
⎡ ⎤+ − − + −⎢ ⎥⎣ ⎦

 
(49)  

 

( )
2

2 2 2 2
*

1
2 22 2 2 2 2 2 2

2 sin ( ) ,
4 cos ( )

A X YY
X Y X Y X Y

α β

α β

−=
⎡ ⎤+ + − + −⎢ ⎥⎣ ⎦

 
(50)  

 

  

e2 =
2 X 2 −Y 2( )2

+ 4X 2Y 2 cos2(α − β )⎡
⎣⎢

⎤
⎦⎥

1
2

X 2 +Y 2 + X 2 −Y 2( )2
+ 4X 2Y 2 cos2(α − β )⎡

⎣⎢
⎤
⎦⎥

1
2

,  (51) 

           
If   θ

*  is the inclination of the major axis to the wave normal, then 

  
tan2θ * =

2XY cos α − β( )
Y 2 − X 2  

Thus, the surface particles trace elliptical paths given by Equation (48) in the vertical planes paral-

lel to the direction of wave propagation. The semi-axes depend upon   Q = A1 exp(−Fx1),

  R = A5 exp(−Fx1)  and hence increase or decrease exponentially. The decay of elliptical paths of 
surface particles is clearly a function of attenuation coefficient  F . 
 
9 PARTICULAR CASES 

(i) Take  τ
0 > 0,  ε = 0  and  γ 1 = τ

0 in equation (37), yield the expression of secular equation for 
the propagation of Rayleigh wave in microstretch thermoelastic diffusion solid half-spaces with 
two relaxation times.  

(ii) Using  τ1 = τ
1 = 0,γ 1 = τ 0  and  ε = 1  in equations (37), gives the corresponding results for the 

propagation of Rayleigh wave in microstretch thermoelastic diffusion solid half-spaces with 
with one relaxation time. 

(iii) On taking  τ 0 = τ
0 = τ1 = τ

1 = γ 1 = 0  in equations (37), provide the corresponding expression 
of secular equation for the propagation of Rayleigh wave in microstretch thermoelastic diffusion 
solid half-spaces with Coupled Thermoelastic (CT) theory. 

(iv) In absence of thermal, stretch and diffusion effects, the equation (37) will be reduced to the 
micropolar elastic medium as obtained by De and Sen-Gupta [1974]. 

 
10 NUMERICAL RESULTS AND DISCUSSION 

The analysis is conducted for a magnesium crystal-like material. Following Eringen [1984], the val-
ues of micropolar parameters are  
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λ = 9.4×1010Nm-2,µ = 4.0×1010Nm-2, K = 1.0×1010 Nm−2 ,
ρ = 1.74×103 Kgm−3, j = 0.2×10−19 m2 ,γ = 0.779×10−9 N

 

 
Thermal and diffusion parameters are given by  
 

  

C* = 1.04×103 JKg−1K −1, K* = 1.7 ×106 Jm−1s−1K −1,α t1 = 2.33×10−5K-1,α t2 = 2.48×10−5K-1,

T0 = .298×103K,τ1 = 0.01,τ 0 = 0.02,α c1 = 2.65×10−4m3Kg-1,α c2 = 2.83×10−4m3Kg-1,

a = 2.9×104m2s−2K-1,b = 32×105Kg-1m5s−2 ,τ 1 = 0.04,,τ 0 = 0.03, D = 0.85×10−8 Kgm−3s

  

 
and, the microstretch parameters are taken as 
 

  jo = 0.19×10−19 m2 ,α o = 0.779×10−9 N ,bo = 0.5×10−9 N ,λo = 0.5×1010 Nm−2 ,λ1 = 0.5×1010 Nm−2

 
MATLAB software 7.04 has been used for numerical computation of the resulting quantities. The 
values of phase velocity and attenuation coefficient with wave number at the stress free boundary 
with thermally insulated and impermeable boundaries, isothermal and isoconcentrated boundaries 
alongwith the relaxation times are shown in fig.1 and fig.2. Normal stress, tangential stress,  tan-
gential couple stress, microstress, temperature change, and mass concentration with wave number  
has been determine at the surface   x3 = 1 , and are shown in figs.3-8. In all figures, the words LSH10 
and GLH10 symbolize the graphs of L-S and G-L theories in microstretch thermoelastic diffusion 
medium for the thermally insulated boundary and impermeable boundary and are represented by 

 and  respectively, while, the words LSH1N and GLH1N symbolize the graphs of L-S 
and G-L theories in microstretch thermoelastic diffusion medium for the isothermal boundary and  
isoconcentrated boundary and represented by   and  respectively.  
   
Phase Velocity 
Fig.1 exhibits the variation of phase velocity with wave number ξ . The values of  phase velocity at 
the isothermal boundary and  isoconcentrated boundary decrease monotonically for smaller values 
of ξ , whereas for higher values of ξ  the values of phase velocity decrease  smoothly and finally 
become dispersionless, nevertheless, for smaller values ξ , a significant difference in the values of 
phase velocity for  LSH10 and  GLH10 are noticed due to thermally insulated and impermeable 
boundaries when compared with  LSH1N and GLH1N  related to  isothermal boundary and  isocon-
centrated boundaries, respectively. 
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Figure 1   Variation of phase velocity  w.r.t  wave number 
 
Attenuation 
Fig.2 depicts the variation of attenuation with wave number ξ . The trend of variation and behav-
ior of attenuation for LSH10 is opposite to LSH1N and GLH10 is opposite to GLH1N for  0 ≤ ξ ≤ 7 , 
the values of attenuation for smaller values of wave number increase sharply for LSH10 and 
GLH10, while, decrease strictly for LSH1N and GLH1N which becomes dispersionless for higher 
values of ξ  for all the cases. Fig.3 shows the variation of normal stress component   T33  with wave 
number ξ . The behavior of   T33  is oscillating for  0 ≤ ξ ≤12  and stable for  20 ≤ ξ ≤ 30  attaining max-
imum at  ξ = 5  for all the cases while the corresponding values are different in magnitude. The val-
ues of   T33  are more in case of LSH10 and small for LSH1N, the similar behavior can be noticed for 
GLH10 and GLH1N respectively. 
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Figure 2   Variation of attenuation  w.r.t  wave number 

 

 
Figure 3   Variation of T33  w.r.t  wave number 

 
Fig.4 depicts the variation of tangential stress component   T31  with wave number ξ . The trend of 
variation and behavior of   T31  is similar to   T33 , but, the corresponding values are different in magni-
tude. An appreciable difference due to various boundaries is noticed for the values of   T31 . Figs.5-6 

exhibits the variations of couple stress components   m32  and microstress  λ3
*  with wave number. The 

graph of   m32  and  λ3
*  shows similar behavior, but their corresponding values are different in magni-

tude. For the higher value of ξ , the values of   m32  and  λ3
*  are convergent, after showing a respecta-
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ble oscillation for smaller values of ξ . Adequate difference at  ξ = 7 , in the values of   m32  is noticed 
corresponding to all the cases, while a major difference can be noticed due to the different bounda-
ries. 
 

 
Figure 4   Variation of T31  w.r.t  wave number 

 

 
Figure 5   Variation of m32  w.r.t  wave number 
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Figure 6   Variation of  w.r.t  wave number 
 
Fig.7 depicts the variation of concentration  C  with wave number ξ . The value of  C  first increase 
for  0 ≤ ξ ≤ 5 , become oscillatory for  5 < ξ ≤15  and finally got dispersionless for  15 < ξ ≤ 30 . Concen-
tration attains its minimum value for LSH10, while maximum value for LSH1N, at  ξ = 4 . Similar 
trend is noticed by GLH10 and LSH1N, however, corresponding values are different in magnitude. 
Fig.8 exhibits the variation of temperature change  T  with wave number ξ . The graph indicates 
that the values  T  for LSH10 and GLH10 decreases monotonically for  0 ≤ ξ ≤ 6 , increase smoothly 
for  6 < ξ ≤10  and becomes stable further, on the other hand, a good difference in the value of T  
can be noticed in cases of GLH10 when compared to GLH1N, for smaller value of wave number.  
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Figure 7   Variation of concentration ‘C’ w.r.t  wave number 

 
 

Figure 8   Variation of temperature ‘T’ w.r.t  wave number 
 
 
11 CONCLUSION 

The propagation of Rayleigh waves in a homogeneous isotropic microstretch thermoelastic diffusion 
solid half-space subjected to stress-free, tangential couple stress, microstress , thermally insulat-
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ed/isothermal, and impermeable/isoconcentrated boundary conditions has been investigated. Secu-
lar equations for surface wave propagation in the considered media are derived. Appreciable effects 
of relaxation times on the phase velocity, attenuation coefficient, normal stress, tangential stress, 
couple stress, microstress, temperature change, and mass concentration have been observed. It is 
observed that the trend of variation and behavior of the all derived components converges towards 
zero with the increase of wave number. It has also been noticed that the graphs of   T33, T31, m32 , λ3

*, C
and  T  shows respectable oscillation for  0 ≤ ξ ≤15  and finally becomes dispersionless. The magnitude 
of components in all the graphs, except the phase velocity are more in case of thermally insulated 
and impermeable boundaries when compared to isothermal and isoconcentrated boundaries, respec-
tively. 
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Appendix A 

* * * *
1 12 11 1 13 11 1 14 11 1 15 11, , ,A d d B d d C d d D d d= = = =

 

  

d11 = − l11 + b13l18( ),d12 = −l12 + b11l11 − b12l15 + b13 ξ 2l18 − l19( )− a2l22 ,

d13 = −l13 + b11l12 + b12 ξ 2l15 − l16( ) + b13 ξ 2l19 − l20( )− a2ξ
2l22 − a2l23,

d14 = −l14 + b11l13 + b12 ξ 2l16 − l17( ) + b13 ξ 2l20 − l21( ) + a2l23,d15 = b11l14 + b12ξ
2l17 + b13ξ

2l21 + a2ξ
2l24 − a2l24 ,

 

  

l11 = b23δ1
2 , l12 = δ1

2(b19b22 − g12 )+ b23g14 , l13 = −b22ξ
2(b19δ1

2 + g11)− g12g14 + b23g13 + a2 g15 − b15( ),
l14 = ξ

2 b22g11 − a2b15( )− g12g13 − a2ξ
2 g15 + b15( ),l15 = δ1

2(a14b19 + b17b23),

l16 = δ1
2(g12b17 − a14b19ξ

2 )− a14g16 + g18b23 + a2g19 ,l17 = ξ
2 a14g16 − a2g19( )− g12g18,

l18 = −a14δ1
2 ,l19 = δ1

2(a14ξ
2 − b17b22 )− a14g14 ,l20 = ξ

2(b17b22δ1
2 + a14g14 )− a14g13 + b22g18 + a2g20 ,

l21 = ξ
2(a14g13 − b22g18 − a2g20 ),l22 = a8b22 − a14b15,l23 = a14(ξ 2b15 − g21)+ b22g22 − a8g23 − b22g24 ,

l24 = ξ
2(a14g21 − b22g22 )+ g23g24 ,

 

  

g11 = b15b20 − b16b19 ,g12 = b23ξ
2 − b24 ,g13 = b14b20 − b16b18,g14 = b16 − b18δ1

2 ,g15 = b14b19 − b15b18,
g16 = b15b20 − b16b19 ,g18 = a8b20 − b16b17 ,g19 = a8b19 − b15b17 ,g20 = a8b18 − b14b17 ,g21 = b14b19 − b15b18,

g22 = a8b19 − b15b17 ,g23 = (b22ξ
2 − b24 ),g24 = a8b18 − b14b17 ,  

  

b11 = ξ
2 1− c2( ),b12 = 1− iξcτ1,b13 = a3 1− iξcτ 1( ),b14 = a9 1− iξcτ1( ),b15 = a10 1− iξcτ 1( ),

b16 = ξ
2 c2 −δ1

2( )− a7 ,b17 = a11(iξc + ετ 0ξ
2c2 ),b18 = ξ

2 1− c2τ 0( )− iξc,b19 = −a13(iξc + γ 1ξ
2c2 ),

b20 = −a12(iξc + ετ 0ξ
2c2 ),b21 = 2ξ 2a14 ,b22 = −a15 1− iξcτ1( ),b23 = a16 1− iξcτ 1( ),b24 = iξc(1− iετ 0ξc),

 

Appendix B 

  

n1p = − −l22mp
6 + ξ 2l22 − l23( )mp

4 + ξ 2l23 − l24( )mp
2 + ξ 2l24

⎡
⎣

⎤
⎦ l11mp

6 + l12mp
4 + l13mp

2 + l14
⎡⎣ ⎤⎦ ,

n2 p = −l15mp
6 + ξ 2l15 − l16( )mp

4 + ξ 2l16 − l17( )mp
2 + ξ 2l17

⎡
⎣

⎤
⎦ l11mp

6 + l12mp
4 + l13mp

2 + l14
⎡⎣ ⎤⎦ ,

n3 p = − −l18mp
8 + ξ 2l18 − l19( )mp

6 + ξ 2l19 − l20( )mp
4 + ξ 2l20 − l21( )mp

2 + ξ 2l21
⎡
⎣

⎤
⎦ l11mp

6 + l12mp
4 + l13mp

2 + l14
⎡⎣ ⎤⎦ ,
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On page 301,u
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Section 10 should read: NUMERICAL RESULTS AND DISCUSSION and not PATH OF SUR-
FACE PARTICLES 
 
We are sorry for these misprints. 
 
The Editor. 
 

( )1 2 3, ,u u u u=r


