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Abstract 
For the first time, this article uses higher-order IGA to study the high frequency of the functionally graded 
sandwich (FGS) square nanoplates with two different skin layers resting on elastic foundations. In this work, 
the elastic foundations use the Pasternak foundation (PF) model with a two-parameter as a spring stiffness 
(𝑘𝑘1) and a shear layer stiffness (𝑘𝑘2). The observation of small-scale effects in nanoplates is accomplished by 
incorporating nonlocal elasticity theory (NET) with a higher-order shear deformation theory (HSDT). The 
governing equation of nanoplates is derived from Hamilton's principle. An extensive parametric investigation 
has been conducted to illustrate the free vibration characteristics of FGS square nanoplates across both low 
and high frequency modes, placing a greater emphasis on the analysis of high frequency behaviour. 
Furthermore, the high eigenmodes and frequencies of the FGS circular/elliptical nanoplates are also added. 
Therefore, the findings presented here contribute to an improved understanding of the vibrations of FGS 
nanoplates at high frequencies. 

Keywords 
Nanoplate, nonlocal elasticity theory, IGA, FGM, high frequency, free vibration. 

Graphical Abstract 

  

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0005-9827-9293
https://orcid.org/0000-0002-7405-5384


High frequency study functionally graded sandwich nanoplate with different skin layers resting on 
Pasternak foundation using higher-order IGA and nonlocal elasticity theory 

Le Hoai et al. 

Latin American Journal of Solids and Structures, 2024, 21(5), e544 2/19 

Nomenclature 
IGA Isogeometric analysis 
FEM Finite element method 
CPT Classical plate theory 
FSDT First-order shear deformation theory 
HSDT Higher-order shear deformation theory 
NSGT Nonlocal strain gradient theory 
SGT Strain gradient theory 
MCST Modified couple stress theory 
NET Nonlocal elasticity theory 
FGM Functionally graded material 
FGS Functionally graded sandwich 
BCs Boundary conditions 

1 INTRODUCTION 

In recent years, nanostructures have become increasingly fascinating due to their distinct mechanical attributes and 
wide-ranging applications across various advanced engineering sectors. The basic forms of nanostructures, including 
nanobeams, nanoplates and nanoshells are of research interest in the field of nanoscale engineering (Ahmadi, 2022; 
Hadji, Avcar, & Civalek, 2021; Kachapi, 2020; Pham, Nguyen, Tran, & Nguyen-Thoi, 2021; Rouhi, Ansari, & Darvizeh, 2016; 
Zemri, Houari, Bousahla, & Tounsi, 2015). To gain a deeper understanding of their mechanical behaviour, a blend of 
experimental study and computer simulations has been utilized (Liew, He, & Wong, 2004; Stölken & Evans, 1998). 
However, this work is quite costly and time-consuming. Therefore, several theoretical models have been developed to 
explore nanostructures, such as NSGT Jiang, Li, and Hu (2023), SGT Toupin (1962), MCST Fleck and Hutchinson (1993), 
and NET Eringen (1984). These models are integrated with different shear deformation theories, encompassing CPTs, 
FSDTs, HSDTs, and quasi-3D theories to account for small-scale effects. Among these theories, NET combined with HSDT 
is often used due to its simple and highly accurate mathematical formulas. 

Some typical studies on the mechanical behaviour of nanostructures include Aksencer and Aydogdu (2011) used an 
exact solution based on NET to analyze the vibration and buckling of nanoplates. (Ahmed Amine Daikh, Drai, Bensaid, 
Houari, & Tounsi, 2021; Daikh & Zenkour, 2020) employed Navier's solutions combined with NET and HSDT to study the 
thermal vibration and bending of FGS nanoplates. Shahverdi and Barati (2017) developed an exact method based on a 
comprehensive NSGT for vibration analysis of FG nanoplates. Arefi and Zenkour (2017) employed an exact solution based 
on a nonlocal HSDT to study the bending of sandwich nanoplates by the seven governing differential equations of the 
system. Sobhy and Radwan (2017) studied the buckling and vibration of FGM nanoplates using a new nonlocal quasi-3D. 
Luat et al. (2021) used a nonlocal closed-form solution to show the effect of dimension and material parameters on the 
bending, free vibration and buckling of FGM nanobeams. Hoa et al. (2021) used a one-variable shear deformation theory 
to examine the nonlocal behaviour of FGM nanoplates. Zhu, Fang, Liu, Nie, and Zhang (2022) employed a nonlocal 
Navier's solution to control the nonlinear vibration of FGS nanoshells. Thai, Ferreira, Nguyen-Xuan, Nguyen, and Phung-
Van (2021) used a nonlocal mesh-free approach based on HSDT to conduct a mechanical analysis of nanoplates. In 
addition, Zeighampour and Shojaeian (2019) employed the Donnell shell theory based on MCST to examine the buckling 
of FGM nanoshells. It can be seen that previous studies often focused on analyzing the static, dynamic, and low frequency 
specific vibration behaviour of nanostructures. In engineering contexts, comprehending the dynamic reactions of 
nanostructures when subjected to high frequency loads is essential. These high frequency vibrations frequently occur in 
diverse micro/nano-electromechanical systems (MEMS/NEMS), nano-optomechanical devices, and resonators 
(Daneshmehr, Rajabpoor, & Hadi, 2015). Nanoplates and nanobeams are pivotal in crafting nanoscale sensors and 
actuators, where their steadfast operation amid high frequency stimulations is paramount. Delving into high frequency 
analyses yields crucial understandings of these structures' resonant tendencies and stability, facilitating tailored design 
optimization for distinct applications. Furthermore, such analyses assist in assessing the susceptibility to undesired 
vibrational modes, which could otherwise precipitate structural compromise or diminished functionality. It can be seen 
that there is an insufficient investigation of the influence of dimension parameters, material properties, and nonlocal 
factors on the high frequency behaviour of FGS nanoplates. So it motivated us to do this work to fill the above gap. 

In addressing the limitations of classical FEM and exact solutions in structural analysis, (Borden, Scott, Evans, & 
Hughes, 2011; Hughes, Cottrell, & Bazilevs, 2005) introduced an advanced computational method known as IGA. This 
method seamlessly integrates Computer-Aided Design (CAD), offering a more robust and efficient approach to structural 
analysis. Using IGA helps to accurately describe the geometric domain as well as approximate unknown fields, so the 
number of variables does not increase. It is expected to yield more accurate results with lower computational costs in 
structural analysis Nguyen-Xuan, Tran, Thai, Kulasegaram, and Bordas (2014). Currently, IGA's open-source code can be 
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found on the Internet and in available resources (H. X. Nguyen et al., 2017; V. P. Nguyen, Anitescu, Bordas, & Rabczuk, 
2015). With the above advantages, in recent years, the development and expansion of IGA to analyze the mechanical 
behaviour of structures (including nanostructures) have attracted the attention of many scientists. For example, 
Natarajan, Chakraborty, Thangavel, Bordas, and Rabczuk (2012) used IGA based on FSDT to analyze the nonlocal free 
vibration of FGM nanoplates. Cuong-Le, Nguyen, Lee, Rabczuk, and Nguyen-Xuan (2021) introduced a nonlocal 3D-IGA 
to examine the free vibration and buckling of multi-directional FGM nanoshells. Banh-Thien, Dang-Trung, Le-Anh, Ho-
Huu, and Nguyen-Thoi (2017) employed nonlocal IGA for buckling analysis of variable-thickness nanoplates. Le and Tran 
(2023) employed non-polynomial higher-order IGA based on NET to study the dynamic response of honeycomb-FGS 
shells. In addition, (Ansari & Setoodeh, 2020; Ansari, Setoodeh & Rabczuk, 2020) also used IGA to discuss frequency loci 
veering and mode shape switching phenomena of FG blades with variable-thickness. The above studies have shown the 
superior convergence rate and accuracy of IGA compared to traditional FEM and analytical methods. Studies also show 
the suitability of IGA combined with HSDT and NET in analyzing the mechanical behaviour of nanostructures. 

In this study, the authors use higher-order IGA combined with NET to analyze high frequency vibration of FGS 
nanoplates. The accuracy and reliability of the proposed method are confirmed by several comparative examples. Then, 
the influence of geometric parameters and material properties on the free vibration of FGS nanoplates is studied and 
described in detail, especially with high frequency vibrations. The obtained results are expected to contribute to 
calculating, designing, and optimizing nanoscale devices working at high frequencies. 

2 PROBLEM MODEL AND ASSUMPTIONS 

2.1 The FGS nanoplate model with different skin layers 

In this study, the FGS square nanoplate with dimensions 𝑎𝑎 × 𝑏𝑏 × ℎ is considered. The sandwich nanoplate includes 
a ceramic core (Al2O3), the FGM-1 bottom layer (Al/Al2O3), and the FGM-2 top layer (Al2O3/SUS304) as presented in 
Fig. 1. A group of ℎ1 − ℎ2 − ℎ3 denotes the skin-core-skin ratio (so-called scheme) of FGS nanoplates with ℎ1 = 𝑧𝑧2 − 𝑧𝑧1, 
ℎ2 = 𝑧𝑧3 − 𝑧𝑧2, and ℎ3 = 𝑧𝑧4 − 𝑧𝑧3. 

 
Figure 1 The FGS square nanoplate resting on PF. 

The effective mechanical properties via thickness are defined by 

⎩
⎪
⎨

⎪
⎧𝑃𝑃(𝑧𝑧) = 𝑃𝑃𝑏𝑏 + (𝑃𝑃𝑐𝑐 − 𝑃𝑃𝑏𝑏) � 𝑧𝑧−𝑧𝑧1

𝑧𝑧2−𝑧𝑧1
�
𝑛𝑛1

𝑧𝑧 ∈ [𝑧𝑧1; 𝑧𝑧2]

𝑃𝑃(𝑧𝑧) = 𝑃𝑃𝑐𝑐 𝑧𝑧 ∈ [𝑧𝑧2; 𝑧𝑧3]

𝑃𝑃(𝑧𝑧) = 𝑃𝑃𝑡𝑡 + (𝑃𝑃𝑐𝑐 − 𝑃𝑃𝑡𝑡) �
𝑧𝑧−𝑧𝑧4
𝑧𝑧3−𝑧𝑧4

�
𝑛𝑛2

𝑧𝑧 ∈ [𝑧𝑧3; 𝑧𝑧4]

 (1) 

in which 𝑃𝑃𝑏𝑏 ,𝑃𝑃𝑡𝑡, and 𝑃𝑃𝑐𝑐 represent the mechanical properties such as elastic moduli, mass density, and Poisson's ratio of 
the bottom and top surfaces and the ceramic core layer of FGS nanoplates. 𝑛𝑛1 and 𝑛𝑛2 are the power-law indexes of FGM-
1 and FGM-2, respectively. The mechanical properties are given in Table 1. The effective elastic moduli and mass density 
via the FGS nanoplate thickness (1-2-1) as plotted in Fig. 2. 
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Table 1 The mechanical properties of FGS nanoplates. 

Materials Elastic moduli 
(GPa) 

Mass density 
(kg/m3) 

Poisson's ratio 

Al 70 2707 0.3 
Al2O3 380 3800 0.3 

SUS304 207 8166 0.3 
Si3N4 348.43 2370 0.3 

 
Figure 2 The effective mechanical properties via the nanoplate thickness. 

2.2 Pasternak foundation 

The PF is two-parameter model (𝑘𝑘1, 𝑘𝑘2) that describes the foundation reaction as a function of the deflection and 
its Laplacian. The reaction-deflection relation of PF is defined by Shahsavari, Shahsavari, Li, and Karami (2018): 

ℛ = 𝑘𝑘1𝑤𝑤(𝑥𝑥,𝑦𝑦) − 𝑘𝑘2 �
𝜕𝜕2

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2

𝜕𝜕𝑦𝑦2
�𝑤𝑤(𝑥𝑥,𝑦𝑦) (2) 

3 THEORETICAL FORMULATION 

3.1 Nonlocal elasticity theory 

According to Eringen's NET (Eringen, 1984), the stress field is determined by: 

(1 − 𝜇𝜇∇2)𝝈𝝈 = 𝝈𝝈𝑙𝑙  (3) 

herein 𝝈𝝈𝑙𝑙  is the local stress tensor, 𝜇𝜇 denotes the small-scale effect (nonlocal factor), and ∇2= 𝜕𝜕2

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2

𝜕𝜕𝑦𝑦2
 is the Laplacian 

operator. Note that 𝜇𝜇 = 0 corresponds to local plate theory. 

3.2 The higher-order shear deformation theory 

Following HSDT (Sobhy, 2016), the displacement field of FGS nanoplates is expressed by 

⎩
⎨

⎧𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑢𝑢0(𝑥𝑥,𝑦𝑦) − 𝑧𝑧 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝑓𝑓(𝑧𝑧)𝜑𝜑𝑥𝑥

𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑣𝑣0(𝑥𝑥,𝑦𝑦) − 𝑧𝑧 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

+ 𝑓𝑓(𝑧𝑧)𝜑𝜑𝑦𝑦
𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =  𝑤𝑤0(𝑥𝑥,𝑦𝑦).

 (4) 

where 𝑢𝑢0, 𝑣𝑣0, 𝜑𝜑𝑥𝑥, 𝜑𝜑𝑦𝑦, and 𝑤𝑤0 are displacement variables. 𝑓𝑓(𝑧𝑧) = 𝑧𝑧/(1 + 4𝑧𝑧2/ℎ2) is Touratier's transverse shear function 
(Touratier, 1991). 

The strain-displacement relations are determined by 

𝜺𝜺 = 𝜺𝜺0⬚ + 𝑧𝑧𝜿𝜿1 + 𝑓𝑓(𝑧𝑧)𝜿𝜿2 (5a) 
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𝜸𝜸 = 𝑓𝑓′(𝑧𝑧)𝜿𝜿3 (5b) 

with the symbol "′" is the derivative with respect to the variable 𝑧𝑧. 
and 

𝜺𝜺0⬚ = �
𝑢𝑢0,𝑥𝑥
𝑣𝑣0,𝑦𝑦

𝑢𝑢0,𝑦𝑦 + 𝑣𝑣0,𝑥𝑥

�; 𝜿𝜿1 = −2�
0.5𝑤𝑤,𝑥𝑥𝑥𝑥
0.5𝑤𝑤,𝑦𝑦𝑦𝑦
𝑤𝑤,𝑥𝑥𝑦𝑦

�; 𝜿𝜿2 = −2 �
𝜑𝜑𝑥𝑥,𝑥𝑥
𝜑𝜑𝑦𝑦,𝑦𝑦

𝜑𝜑𝑥𝑥,𝑦𝑦 + 𝜑𝜑𝑦𝑦,𝑥𝑥

�; 𝜿𝜿3 = �
𝜑𝜑𝑥𝑥
𝜑𝜑𝑦𝑦� (6) 

The local stress resultants are defined by 

[ℕ𝑙𝑙;  ℳ𝑙𝑙;  ℘𝑙𝑙] = ℚ1�𝜺𝜺0⬚;  𝜿𝜿1;  𝜿𝜿2�; Q𝑙𝑙 = ℚ2𝜿𝜿3 (7) 

Where 

ℚ1 = �
𝔸𝔸 𝔹𝔹 𝔹𝔹𝑏𝑏

𝔹𝔹 𝔽𝔽 𝔽𝔽𝑏𝑏
𝔹𝔹𝑏𝑏 𝔽𝔽𝑏𝑏 ℍ

�; ℚ2 = ∫ 𝐸𝐸(𝑧𝑧)
2(1+𝜈𝜈(𝑧𝑧))

�1 0
0 1� �𝑓𝑓′

(𝑧𝑧)�2
ℎ
2
−ℎ
2

𝑑𝑑𝑧𝑧 (8) 

with 𝔸𝔸,𝔹𝔹,𝔹𝔹𝑏𝑏 ,𝔽𝔽,𝔽𝔽𝑏𝑏,ℍ are computed by 

(𝔸𝔸,𝔹𝔹,𝔹𝔹𝑏𝑏 ,𝔽𝔽,𝔽𝔽𝑏𝑏 ,ℍ) = ∫ 𝐸𝐸(𝑧𝑧)
1−𝜈𝜈(𝑧𝑧)2

�

1 𝜈𝜈(𝑧𝑧) 0
𝜈𝜈(𝑧𝑧) 1 0

0 0 1
2(1−𝜈𝜈(𝑧𝑧))

� (1, 𝑧𝑧, 𝑧𝑧2, 𝑓𝑓(𝑧𝑧),
ℎ
2
−ℎ
2

𝑧𝑧𝑓𝑓(𝑧𝑧),𝑓𝑓2(𝑧𝑧))𝑑𝑑𝑧𝑧; (9) 

Now, Eq. (3) is rewritten in matrix form as follows: 

�

ℕ
ℳ
℘
Q

� − 𝜇𝜇∇2 �

ℕ
ℳ
℘
Q

� = �

𝔸𝔸 𝔹𝔹 𝔹𝔹𝑏𝑏 0
𝔹𝔹 𝔽𝔽 𝔽𝔽𝑏𝑏 0
𝔹𝔹𝑏𝑏 𝔽𝔽𝑏𝑏 ℍ 0
0 0 0 ℚ2

��

𝜺𝜺𝒎𝒎⬚
𝜿𝜿1
𝜿𝜿2
𝜿𝜿3

� (10) 

The governing equation for the free vibration of nanoplates is derived from Hamilton's principle as follows Reddy 
(2006): 

∫ �𝛿𝛿𝛿𝛿 + 𝛿𝛿𝛿𝛿𝑓𝑓 − 𝛿𝛿𝛿𝛿�𝑑𝑑𝑑𝑑 = 0𝑇𝑇
0 . (11) 

in which 𝛿𝛿𝛿𝛿, 𝛿𝛿𝛿𝛿𝑓𝑓and 𝛿𝛿𝛿𝛿 denote the virtual strain energy, the virtual deformed foundation and the virtual kinetic energy, 
respectively. They are defined by 

𝛿𝛿𝛿𝛿 = ∫ ��𝛿𝛿𝜺𝜺0⬚�
𝑇𝑇
ℕ + (𝛿𝛿𝜿𝜿1)𝑇𝑇ℳ + (𝛿𝛿𝜿𝜿2)𝑇𝑇℘ + (𝛿𝛿𝜿𝜿3)𝑇𝑇Q�⬚

S 𝑑𝑑S. (12) 

𝛿𝛿𝛿𝛿𝑓𝑓 = ∫ ℛ𝛿𝛿𝑤𝑤⬚
S Ds (13) 

𝛿𝛿𝛿𝛿 = ∫ 𝜌𝜌(𝑧𝑧)(�̇�𝑢𝛿𝛿�̇�𝑢 + �̇�𝑣𝛿𝛿�̇�𝑣 + �̇�𝑤𝛿𝛿�̇�𝑤)⬚
v 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧 = ∫ (𝛿𝛿�̇�𝒖1𝑇𝑇𝓵𝓵�̇�𝒖1 + 𝛿𝛿�̇�𝒖2𝑇𝑇𝓵𝓵�̇�𝒖2 + 𝛿𝛿�̇�𝒖3𝑇𝑇𝓵𝓵�̇�𝒖3)⬚

S 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 = ∫ 𝛿𝛿�̇�𝒖𝑇𝑇ℒ�̇�𝒖⬚
S 𝑑𝑑S (14) 

where 𝜌𝜌 is the mass density and Φ is the inertial matrix defined by 

ℒ = �
𝓵𝓵 0 0
0 𝓵𝓵 0
0 0 𝓵𝓵

� (15) 
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in there 

𝓵𝓵 = �
𝑚𝑚0 𝑚𝑚1 𝑚𝑚𝑓𝑓
𝑚𝑚1 𝑚𝑚2 𝑚𝑚𝑧𝑧𝑓𝑓
𝑚𝑚𝑓𝑓 𝑚𝑚𝑧𝑧𝑓𝑓 𝑚𝑚𝑓𝑓𝑓𝑓

� (16) 

With 

�𝑚𝑚0,𝑚𝑚1,𝑚𝑚2,𝑚𝑚𝑓𝑓,𝑚𝑚𝑧𝑧𝑓𝑓,𝑚𝑚𝑓𝑓𝑓𝑓� = ∫ 𝜌𝜌(1, 𝑧𝑧, 𝑧𝑧2, 𝑓𝑓(𝑧𝑧),
ℎ
2
−ℎ
2

𝑧𝑧𝑓𝑓(𝑧𝑧),𝑓𝑓2(𝑧𝑧))𝑑𝑑𝑧𝑧 (17a) 

And 

𝒖𝒖 = �
𝒖𝒖1
𝒖𝒖2
𝒖𝒖3
� ;  𝒖𝒖1 = �

𝑢𝑢0
−𝑤𝑤,𝑥𝑥
𝜑𝜑𝑥𝑥

� ;  𝒖𝒖2 = �
𝑣𝑣0
−𝑤𝑤,𝑦𝑦
𝜑𝜑𝑦𝑦

� ;  𝒖𝒖3 = �
𝑤𝑤
0
0
�  ;  �̇�𝒖1 = �

�̇�𝑢0
−�̇�𝑤,𝑥𝑥
�̇�𝜑𝑥𝑥

� ;  �̇�𝒖2 = �
�̇�𝑣0
−�̇�𝑤,𝑦𝑦
�̇�𝜑𝑦𝑦

� ;  �̇�𝒖3 = �
�̇�𝑤
0
0
�. (17b) 

The weak form for the free vibration of nanoplates is determined by Reddy (2006): 

∫ ((𝛿𝛿𝜺𝜺)𝑇𝑇ℚ1𝛿𝛿𝜺𝜺 + (𝛿𝛿𝜿𝜿3)𝑇𝑇ℚ2𝛿𝛿𝜿𝜿3)⬚
𝑆𝑆 𝑑𝑑S + ∫ (1 − 𝜇𝜇𝛻𝛻2)ℛ𝛿𝛿𝑤𝑤⬚

𝑆𝑆 dS + ∫ 𝛿𝛿𝒖𝒖𝑇𝑇(1 − 𝜇𝜇𝛻𝛻2)𝛷𝛷�̈�𝒖⬚
𝑆𝑆 𝑑𝑑S = 0 (18) 

3.3 Isogeometric analysis 

IGA based on NURBS basis functions to estimate the displacement field. An inherent benefit of IGA lies in its capacity 
to accommodate varying degrees of smoothness through the adjustment of interpolation orders, facilitating the 
fulfillment of continuity requirements as per HSDT. Furthermore, it is noteworthy that the integration of higher-order 
IGA with NET is regarded as the most efficient analytical approach for nanoplates. 

The displacement field of plates is defined by Hughes, et al. (2005): 

𝒖𝒖(𝜉𝜉, 𝜂𝜂) =

⎩
⎪
⎨

⎪
⎧
𝑢𝑢0
𝑣𝑣0
𝑤𝑤0
𝜑𝜑𝑥𝑥
𝜑𝜑𝑦𝑦⎭
⎪
⎬

⎪
⎫

= ∑

⎣
⎢
⎢
⎢
⎡
𝑅𝑅𝐾𝐾(𝜉𝜉, 𝜂𝜂) 0 0 0 0

0 𝑅𝑅𝐾𝐾(𝜉𝜉, 𝜂𝜂) 0 0 0
0 0 𝑅𝑅𝐾𝐾(𝜉𝜉, 𝜂𝜂) 0 0
0 0 0 𝑅𝑅𝐾𝐾(𝜉𝜉, 𝜂𝜂) 0
0 0 0 0 𝑅𝑅𝐾𝐾(𝜉𝜉, 𝜂𝜂)⎦

⎥
⎥
⎥
⎤

𝒅𝒅𝐾𝐾𝑚𝑚×𝑛𝑛
𝐾𝐾=1  (19) 

with the displacement vector 𝒅𝒅𝐾𝐾 = �𝑢𝑢0𝐾𝐾  𝑣𝑣0𝐾𝐾 𝑤𝑤0𝐾𝐾  𝜑𝜑𝑥𝑥𝐾𝐾 𝜑𝜑𝑦𝑦𝐾𝐾�
𝑇𝑇

 associate with control point 𝐾𝐾 and 𝑅𝑅𝐾𝐾 is the shape function 
(Borden, et al., 2011). 

Substituting Eq. (19) into Eq. (6), the strain field is obtained as follows: 

�𝜺𝜺𝑚𝑚⬚;  𝜿𝜿1;  𝜿𝜿2;  𝜿𝜿3� = ∑ �𝑩𝑩𝑚𝑚
⬚;  𝑩𝑩1;  𝑩𝑩2;  𝑩𝑩3�𝒅𝒅𝐾𝐾𝑚𝑚×𝑛𝑛

𝐾𝐾=1  (20) 

in which 

𝑩𝑩𝑚𝑚
⬚ = �

𝑹𝑹𝐾𝐾,𝑥𝑥 0 0 0 0
0 𝑹𝑹𝐾𝐾,𝑦𝑦 0 0 0

𝑹𝑹𝐾𝐾,𝑦𝑦 𝑹𝑹𝐾𝐾,𝑥𝑥 0 0 0
� (21a) 

𝑩𝑩1⬚ = �
0 0 −𝑹𝑹𝐾𝐾,𝑥𝑥𝑥𝑥 0 0
0 0 −𝑹𝑹𝐾𝐾,𝑦𝑦𝑦𝑦 0 0
0 0 −2𝑹𝑹𝐾𝐾,𝑥𝑥𝑦𝑦 0 0

� (21b) 
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𝑩𝑩2
⬚ = �

0 0 0 𝑹𝑹𝐾𝐾,𝑥𝑥 0
0 0 0 0 𝑹𝑹𝐾𝐾,𝑦𝑦
0 0 0 𝑹𝑹𝐾𝐾,𝑦𝑦 𝑹𝑹𝐾𝐾,𝑥𝑥

� (21c) 

𝑩𝑩3
⬚ = �0 0 0 𝑹𝑹𝐾𝐾 0

0 0 0 0 𝑹𝑹𝐾𝐾
� (21d) 

Substituting Eq. (20) into Eq. (18), the equation for the free vibration of nanoplates is: 

𝑴𝑴�̈�𝒅 + �𝑲𝑲 + 𝑲𝑲⬚
𝑓𝑓 �𝒅𝒅 = 𝟎𝟎 (22) 

The assumption that 𝒖𝒖 = 𝒖𝒖0 𝑠𝑠𝑠𝑠𝑛𝑛(𝜔𝜔𝑑𝑑) ≠ 0, we have: 

��𝑲𝑲 + 𝑲𝑲⬚
𝑓𝑓 � − 𝜔𝜔2𝑴𝑴� = 𝟎𝟎 (23) 

with 𝜔𝜔 is the natural frequency. 
The stiffness matrix is: 

𝑲𝑲 = ∫ ��
𝑩𝑩𝑚𝑚
𝑩𝑩1
𝑩𝑩2

�

𝑇𝑇

�
𝔸𝔸 𝔹𝔹 𝔹𝔹𝑏𝑏

𝔹𝔹 𝔽𝔽 𝔽𝔽𝑏𝑏
𝔹𝔹𝑏𝑏 𝔽𝔽𝑏𝑏 ℍ

�
�����������

ℚ1

�
𝑩𝑩𝑚𝑚
𝑩𝑩1
𝑩𝑩2

� + (𝑩𝑩3)𝑇𝑇ℚ2𝑩𝑩3�
⬚
S 𝑑𝑑S (24) 

The foundation stiffness matrix is: 

𝑲𝑲⬚
𝑓𝑓 = 𝑘𝑘1 ∫ �(𝑹𝑹𝐾𝐾)T(𝑹𝑹𝐾𝐾)dS + 𝜇𝜇[�𝑹𝑹𝐾𝐾,𝑥𝑥�

T
�𝑹𝑹𝐾𝐾,𝑥𝑥� + �𝑹𝑹𝐾𝐾,𝑦𝑦�

T
�𝑹𝑹𝐾𝐾,𝑦𝑦�]�dS + k2 ∫ ��𝑹𝑹𝐾𝐾,𝑥𝑥�

T
�𝑹𝑹𝐾𝐾,𝑥𝑥� + �𝑹𝑹𝐾𝐾,𝑦𝑦�

T
�𝑹𝑹𝐾𝐾,𝑦𝑦� +⬚

S
⬚
S

𝜇𝜇[�𝑹𝑹𝐾𝐾,𝑥𝑥𝑥𝑥�
T
�𝑹𝑹𝐾𝐾,𝑥𝑥𝑥𝑥� + �𝑹𝑹𝐾𝐾,𝑦𝑦𝑦𝑦�

T
�𝑹𝑹𝐾𝐾,𝑦𝑦𝑦𝑦� + �𝑹𝑹𝐾𝐾,𝑥𝑥𝑥𝑥�

T
�𝑹𝑹𝐾𝐾,𝑦𝑦𝑦𝑦� + �𝑹𝑹𝐾𝐾,𝑦𝑦𝑦𝑦�

T
�𝑹𝑹𝐾𝐾,𝑥𝑥𝑥𝑥�]�dS (25) 

The mass matrix is: 

𝑴𝑴 = ∫ �
𝑿𝑿1
𝑿𝑿2
𝑿𝑿3
�

𝑇𝑇

⎝

⎜
⎛
�
𝓵𝓵 0 0
0 𝓵𝓵 0
0 0 𝓵𝓵

�
�������

ℒ

− 𝜇𝜇∇2 �
𝓵𝓵 0 0
0 𝓵𝓵 0
0 0 𝓵𝓵

�
�������

ℒ ⎠

⎟
⎞
�
𝑿𝑿1
𝑿𝑿2
𝑿𝑿3
�⬚

S 𝑑𝑑S (26) 

With 

𝑿𝑿1⬚ = �
𝑹𝑹𝐾𝐾 0 0 0 0
0 0 −𝑹𝑹𝐾𝐾,𝑥𝑥 0 0
0 0 0 𝑹𝑹𝐾𝐾 0

� (27a) 

𝑿𝑿2⬚ = �
0 𝑹𝑹𝐾𝐾 0 0 0
0 0 −𝑹𝑹𝐾𝐾,𝑦𝑦 0 0
0 0 0 0 𝑹𝑹𝐾𝐾

� (27b) 

𝑿𝑿3⬚ = �
0 0 𝑹𝑹𝐾𝐾 0 0
0 0 0 0 0
0 0 0 0 0

� (27c) 

In this study, the BCs are given by 
- Clamped (C): 𝑢𝑢0 = 𝑣𝑣0 = 𝑤𝑤0 = 𝜑𝜑𝑥𝑥 = 𝜑𝜑𝑦𝑦 = 0 at all edges. 
- Simply supported (S): 𝑢𝑢0 = 𝑤𝑤0 = 𝜑𝜑𝑥𝑥 = 0 at 𝑦𝑦 = 0 & 𝑦𝑦 = 𝑏𝑏; 𝑣𝑣0 = 𝑤𝑤0 = 𝜑𝜑𝑦𝑦 = 0 at 𝑥𝑥 = 0 & 𝑥𝑥 = 𝑎𝑎. 
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4 NUMERICAL RESULTS 

This section is done for the following two purposes: (i) verifying the convergence and performance of the proposed 
method; (ii) analyzing the influence of input parameters on the free vibration of FGS nanoplates including low and high 
frequency. 

4.1 Verification 

Firstly, the dimensionless frequencies 𝜔𝜔∗ = 10𝜔𝜔ℎ�𝜌𝜌𝑏𝑏/𝐸𝐸𝑏𝑏 of the SSSS SUS304/Si3N4 square nanoplates are listed in 
Table 2. Observing that the obtained results converge with a mesh size of 9 × 9, and are close to those of exact solutions using 
quasi-3D theory (Sobhy & Radwan, 2017) and HSDT (Ahmed Amine Daikh, et al., 2021). From the comparison results, the 
accuracy and reliability of the present method can be confirmed. Furthermore, the convergence study at high frequencies is 
shown in Fig. 3. It can be seen that the high frequencies change little at the mesh size of 11x11. Therefore, to enhance the 
smoothness of the deformation field and ensure accuracy, a mesh size of 13x13 is used for the following examples. 

 

Figure 3 High frequency of nanoplates with different mesh sizes. 

Secondly, let us consider the SSSS FGM (Al/Al2O3) plate with ℎ = 𝑎𝑎/20 resting on PF. The dimensionless formulas 
are defined by 

𝐾𝐾1 = 𝑘𝑘1𝑎𝑎4

𝐻𝐻𝑏𝑏
;𝐾𝐾2 = 𝑘𝑘2𝑎𝑎2

𝐻𝐻𝑏𝑏
𝑤𝑤𝑠𝑠𝑑𝑑ℎ 𝐻𝐻𝑏𝑏 = 𝐸𝐸𝑏𝑏ℎ3

12(1−𝜐𝜐2)
;  Ω = 𝜔𝜔ℎ�

𝜌𝜌𝑏𝑏
𝐸𝐸𝑏𝑏

  (28) 

It can be observed that the achieved outcomes are in good agreement with those of exact solutions utilizing a novel 
hyperbolic quasi-3D theory (Shahsavari, et al., 2018) and TSDT (Baferani, Saidi, & Ehteshami, 2011), as given in Table 3. 
The maximum error is approximately 3%. This example further strengthens the reliability of the present method. 
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Table 2 Comparison of the first frequencies of SSSS FGM nanoplates (𝑛𝑛 = 1). 

𝒂𝒂
𝒉𝒉

 Method Mesh size Nonlocal factor 
𝝁𝝁 = 𝟎𝟎 𝝁𝝁 = 𝟎𝟎.𝟓𝟓 𝝁𝝁 = 𝟏𝟏 𝝁𝝁 = 𝟏𝟏.𝟓𝟓 𝝁𝝁 = 𝟐𝟐 

10 Present 
 

5 × 5 0.82335 0.80376 0.75243 0.68514 0.61548 
7 × 7 0.82331 0.80372 0.75240 0.68511 0.61545 
9 × 9 0.82330 0.80371 0.75239 0.68510 0.61544 

11 × 11 0.82330 0.80371 0.75239 0.68510 0.61544 
13 × 13 0.82330 0.80371 0.75239 0.68510 0.61544 

Sobhy and Radwan (2017) 0.82250 0.80292 0.75165 0.68443 0.61484 
Ahmed Amine Daikh, et al. (2021) 0.82296 0.80338 0.75208 0.68483 0.61520 

20 Present 5 × 5 0.20970 0.20471 0.19164 0.17450 0.15676 
7 × 7 0.20969 0.20470 0.19163 0.17449 0.15675 
9 × 9 0.20969 0.20470 0.19163 0.17449 0.15675 

11 × 11 0.20969 0.20470 0.19162 0.17449 0.15675 
13 × 13 0.20969 0.20470 0.19162 0.17449 0.15675 

Sobhy and Radwan (2017) 0.21083 0.20581 0.19267 0.17544 0.15760 
Ahmed Amine Daikh, et al. (2021) 0.21098 0.20596 0.19280 0.17556 0.15771 

Table 3 Comparison of the first frequencies of FGM plates resting on PF. 

(K1, K2) n Present Shahsavari, et al. (2018) Baferani, et al. (2011) 
𝛀𝛀 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 (%) 𝛀𝛀 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 (%) 

(0, 0) 0 0.0292 0.0290 0.69 0.0291 0.34 
1 0.0223 0.0227 1.76 0.0226 1.33 
2 0.0202 0.0209 3.35 0.0206 1.94 
5 0.0191 0.0197 3.05 0.0195 2.05 

(100, 0) 0 0.0299 0.0298 0.34 0.0298 0.34 
1 0.0233 0.0238 2.10 0.0236 1.27 
2 0.0214 0.0221 3.17 0.0218 1.83 
5 0.0205 0.0210 2.38 0.0208 1.44 

(100, 100) 0 0.0412 0.0411 0.24 0.0411 0.24 
1 0.0385 0.0388 0.77 0.0386 0.26 
2 0.0381 0.0386 1.30 0.0383 0.52 
5 0.0384 0.0388 1.03 0.0385 0.26 

Note that: Error (%) = 100 × �𝛺𝛺𝑝𝑝𝑝𝑝−𝛺𝛺𝑝𝑝𝑟𝑟�
|𝛺𝛺𝑝𝑝𝑟𝑟|

 with 𝛺𝛺𝑝𝑝𝑝𝑝 and 𝛺𝛺𝑝𝑝𝑟𝑟 dimensionless frequencies of the present and reference, respectively. 

4.2 The high frequency of FGS nanoplates 

In this part, the authors focus on the study of an FGS square nanoplate with 𝑎𝑎 = 𝑏𝑏 = 10 nm. The dimensionless 
formulas are given by Eq. (28) with 𝐸𝐸𝑏𝑏 and 𝜌𝜌𝑏𝑏 are replaced by 𝐸𝐸𝐴𝐴𝑙𝑙  and 𝜌𝜌𝐴𝐴𝑙𝑙. The meshing with the detail of the knots and 
control points is shown in Fig. 4. 

Firstly, the first frequencies of FGS square nanoplates with different values of schemes, power-law indexes, BCs, and 
nonlocal factors are listed in Table 4. The first six frequencies of the FGS nanoplates (1-2-1) are shown in Table 5. Observing 
that the increase in the power-law indexes (𝑛𝑛1 = 𝑛𝑛2) and nonlocal factor 𝜇𝜇 reduces the FGS nanoplate stiffness leading to 
a decrease in the frequency of FGS nanoplates, as expected. Besides, the thicker ceramic core results in a stiffer nanoplate, 
causing the frequency of the FGS nanoplate to increase correspondingly 1-0-1, 1-1-1, 1-2-2, 1-2-1, 1-4-1, and 1-6-1. 
Furthermore, with the same geometry and material parameters, simply supported nanoplates are softer resulting in smaller 
frequencies than tightly clamped nanoplates. 

Secondly, the six frequencies of FGS square nanoplates (1-4-1) from the 20th mode to the 25th mode are listed in 
Table 6 and the frequencies of FGS square nanoplates (1-6-1) from the 150th mode to the 155th mode are listed in Table 7. 
Observing that the frequency of FGS square nanoplates with 𝑛𝑛1 = 𝑛𝑛2 = 0 is the highest because when 𝑛𝑛1 = 𝑛𝑛2 = 0, the 
FGS square nanoplate becomes rich-ceramic nanoplate. It can be seen that, as the nonlocal factors intensify, the 
frequencies of FGS square nanoplates across all mode sequence numbers exhibit a decrease. A thorough examination of 
these tables indicates that the influence of nonlocal factors is more pronounced on higher frequencies compared to their 
effect on the lower frequencies of FGS square nanoplates. 
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Figure 4 Control net of FGS nanoplates. 

Table 4 The first frequencies of FGS nanoplates with 𝑎𝑎/ℎ = 10,𝐾𝐾1 = 100,𝐾𝐾2 = 10. 

BCs 𝒏𝒏𝟏𝟏 = 𝒏𝒏𝟐𝟐 𝝁𝝁 Schemes 
1-0-1 1-1-1 1-2-2 1-2-1 1-4-1 1-6-1 

SSSS 0 0 0.1223 0.1223 0.1223 0.1223 0.1223 0.1223 
0.5 0.1174 0.1174 0.1174 0.1174 0.1174 0.1174 
1.5 0.1095 0.1095 0.1095 0.1095 0.1095 0.1095 
2.5 0.1032 0.1032 0.1032 0.1032 0.1032 0.1032 
4.0 0.0960 0.0960 0.0960 0.0960 0.0960 0.0960 

1 0 0.0844 0.0924 0.0940 0.0980 0.1046 0.1087 
0.5 0.0814 0.0890 0.0905 0.0943 0.1006 0.1045 
1.5 0.0765 0.0835 0.0848 0.0884 0.0941 0.0977 
2.5 0.0728 0.0792 0.0803 0.0837 0.0890 0.0923 
4.0 0.0684 0.0743 0.0752 0.0784 0.0831 0.0861 

2.5 0 0.0727 0.0818 0.0845 0.0889 0.0975 0.1035 
0.5 0.0703 0.0789 0.0814 0.0857 0.0939 0.0995 
1.5 0.0664 0.0743 0.0765 0.0805 0.0880 0.0931 
2.5 0.0634 0.0707 0.0726 0.0765 0.0834 0.0881 
4.0 0.0600 0.0666 0.0682 0.0718 0.0780 0.0823 

9.5 0 0.0658 0.0743 0.0776 0.0823 0.0921 0.1003 
0.5 0.0638 0.0718 0.0749 0.0795 0.0887 0.0965 
1.5 0.0605 0.0679 0.0705 0.0749 0.0833 0.0904 
2.5 0.0579 0.0648 0.0671 0.0713 0.0790 0.0856 
4.0 0.0550 0.0613 0.0632 0.0671 0.0741 0.0800 

CCCC 0 0 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 
0.5 0.1916 0.1916 0.1916 0.1916 0.1916 0.1916 
1.5 0.1761 0.1761 0.1761 0.1761 0.1761 0.1761 
2.5 0.1643 0.1643 0.1643 0.1643 0.1643 0.1643 
4.0 0.1510 0.1510 0.1510 0.1510 0.1510 0.1510 

1 0 0.1366 0.1509 0.1539 0.1605 0.1717 0.1786 
0.5 0.1306 0.1440 0.1468 0.1531 0.1637 0.1702 
1.5 0.1211 0.1332 0.1356 0.1414 0.1509 0.1569 
2.5 0.1139 0.1250 0.1271 0.1325 0.1413 0.1467 
4.0 0.1059 0.1158 0.1175 0.1225 0.1303 0.1352 

4 0 0.1091 0.1258 0.1318 0.1392 0.1551 0.1667 
0.5 0.1048 0.1204 0.1260 0.1330 0.1481 0.1590 
1.5 0.0979 0.1120 0.1168 0.1234 0.1369 0.1467 
2.5 0.0928 0.1057 0.1099 0.1160 0.1284 0.1374 
4.0 0.0870 0.0986 0.1021 0.1078 0.1189 0.1269 

10 0 0.1025 0.1186 0.1252 0.1331 0.1502 0.1642 
0.5 0.0985 0.1137 0.1197 0.1273 0.1434 0.1566 
1.5 0.0923 0.106 0.1112 0.1182 0.1327 0.1446 
2.5 0.0876 0.1001 0.1047 0.1113 0.1246 0.1355 
4.0 0.0825 0.0937 0.0974 0.1036 0.1154 0.1252 
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Table 5 The first six frequencies of FGS nanoplates (1-2-1) with 𝑎𝑎/ℎ = 20,𝐾𝐾1 = 50,𝐾𝐾2 = 15. 

BCs 𝒏𝒏𝟏𝟏 = 𝒏𝒏𝟐𝟐 𝝁𝝁 The first six dimensionless frequencies 
𝛀𝛀𝟏𝟏 𝛀𝛀𝟐𝟐 𝛀𝛀𝟑𝟑 𝛀𝛀𝟒𝟒 𝛀𝛀𝟓𝟓 𝛀𝛀𝟔𝟔 

SSSS 0 0 0.0315 0.0740 0.0745 0.1163 0.1428 0.1453 
1 0.0292 0.0615 0.0618 0.0882 0.1028 0.1046 
2 0.0274 0.0540 0.0544 0.0745 0.0852 0.0867 
3 0.0260 0.0490 0.0493 0.0661 0.0749 0.0762 
4 0.0248 0.0453 0.0456 0.0603 0.0679 0.0691 

1 0 0.0252 0.0582 0.0586 0.0912 0.1118 0.1140 
1 0.0235 0.0486 0.0489 0.0696 0.0810 0.0826 
2 0.0221 0.0430 0.0433 0.0592 0.0676 0.0689 
3 0.0211 0.0392 0.0395 0.0528 0.0597 0.0609 
4 0.0203 0.0365 0.0367 0.0484 0.0545 0.0555 

2 0 0.0233 0.0534 0.0538 0.0836 0.1024 0.1045 
1 0.0218 0.0448 0.0451 0.0640 0.0745 0.0760 
2 0.0206 0.0397 0.0400 0.0546 0.0623 0.0636 
3 0.0197 0.0363 0.0366 0.0488 0.0552 0.0563 
4 0.0189 0.0338 0.0341 0.0449 0.0505 0.0515 

10 0 0.0211 0.0478 0.0482 0.0746 0.0913 0.0931 
1 0.0198 0.0402 0.0405 0.0574 0.0667 0.0680 
2 0.0188 0.0358 0.0361 0.0491 0.0560 0.0572 
3 0.0180 0.0329 0.0331 0.0441 0.0499 0.0509 
4 0.0174 0.0308 0.0310 0.0407 0.0457 0.0467 

SCSC 0 0 0.0440 0.0812 0.1014 0.1365 0.1472 0.1844 
1 0.0405 0.0671 0.0827 0.1022 0.1056 0.1303 
2 0.0378 0.0588 0.0720 0.0859 0.0875 0.1069 
3 0.0357 0.0533 0.0650 0.0760 0.0768 0.0928 
4 0.0340 0.0492 0.0599 0.0692 0.0697 0.0837 

0.5 0 0.0377 0.0694 0.0867 0.1167 0.1256 0.1580 
1 0.0348 0.0575 0.0710 0.0877 0.0905 0.1121 
2 0.0326 0.0506 0.0620 0.0740 0.0752 0.0921 
3 0.0309 0.0460 0.0562 0.0657 0.0663 0.0803 
4 0.0295 0.0427 0.0519 0.0600 0.0603 0.0726 

1.5 0 0.0331 0.0606 0.0757 0.1018 0.1094 0.1379 
1 0.0307 0.0505 0.0622 0.0769 0.0792 0.0983 
2 0.0288 0.0446 0.0546 0.0651 0.0661 0.0811 
3 0.0274 0.0407 0.0496 0.058 0.0585 0.0709 
4 0.0263 0.0378 0.046 0.0532 0.0534 0.0644 

8.5 0 0.0289 0.0526 0.0656 0.0882 0.0947 0.1196 
1 0.0269 0.0441 0.0543 0.0670 0.0690 0.0857 
2 0.0255 0.0391 0.0479 0.0571 0.0579 0.0710 
3 0.0243 0.0359 0.0437 0.0511 0.0515 0.0625 
4 0.0234 0.0335 0.0408 0.0471 0.0472 0.0569 

Table 6 The six frequencies of FGS square nanoplates (1-4-1) with 𝑎𝑎/ℎ = 25,𝐾𝐾1 = 75,𝐾𝐾2 = 50. 

BCs 𝒏𝒏𝟏𝟏 = 𝒏𝒏𝟐𝟐 𝝁𝝁 The six dimensionless frequencies 
𝛀𝛀𝟐𝟐𝟎𝟎 𝛀𝛀𝟐𝟐𝟏𝟏 𝛀𝛀𝟐𝟐𝟐𝟐 𝛀𝛀𝟐𝟐𝟑𝟑 𝛀𝛀𝟐𝟐𝟒𝟒 𝛀𝛀𝟐𝟐𝟓𝟓 

SCSC 0 0 0.2838 0.2879 0.3053 0.3062 0.3071 0.3112 
1 0.1558 0.1564 0.1594 0.161 0.167 0.1696 
2 0.1243 0.1247 0.1276 0.1303 0.1334 0.1355 
3 0.1083 0.1089 0.1114 0.113 0.1161 0.1176 
4 0.0984 0.0995 0.1016 0.1027 0.1057 0.1070 

1 0 0.2464 0.2597 0.2609 0.2629 0.264 0.2778 
1 0.1343 0.1347 0.1368 0.1389 0.1435 0.1464 
2 0.1082 0.1084 0.1113 0.1132 0.1164 0.1182 
3 0.0948 0.0958 0.0981 0.0991 0.1023 0.1036 
4 0.0869 0.0882 0.0901 0.0907 0.0939 0.0949 

2 0 0.2388 0.2451 0.2461 0.2489 0.2548 0.2618 



High frequency study functionally graded sandwich nanoplate with different skin layers resting on 
Pasternak foundation using higher-order IGA and nonlocal elasticity theory 

Le Hoai et al. 

Latin American Journal of Solids and Structures, 2024, 21(5), e544 12/19 

BCs 𝒏𝒏𝟏𝟏 = 𝒏𝒏𝟐𝟐 𝝁𝝁 The six dimensionless frequencies 
𝛀𝛀𝟐𝟐𝟎𝟎 𝛀𝛀𝟐𝟐𝟏𝟏 𝛀𝛀𝟐𝟐𝟐𝟐 𝛀𝛀𝟐𝟐𝟑𝟑 𝛀𝛀𝟐𝟐𝟒𝟒 𝛀𝛀𝟐𝟐𝟓𝟓 

1 0.1278 0.1293 0.1297 0.1318 0.1361 0.1391 
2 0.1031 0.1033 0.1061 0.1078 0.1111 0.1128 
3 0.0906 0.0917 0.0939 0.0947 0.0979 0.0991 
4 0.0833 0.0847 0.0865 0.087 0.0901 0.0911 

10 0 0.2263 0.2271 0.2285 0.2296 0.2413 0.2438 
1 0.1190 0.1206 0.1228 0.1237 0.1266 0.1296 
2 0.0965 0.0969 0.0996 0.1010 0.1042 0.1058 
3 0.0853 0.0864 0.0885 0.0892 0.0924 0.0935 
4 0.0787 0.0802 0.0820 0.0823 0.0854 0.0863 

CCCC 0 0 0.3000 0.3103 0.3267 0.3424 0.3489 0.3515 
1 0.1638 0.1676 0.1732 0.1782 0.1829 0.1834 
2 0.1289 0.1316 0.1361 0.1397 0.1425 0.1432 
3 0.1126 0.1145 0.1185 0.1216 0.1237 0.1244 
4 0.1027 0.1042 0.1079 0.1108 0.1126 0.1132 

1 0 0.2674 0.2675 0.2779 0.2912 0.2994 0.3186 
1 0.1413 0.1445 0.1496 0.1534 0.1581 0.1581 
2 0.1125 0.1147 0.1189 0.1217 0.1246 0.1248 
3 0.0991 0.1007 0.1044 0.1069 0.1091 0.1094 
4 0.0911 0.0924 0.0959 0.0981 0.1000 0.1003 

2 0 0.0331 0.0606 0.0757 0.1018 0.1094 0.1379 
1 0.0307 0.0505 0.0622 0.0769 0.0792 0.0983 
2 0.0288 0.0446 0.0546 0.0651 0.0661 0.0811 
3 0.0274 0.0407 0.0496 0.058 0.0585 0.0709 
4 0.0263 0.0378 0.046 0.0532 0.0534 0.0644 

10 0 0.2592 0.2592 0.2623 0.2747 0.2826 0.301 
1 0.1341 0.1372 0.1421 0.1456 0.1501 0.1502 
2 0.1073 0.1094 0.1134 0.116 0.1189 0.119 
3 0.0949 0.0964 0.1 0.1023 0.1045 0.1047 
4 0.0875 0.0887 0.0921 0.0942 0.0961 0.0963 

Table 7 The first six frequencies of FGS square nanoplates (1-6-1) with 𝑎𝑎/ℎ = 50,𝐾𝐾1 = 45,𝐾𝐾2 = 20. 

BCs 𝒏𝒏𝟏𝟏 = 𝒏𝒏𝟐𝟐 𝝁𝝁 The six dimensionless frequencies 
𝛀𝛀𝟏𝟏𝟓𝟓𝟎𝟎 𝛀𝛀𝟏𝟏𝟓𝟓𝟏𝟏 𝛀𝛀𝟏𝟏𝟓𝟓𝟐𝟐 𝛀𝛀𝟏𝟏𝟓𝟓𝟑𝟑 𝛀𝛀𝟏𝟏𝟓𝟓𝟒𝟒 𝛀𝛀𝟏𝟏𝟓𝟓𝟓𝟓 

SSSS 0 0 0.5337 0.5337 0.5339 0.5423 0.5423 0.5433 
1 0.2237 0.225 0.225 0.2267 0.2267 0.2271 
2 0.1651 0.1657 0.1657 0.1662 0.1662 0.1664 
3 0.1372 0.1372 0.1373 0.1373 0.1377 0.1377 
4 0.1196 0.1196 0.1197 0.1197 0.1200 0.1200 

1 0 0.4844 0.4995 0.4996 0.5076 0.5076 0.5085 
1 0.2094 0.2106 0.2106 0.2122 0.2122 0.2126 
2 0.1545 0.1551 0.1551 0.1555 0.1555 0.1557 
3 0.1284 0.1285 0.1285 0.1285 0.1288 0.1289 
4 0.1120 0.1120 0.1120 0.1120 0.1123 0.1124 

2 0 0.4741 0.4889 0.4890 0.4968 0.4968 0.4977 
1 0.2049 0.2061 0.2061 0.2077 0.2077 0.2081 
2 0.1512 0.1518 0.1518 0.1522 0.1522 0.1524 
3 0.1257 0.1257 0.1258 0.1258 0.1261 0.1261 
4 0.1096 0.1096 0.1097 0.1097 0.1100 0.1100 

10 0 0.4631 0.4775 0.4776 0.4853 0.4853 0.4862 
1 0.2002 0.2013 0.2013 0.2028 0.2028 0.2032 
2 0.1477 0.1483 0.1483 0.1487 0.1487 0.1489 
3 0.1228 0.1228 0.1228 0.1228 0.1232 0.1232 
4 0.107 0.107 0.1071 0.1071 0.1074 0.1074 

CCCC 0 0 0.8159 0.8197 0.8197 0.8394 0.8394 0.8411 
1 0.273 0.2786 0.2786 0.2879 0.2879 0.2881 
2 0.2072 0.2075 0.2075 0.2104 0.2144 0.215 

Table 6 Continued... 
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BCs 𝒏𝒏𝟏𝟏 = 𝒏𝒏𝟐𝟐 𝝁𝝁 The six dimensionless frequencies 
𝛀𝛀𝟏𝟏𝟓𝟓𝟎𝟎 𝛀𝛀𝟏𝟏𝟓𝟓𝟏𝟏 𝛀𝛀𝟏𝟏𝟓𝟓𝟐𝟐 𝛀𝛀𝟏𝟏𝟓𝟓𝟑𝟑 𝛀𝛀𝟏𝟏𝟓𝟓𝟒𝟒 𝛀𝛀𝟏𝟏𝟓𝟓𝟓𝟓 

3 0.1709 0.1746 0.1746 0.1766 0.1767 0.1767 
4 0.1497 0.1529 0.1529 0.1545 0.1545 0.1547 

1 0 0.7636 0.7672 0.7672 0.7856 0.7856 0.7872 
1 0.2555 0.2607 0.2607 0.2694 0.2695 0.2696 
2 0.1939 0.1942 0.1942 0.1969 0.2007 0.2012 
3 0.1599 0.1634 0.1634 0.1652 0.1654 0.1654 
4 0.1401 0.1431 0.1431 0.1446 0.1446 0.1448 

2 0 0.7474 0.7509 0.7509 0.7689 0.7689 0.7704 
1 0.2501 0.2551 0.2552 0.2636 0.2637 0.2639 
2 0.1898 0.1901 0.1901 0.1927 0.1964 0.1969 
3 0.1565 0.1599 0.1599 0.1617 0.1618 0.1618 
4 0.1371 0.14 0.1401 0.1415 0.1415 0.1417 

10 0 0.7300 0.7334 0.7334 0.7509 0.7510 0.7525 
1 0.2442 0.2491 0.2492 0.2574 0.2576 0.2577 
2 0.1853 0.1857 0.1857 0.1882 0.1919 0.1923 
3 0.1528 0.1562 0.1562 0.1579 0.1580 0.1581 
4 0.1339 0.1367 0.1368 0.1382 0.1382 0.1384 

Thirdly, the impact of 𝑎𝑎/ℎ ratio on the frequency of FGS square nanoplates for the first frequency, 15th frequency, 
150th frequency, and 250th frequency are presented in Fig. 5. Observing that the frequency at all levels decreases when 
𝑎𝑎/ℎ increases from 10 to 50. Specifically, decreasing rapidly when 𝑎𝑎/ℎ increases from 10 to 30, and gradually decreases 
when 𝑎𝑎/ℎ takes values from 30 to 50. Besides, the nonlocal factor 𝜇𝜇 has little influence on the first frequency (Fig. 5a) 
but shows a clear influence at high frequencies (Fig. 5b-d). Furthermore, it can be seen that the nonlocal factor 𝜇𝜇 
significantly affects the free vibration of FGS square nanoplates, especially at high frequencies. 

 
Figure 5 The impact of 𝑎𝑎/ℎ on the frequencies of SSSS FGS square nanoplates (1-1-1) with 𝑛𝑛1 = 𝑛𝑛2 = 1, 𝐾𝐾1 = 50, 𝐾𝐾2 = 5. 

Next, the effect of the power-law indexes (𝑛𝑛1 = 𝑛𝑛2) on the frequencies of the FGS square nanoplates are illustrated 
in Fig. 6. According to these figures, the frequency of FGS square nanoplates reduces when 𝑛𝑛1 and 𝑛𝑛2 increase for all low 
and high frequencies. Specifically, the frequency decreases rapidly as the power-law indexes increase from 0 to 2 and 
changes little with the power-law indexes greater than 2. It is observed that the local frequency significantly exceeds the 
nonlocal frequency of FGS square nanoplates, particularly at higher frequencies. This remarkable finding can be 
considered a new finding in this study. 

Table 7 Continued... 



High frequency study functionally graded sandwich nanoplate with different skin layers resting on 
Pasternak foundation using higher-order IGA and nonlocal elasticity theory 

Le Hoai et al. 

Latin American Journal of Solids and Structures, 2024, 21(5), e544 14/19 

 

Figure 6 The effects of (𝑛𝑛1 = 𝑛𝑛2) on the frequencies of SCSC FGS square nanoplates (2-1-2) with 𝑎𝑎/ℎ = 20, 𝐾𝐾1 = 25, 𝐾𝐾2 = 10. 

Now, the influence of the schemes on the frequencies of FGS square nanoplates is illustrated in Fig. 7. Observing 
that when ℎ2/ℎ ratio increases i.e., the ceramic core thickness increases, the frequencies of the FGS nanoplates increase 
for all sequence numbers. This is because the ceramic core thickness increases while the thickness of the two FGM skin 
layers reduces thus the FGS square nanoplate stiffness increases. 

 

Figure 7 The effects of the schemes on the frequencies of SSSS FGS square nanoplates with 𝑛𝑛1 = 𝑛𝑛2 = 2, 𝐾𝐾1 = 15, 𝐾𝐾2 = 5. 
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Figure 8 The effects of 𝜇𝜇 on free vibration of SSSS FGS nanoplates (1-8-1) with 𝑎𝑎/ℎ = 25,𝑛𝑛1 = 𝑛𝑛2 = 2, 𝐾𝐾1 = 15, 𝐾𝐾2 = 5. 

In addition, the effects of 𝜇𝜇 on the mode sequence number are displayed in Figs. 8. As expected, the frequencies of the 
FGS square nanoplates increase with an increase in the mode sequence number. In addition, the frequencies in the case of the 
local plate (μ = 0) exhibit a more rapid increase compared to the nonlocal plates (μ > 0). It can also be observed that when μ > 
0, the mode sequence number increases from 1 to 10 leading to an increase in the frequencies of nanoplates. However, the 
frequencies of FGS square nanoplates change little when the mode sequence number gets values from 50 to 250. 

Furthermore, the effect of the foundation on the frequencies of FGS square nanoplates is demonstrated in Fig. 9. As 
can be seen, the EF helps increase the frequency of FGS square nanoplates for both low and high frequencies. The effects 
of the shear layer (𝐾𝐾2) is more positive than that of the spring layer (𝐾𝐾1). It can also be concluded that the spring layer (𝐾𝐾1) 
only affects the vibration of FGS square nanoplates at low frequencies but seems to have little impact at high frequencies. 

Also, the influence of the spring layer (𝐾𝐾1) on the low frequencies are more significant than the high frequencies, 
while the shear layer (𝐾𝐾2) positively affects the free vibration of FGS square nanoplates at both low and high frequencies. 
This newly discovered result from the study holds valuable implications for the design, testing, and application of FGS 
square nanoplates in devices such as oscilloscopes and resonators. 

 
Figure 9 The influence of PF on the frequencies of SSSS FGS square nanoplates (1-1-1) with 𝑎𝑎/ℎ = 45, 𝜇𝜇 = 1,𝑛𝑛1 = 𝑛𝑛2 = 0.5. 

Finally, to confirm the advantages of the numerical method over the analytical method, the six high eigenmodes of 
the fully simply supported FGS circular and elliptical nanoplates are shown in Fig. 10 and Fig. 11, respectively. 
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Figure 10 The six eigenmodes of the fully simply supported FGS circular nanoplate (1-2-2) with 𝑅𝑅 = 10 nm, ℎ = 𝑅𝑅/15, 𝜇𝜇 = 1, 𝑘𝑘1 =

𝑘𝑘2 = 1, 𝐾𝐾1 = 10,𝐾𝐾2 = 5. 

 
Figure 11 The six eigenmodes of the fully simply supported FGS elliptical nanoplate (1-2-1) with the semi-major axis 𝑎𝑎 = 10 nm, 

the semi-minor axis 𝑏𝑏 = 3𝑎𝑎/4, ℎ = 𝑎𝑎/25, 𝜇𝜇 = 2.5,𝑘𝑘1 = 𝑘𝑘2 = 4, 𝐾𝐾1 = 10, 𝐾𝐾2 = 5. 
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5 CONCLUSIONS 

This study aims to analyze the high frequency analysis of FGS nanoplates (square, circular, elliptical) resting on PF 
by using higher-order IGA based on NET. Numerical examples and comments are made to illustrate in detail the influence 
of geometric parameters and material properties on the free vibrations of the FGS nanoplates, especially at high 
frequencies. Based on the obtained numerical results, some important observations can be summarized as follows: 

➢ Using higher-order IGA eliminates the shear-locking correction factors, increases the convergence rate, improves 
accuracy and saves calculation time. 

➢ Increasing the ceramic core thickness increases both the low and high frequencies of the FGS nanoplates. 

➢ The power-law index increases reduce the FGS nanoplate stiffness, leading to a decrease in the frequencies of the FGS 
nanoplates at both low and high frequencies. Especially when power-law indexes increase from 0 to 2. 

➢ The nonlocal factor diminishes the frequencies of FGS nanoplates, particularly at high frequencies. The impact of the 
nonlocal factor on high frequencies is more pronounced than its effect on low frequencies. 

➢ Pasternak foundation increases the frequency of FGS nanoplates, specifically, the shear layer shows a greater 
influence than the spring layer, especially at high frequencies. 

➢ The results obtained are expected to be useful for calculating, designing, and manufacturing nanoscale devices 
working at high frequencies in engineering practice. 

Author’s Contribuitions: Methodology, Validation, Formal analysis, Investigation, Writing Original draft, Le Hoai; 
Conceptualization, Writing - Reviewing & Editing, Supervision, Project administration, Nhan Thinh Hoang. 

Editor: Rogério José Marczak 

References 

Ahmadi, I. (2022). Free vibration of multiple-nanobeam system with nonlocal Timoshenko beam theory for various boundary 
conditions. Engineering Analysis with Boundary Elements, 143, 719-739. 

Aksencer, T., & Aydogdu, M. (2011). Levy type solution method for vibration and buckling of nanoplates using nonlocal 
elasticity theory. Physica E: Low-dimensional Systems and Nanostructures, 43(4), 954-959. 

Ansari, E., & Setoodeh, A. (2020). Applying isogeometric approach for free vibration, mechanical, and thermal buckling 
analyses of functionally graded variable-thickness blades. Journal of Vibration and Control, 26(23-24), 2193-2209. 

Ansari, E., Setoodeh, A., & Rabczuk, T. (2020). Isogeometric-stepwise vibrational behavior of rotating functionally graded blades 
with variable thickness at an arbitrary stagger angle subjected to thermal environment. Composite Structures, 244, 112281. 

Arefi, M., & Zenkour, A. M. (2017). Thermo-electro-mechanical bending behavior of sandwich nanoplate integrated with 
piezoelectric face-sheets based on trigonometric plate theory. Composite Structures, 162, 108-122. 

Baferani, A. H., Saidi, A., & Ehteshami, H. (2011). Accurate solution for free vibration analysis of functionally graded thick 
rectangular plates resting on elastic foundation. Composite Structures, 93(7), 1842-1853. 

Banh-Thien, T., Dang-Trung, H., Le-Anh, L., Ho-Huu, V., & Nguyen-Thoi, T. (2017). Buckling analysis of non-uniform thickness 
nanoplates in an elastic medium using the isogeometric analysis. Composite Structures, 162, 182-193. 

Borden, M. J., Scott, M. A., Evans, J. A., & Hughes, T. J. (2011). Isogeometric finite element data structures based on Bézier 
extraction of NURBS. International Journal for Numerical Methods in Engineering, 87(1-5), 15-47. 

Cuong-Le, T., Nguyen, K. D., Lee, J., Rabczuk, T., & Nguyen-Xuan, H. (2021). A 3D nano scale IGA for free vibration and buckling 
analyses of multi-directional FGM nanoshells. Nanotechnology, 33(6), 065703. 

Daikh, A. A., & Zenkour, A. M. (2020). Bending of functionally graded sandwich nanoplates resting on Pasternak foundation 
under different boundary conditions. Journal of Applied and Computational Mechanics, 6(Special Issue), 1245-1259. 



High frequency study functionally graded sandwich nanoplate with different skin layers resting on 
Pasternak foundation using higher-order IGA and nonlocal elasticity theory 

Le Hoai et al. 

Latin American Journal of Solids and Structures, 2024, 21(5), e544 18/19 

Daikh, A. A., Drai, A., Bensaid, I., Houari, M. S. A., & Tounsi, A. (2021). On vibration of functionally graded sandwich nanoplates 
in the thermal environment. Journal of Sandwich Structures & Materials, 23(6), 2217-2244. 

Daneshmehr, A., Rajabpoor, A., & Hadi, A. (2015). Size dependent free vibration analysis of nanoplates made of functionally graded 
materials based on nonlocal elasticity theory with high order theories. International Journal of Engineering Science, 95, 23-35. 

Eringen, A. C. (1984). Plane waves in nonlocal micropolar elasticity. International Journal of Engineering Science, 22(8-10), 1113-1121. 

Fleck, N., & Hutchinson, J. (1993). A phenomenological theory for strain gradient effects in plasticity. Journal of the Mechanics 
and Physics of Solids, 41(12), 1825-1857. 

Hadji, L., Avcar, M., & Civalek, Ö. (2021). An analytical solution for the free vibration of FG nanoplates. Journal of the Brazilian 
Society of Mechanical Sciences and Engineering, 43(9), 418. 

Hoa, L. K., Vinh, P. V., Duc, N. D., Trung, N. T., Son, L. T., & Thom, D. V. (2021). Bending and free vibration analyses of 
functionally graded material nanoplates via a novel nonlocal single variable shear deformation plate theory. Proceedings of the 
Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(18), 3641-3653. 

Hughes, T. J., Cottrell, J. A., & Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and 
mesh refinement. Computer methods in applied mechanics and engineering, 194(39-41), 4135-4195. 

Jiang, Y., Li, L., & Hu, Y. (2023). A physically-based nonlocal strain gradient theory for crosslinked polymers. International 
Journal of Mechanical Sciences, 245, 108094. 

Kachapi, S. H. (2020). Free vibration analysis of piezoelectric cylindrical nanoshell: nonlocal and surface elasticity effects. 
WSEAS Transactions on Systems and Control, 15, 141-165. 

Le, P. B., & Tran, T.-T. (2023). Dynamic response of honeycomb-FGS shells subjected to the dynamic loading using non-
polynomial higher-order IGA. Defence Technology.  

Liew, K., He, X., & Wong, C. (2004). On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial 
tension using molecular dynamics simulation. Acta Materialia, 52(9), 2521-2527. 

Luat, D. T., Van Thom, D., Thanh, T. T., Van Minh, P., Van Ke, T., & Van Vinh, P. (2021). Mechanical analysis of bi-functionally 
graded sandwich nanobeams. Advances in nano research, 11(1), 55-71. 

Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S., & Rabczuk, T. (2012). Size-dependent free flexural vibration behavior 
of functionally graded nanoplates. Computational Materials Science, 65, 74-80. 

Nguyen, H. X., Nguyen, T. N., Abdel-Wahab, M., Bordas, S. P., Nguyen-Xuan, H., & Vo, T. P. (2017). A refined quasi-3D 
isogeometric analysis for functionally graded microplates based on the modified couple stress theory. Computer Methods in 
Applied Mechanics and Engineering, 313, 904-940. 

Nguyen, V. P., Anitescu, C., Bordas, S. P., & Rabczuk, T. (2015). Isogeometric analysis: an overview and computer 
implementation aspects. Mathematics and Computers in Simulation, 117, 89-116. 

Nguyen-Xuan, H., Tran, L. V., Thai, C. H., Kulasegaram, S., & Bordas, S. P. A. (2014). Isogeometric analysis of functionally graded 
plates using a refined plate theory. Composites Part B: Engineering, 64, 222-234. 

Pham, Q.-H., Nguyen, P.-C., Tran, T. T., & Nguyen-Thoi, T. (2021). Free vibration analysis of nanoplates with auxetic honeycomb 
core using a new third-order finite element method and nonlocal elasticity theory. Engineering with Computers, 1-19. 

Reddy, J. N. (2006). Theory and analysis of elastic plates and shells: CRC Press. 

Rouhi, H., Ansari, R., & Darvizeh, M. (2016). Size-dependent free vibration analysis of nanoshells based on the surface stress 
elasticity. Applied Mathematical Modelling, 40(4), 3128-3140. 

Shahsavari, D., Shahsavari, M., Li, L., & Karami, B. (2018). A novel quasi-3D hyperbolic theory for free vibration of FG plates 
with porosities resting on Winkler/Pasternak/Kerr foundation. Aerospace Science and Technology, 72, 134-149. 

Shahverdi, H., & Barati, M. R. (2017). Vibration analysis of porous functionally graded nanoplates. International Journal of 
Engineering Science, 120, 82-99. 

Sobhy, M. (2016). An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal 
environment. International Journal of Mechanical Sciences, 110, 62-77. 



High frequency study functionally graded sandwich nanoplate with different skin layers resting on 
Pasternak foundation using higher-order IGA and nonlocal elasticity theory 

Le Hoai et al. 

Latin American Journal of Solids and Structures, 2024, 21(5), e544 19/19 

Sobhy, M., & Radwan, A. F. (2017). A new quasi 3D nonlocal plate theory for vibration and buckling of FGM nanoplates. 
International Journal of Applied Mechanics, 9(01), 1750008. 

Stölken, J. S., & Evans, A. (1998). A microbend test method for measuring the plasticity length scale. Acta Materialia, 46(14), 
5109-5115. 

Thai, C. H., Ferreira, A., Nguyen-Xuan, H., Nguyen, L. B., & Phung-Van, P. (2021). A nonlocal strain gradient analysis of 
laminated composites and sandwich nanoplates using meshfree approach. Engineering with Computers, 1-17. 

Toupin, R. (1962). Elastic materials with couple-stresses. Archive for rational mechanics and analysis, 11(1), 385-414. 

Touratier, M. (1991). An efficient standard plate theory. International journal of engineering science, 29(8), 901-916. 

Zeighampour, H., & Shojaeian, M. (2019). Buckling analysis of functionally graded sandwich cylindrical micro/nanoshells based 
on the couple stress theory. Journal of Sandwich Structures & Materials, 21(3), 917-937. 

Zemri, A., Houari, M. S. A., Bousahla, A. A., & Tounsi, A. (2015). A mechanical response of functionally graded nanoscale beam: 
an assessment of a refined nonlocal shear deformation theory beam theory. Structural Engineering and Mechanics, An Int'l 
Journal, 54(4), 693-710. 

Zhu, C., Fang, X., Liu, J., Nie, G., & Zhang, C. (2022). An analytical solution for nonlinear vibration control of sandwich shallow 
doubly-curved nanoshells with functionally graded piezoelectric nanocomposite sensors and actuators. Mechanics Based 
Design of Structures and Machines, 50(7), 2508-2534. 


