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Abstract 
Analytical methods for calculating the buckling loads in laminated panels often assume uniform edge loads 
without any openings, overlooking real-world conditions with diverse non-uniform edge loads and varying 
cutout sizes. This study aims to explore the buckling behavior of composite panels with and without stiffeners 
under different non-uniform edge load distributions by developing a robust and computationally efficient finite 
element (FE) formulation. Buckling loads are determined for different plate aspect ratios, number of stiffeners 
under various non-uniform edge-loading cases. Furthermore, it addresses the effects of different layup schemes 
and stiffener eccentricities. The analysis employs a 9-noded heterosis plate element and a compatible 3-noded 
beam element, incorporating shear deformation and rotary inertia for both the plate and stiffeners. Additionally, 
due to the non-uniform stress distribution in the stiffened panels, a unique dynamic technique has been 
implemented to account for the stability performance by employing two sets of boundary conditions. The study 
demonstrates that maintaining stiffener eccentricity (est) within the range of 2.0 to 3.0 notably improves 
buckling strength depending on the type of edge loads. 
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1. INTRODUCTION 

Fiber reinforced composites are frequently employed as subordinate elements within structural systems across a wide 
spectrum of engineering domains. Nonetheless, they encounter highly complex loading conditions throughout their 
operational lifespan. The non-uniform in-plane edge load stands out as the primary factor that notably modifies the natural 
vibration response of structural components. Indeed, a scenario may arise wherein the natural frequency of the structural 
element diminishes to zero under a specific intensity of in-plane load, precipitating instability within the components. 
Consequently, premature failure of laminated composites becomes a distinct possibility, especially for the structural element 
with openings. Moreover, to strengthen the stability of the panel, reinforcements such as beams or stiffeners are very much 
required, especially when subjected to diverse environmental conditions. The stiffened panel demonstrates commendable 
efficiency in enhancing structural strength without imposing a significant burden on the structure's weight. Hence, acquiring a 
comprehensive understanding of the stability characteristics of stiffened composite structures under diverse non-uniform edge 
loads is very much essential for evaluating their structural performance, a matter that has gained considerable attention in 
recent years. 

In order to investigate the buckling behaviour of stiffened laminated composite panels, it is crucial to first understand 
how these panels behave without stiffeners. In this context, over the past few years, many researchers have delved into the 
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buckling capacity of panels with and without openings under uniform edge loads (Shanmugam et al., 1999; Altunsaray and 
Bayer 2014;  Nguyen et al., 2024). Typically, these panels are integral parts of complex structures, and their interaction with 
adjacent components may lead to non-uniform loading. Hence, for a comprehensive analysis, it is imperative to consider non-
uniform loads. Some researchers have investigated the buckling behavior of unreinforced perforated and non perforated 
panels under non-uniform edge loads (Ghannadpour et al., 2006; Rajanna et al., 2016a; Subash Chandra et al., 2020; 
Swaminathan et al., 2023; Yathish Muddappa et al., 2023a). 

The previous discussions primarily focused on panels without stiffeners, yet panels with stiffeners are prevalent in various 
practical applications, such as aircraft fuselages and wings, ship hulls and decks, offshore drilling rigs, pressure vessels, roofing 
units, and rocket launching pedestals. Timoshenko and Gere (1961) examined the buckling behavior of rectangular stiffened 
panels with longitudinal and transverse ribs.  Mukhopadhyay and Mukherjee (1990) conducted stability analysis of reinforced 
plates using a semi-analytical finite difference method, highlighting the significant improvement in buckling strength with 
longitudinal stiffeners compared to lateral ones. Jaunky et al., (1996) investigated grid-reinforced composite panel stability, 
considering skin-stiffener interaction effects. Satish Kumar and Mukhopadhyay (1999) developed a new finite element method 
incorporating triangular compressive and shear loads, while Huang et al., (2015) demonstrated the superiority of grid-type 
stiffeners over bi-directional ones under bi-directional loading. Similarly,  Zhao and Kapania (2016) employed an efficient finite 
element method to examine the buckling capacity of the reinforced panel. They introduced displacement continuity 
conditions at the panel-stiffener interface to evade re-meshing. Sadamoto et al., (2017) examined the buckling performance of 
stiffened panel by employing an efficient Galerkin mesh-free flat shell formulation. To avoid the shear-locking problem, the 
stiffness matrix was integrated employing stabilized conforming nodal integration (SCNI). Later, Rajanna et al., (2018) studied 
reinforced perforated panel buckling under uniform edge loads, though only ring stiffeners were considered, providing stress 
concentration relief but not significant buckling strength enhancement. Deng et al., (2019) introduced a method for 
investigating local and overall buckling modes of reinforced panels, allowing stiffener placement anywhere within the plate. 
Despite the practical importance of non-uniform edge loads, technical literature on the subject is limited, likely due to the 
analysis complexity. Rajanna et al., (2016b) investigated the effect of partial edge loads on the buckling characteristics of 
stiffened laminated composite panels. The effect of various non-uniform edge loads such as partial load from one edge, partial 
load from both edges and load from the central portion of panel have been considered in their study. Chandra (2022) 
developed finite element formulations for predicting the stability of laminated composite panels with ring stiffener around the 
cutout under non-uniform edge loads. They tackled displacement compatibility at the interface between the panel and 
stiffeners utilizing the first-order shear deformation theory. Even though stress concentration decreases, the absence of 
longitudinal stiffeners alongside the ring stiffener did not notably enhance buckling strength. 

In order to enhance buckling strength, it is essential to distribute stiffeners evenly across the panel rather than 
concentrating them solely around the cutout. Exploring number of stiffeners under non-uniform edge loads becomes crucial 
for increasing strength. Existing literature shows insufficient information on this aspect. Kalgutkar et al., (2023) recently 
investigated the impact of different elliptical cutout orientations on stiffened panel stability under non-uniform edge loads 
using ABAQUS FE software. Their study incorporated longitudinal stiffeners away from the cutout, yet these failed to mitigate 
stress concentration at the cutout edges. Similarly, Yathish Muddappa et al., (2023b) analyzed the buckling behavior of 
perforated fiber metal laminates reinforced with ring flat stiffeners around the cutout under uniform and non-uniform edge 
loads. While stress concentration reduced, but not notably enhance buckling strength due to the absence of longitudinal 
stiffeners alongside the ring stiffener. Zeybek and Özkılıç (2023) demonstrated that appropriately sized intermediate ring 
stiffeners positioned at the cylindrical shell midpoint effectively stabilize structures, particularly in windy conditions, through 
analytical and numerical analyses. 

Existing literature predominantly covers the buckling behavior of panels with or without cutouts under uniformly 
distributed edge loads, with limited research on non-uniform edge load effects. Few studies focus on the stability of perforated 
reinforced panels under non-uniform edge loads. On the contrary, the stiffened panel under the action of non-uniform edge 
load is scarcely addressed in the literature. This investigation examines the influence of various non-uniform in-plane edge 
loads, stiffener eccentricities, cutout sizes and ply-orientations on laminated stiffened panel buckling behavior. 
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2. THEORY AND FINITE ELEMENT FORMULATION 

The mathematical formulation for analyzing the buckling characteristics of stiffened laminated composite panels using 
finite element techniques involves considering a panel of dimensions a × b × h, with an attached stiffener of cross-section 
𝑏𝑠 x d𝑠. A schematic diagram of the stiffened panel in the cartesian coordinate system (x-y-z) is presented in figure 1(a), 
figure 1(b) displays a mesh pattern of a typical panel featuring a circular cutout at the center and figure 1(c) represents a 
typical panel under the action of a typical in-plane edge load. The mesh pattern is designed to have a finer resolution near 
the perforation region while minimizing edge skewness. Moreover, the outer region of the panel maintains a rectangular 
mesh with an aspect ratio close to 1. Additionally, figure 2 illustrates seven types of non-uniform edge loads, including five 
linear variations (figures 2a to 2e) described by the loading function, PY = P0 (1 – αy/b), along with sinusoidal and inverse 
sinusoidal edge loads shown in figures 2 (f) and 2 (g), respectively. Here, P0 represents the maximum intensity of load per 
unit length and α is the load-defining factor to obtain different kinds of loading patterns as shown in figure 2. For instance, 
α = 0 defines uniformly distributed edge load (figure 2 (a)) and α = 2.0 defines pure in-plane bending (figure 2 (e)). By 
varying the value of α, one can obtain different patterns of linearly varying edge loads as shown in figure 2 (a) – (e). The 
analysis also explores six different eccentric stiffener patterns depicted in figure 3. 
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Figure 1 (a) Conceptual model of a stiffened laminated panel (b) Detailed mesh pattern over a quarter panel (c) Typical panel under a 
typical edge load for the case of sinusoidal edge load. 

 
Figure 2  Panel with different loading patterns. 

 

Figure 3 Different typical stiffener configurations. 

2.1 Governing equations 

The equation of motion for the stiffened laminated composite panel applied with non-uniform in-plane edge loading 
condition (figure 2) can be expressed as, 
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where [M], [K] and [KG] are the consistent mass matrix, elastic stiffness matrix and geometric stiffness matrix due to in-
plane load, respectively. Equation (1) can be simplified for buckling and vibration problems as given below: 

 

Buckling problem:  When{𝑞̈} = 0, Eq. (1) reduces to a static case as, 
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Vibration problem: When the structural component vibrates harmonically under the action of in-plane edge load, Eq. (1) 

becomes, 
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In the above equation (Eq. 3), when P0 approaches zero, the equation describes a free vibration problem without an in-

plane load. If P0 is nonzero, the equation still describes a free vibration problem but with the influence of an in-plane load. 

At a specific value of P0 in Equation (3), the frequency's square (ω2) reaches zero, indicating the critical buckling load. 

Determining the buckling load using this dynamic approach proves highly convenient as it circumvents singularity issues 

inherent in eigenvalue solvers used in static analysis. This analytical method has been employed to ascertain critical loads 

for various scenarios discussed in this study. 

2.2 Plate element formulation 

The panel is discretized using a 9-noded heterosis plate element, as illustrated in figure 4. This element incorporates five 

degrees of freedom (u, v, w, θx, and θy) at all exterior nodes and four degrees of freedom (u, v, θx, and θy) at the interior 

node. The heterosis element, depicted in figure 4(a), is derived from both the eight-noded serendipity (figure 4(b)) and 

nine-noded Lagrange elements (figure 4(c)). The comprehensive formulation of the heterosis plate element along with its 

corresponding stiffness matrices has been extensively discussed by Rajanna et al. (2016b), and thus is not presented here 

to avoid repetition. 

 

Figure 4 Different types of plate elements. 

Using the Reissner–Mindlin hypothesis, the displacement field in terms of primary in-plane displacements(𝑢̅, 𝑣̅) and 
transverse displacement (𝑤̅) with respect to mid-plane displacements (u, v, w) and rotations (𝜃𝑥  ,𝜃𝑦) at a point (x, y, z) by 

incorporating the shear deformation effect is expressed as, Kumar et al., (2005). 

               
     = +( , , ),  ( , , ),  ( , , ) ( , ),  ( , ),  ( , ) ( , ),  ( , ),  0p p p p p p p p

x yu x y z v x y z w x y z u x y v x y w x y z x y x y      (4) 



 

 

Even though a linear analysis is performed in the current work, the initial stress stiffness is calculated by employing the 
Green–Lagrange strain displacement relation. As a result, Green–Lagrange’s strain displacement relation with reference to 
a plate element in Cartesian coordinate system is expressed as (Cook, 2007). 
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The strain-displacement equation, which is shown in Eq. (5) has two parts, i.e., linear strain and non-linear strains, 

     = +L NL
ij ij ij           (6) 

The linear strain vector {εij
L} is used to derive elastic stiffness matrix, and the non-linear strain vector {𝜀𝑖𝑗

𝑁𝐿} is used for the 

geometric stiffness matrix(Bathe, 2006). The stress-strain relation for the laminated panel is given by (Reddy 1996) 
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The laminates constitutive coefficients in Eq. (7) are defined by, 
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in which m is the number of layers, κ is the shear correction factor, which is given by 5/6 (Lal and Saini,2013). 
 
The different participating element level matrices such as elastic stiffness matrix [𝑘𝑒], geometric stiffness matrix [𝑘𝐺] and 
consistent mass matrix [𝑚𝑒] have been derived using the corresponding energy expressions (Bathe 1996): 
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in which, [𝑁̅] is the shape function matrix and [𝐼]̅ is the inertia matrix consisting of 𝐼1, 𝐼2 𝑎𝑛𝑑 𝐼3 which are given by 

(𝐼1, 𝐼2, 𝐼3) =  ∑ ∫ 𝜌
𝑚

(1, 𝑧, 𝑧2𝑧𝑘

𝑧𝑘−1

𝑚
𝑘=1 )𝑑𝑧. The global matrices are generated by assembling the corresponding element 

matrices and are stored in skyline form. The subspace iteration technique is adopted to solve the eigenvalue problems 
(Bathe 1996). 

2.3 Stiffener element formulation 

figure 5 illustrates the standard geometry of a 3-noded isoparametric beam element with a width of bs and a depth of 
ds, using a positive set of coordinates. In this formulation, the stiffener is represented as a laminated beam, allowing it to 
be positioned in any arbitrary direction at an angle of ψ relative to the x-axis of the panel, as depicted in figure 5. 

 

Figure 5 Arbitrarily oriented stiffener 

The conventional beam model neglects the effect of lateral strains (Krishnaswamy et al., 1992). The elimination of 
lateral strains results in the loss of some stiffness coefficients and this type of analysis is restricted to cross-ply beams. In 
the present work, the constitutive relationship accounting for lateral strains (Kolli and Chandrashekhara, 1996), wherein 
the beam constitutive equation is derived from laminated plate equation, Eq. (7), by ignoring the stresses in the width or y-
direction (𝜎𝑦 =  𝜏𝑥𝑦 =  𝜏𝑦𝑧 = 0) but not the strains (𝜀𝑦 ≠  𝛾𝑥𝑦 ≠  𝛾𝑦𝑧 ≠ 0).  

The laminated constitutive equation for an arbitrary oriented stiffener can be written as, 
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 In abbreviated form, Eq. (13)is written as, 
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Fig.3.8  Nine-noded heterosis element with an arbitrary located three-noded stiffener
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Further, [Ds] is the shear constitutive relations, which is derived as, 
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Using Green-Lagrange’s strain-displacement expression, the linear strain-displacement matrix [B] and the non-linear 

strain-displacement matrix [𝐵𝐺] have been worked out. Similarly, the corresponding elastic stiffness matrix [𝑘𝑒], geometric 

stiffness matrix [𝑘𝐺] and mass matrix [m] of the stiffener element may be expressed as follows: 
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where [𝑇𝑒] and [𝑇𝑜] are transformation matrices, in which [𝑇𝑒] takes care of the eccentricity of the stiffener and [𝑇𝑜] 

takes care of arbitrary orientation of the stiffener, Rajanna et al. (2018).  

3. Results and discussion 

The analysis investigates the buckling behavior of stiffened panels under various non-uniform edge-loading conditions. 

The study focuses exclusively on eccentric stiffeners, which are attached to the bottom face of the plate. The panel's 

thickness-to-width ratio (h/b) is set at 0.01, and unless otherwise specified, the stiffener width is equal to the panel 

thickness. The material properties for both the panel and the stiffeners are E1 = 25, E22 = 1.0, G12 = G13 = 0.50, G23 = 0.20, 

and ν12 = 0.25 unless specified otherwise. Boundary conditions are defined using the notations S (simply supported), C 

(clamped), and F (free), consistent with those outlined by Rajanna et al. (2016a). 

 

The vibration frequency and the critical loads are presented in non-dimensional form as follows [Reddy and Phan (1985)]: 

Table 1: Non-dimensional parameters 

No. Parameter Stiffened/unstiffened panels 
Isotropic Composite 

1 Non-dimensional frequencies (ω ) 2b h D  2 2
22 b E h  

 

2 Non-dimensional buckling load (cr) 2
 crP b D  

2 3
 22 crP b E h   

where ( )= −3 212 1D Eh , ω and  Pcrare the absolute frequencies and absolute critical loads, respectively. 



 

 

3.1 Comparative studies–panel without cutout 

To verify the accuracy of the computed stiffness and mass matrices, the free vibration response of a square laminated 
panel without a cutout is predicted. This prediction is carried out using three different types of elements: the 9-noded 
heterosis element (9-NHE), 9-noded Lagrange element (9-NLE), and 8-noded serendipity element (8-NSE). The results are 
compared with the closed-form solutions (CFS) provided by Reddy and Phan (1985), as presented in Table 2. Similarly, to 
assess the accuracy of the geometric stiffness matrix, buckling analysis is conducted on a cross-ply laminated square panel 
subjected to various types of non-uniform edge loads. This analysis utilizes the same three types of elements for different 
h/b ratios. The results, along with the closed-form solutions of Zhong and Gu (2007), are tabulated in Table 3. While all 
elements yield satisfactory results in both vibration and buckling analyses, the heterosis element demonstrates better 
accuracy. Consequently, the heterosis element is utilized for the remaining of the work. 

Table 2:  Non-dimensional frequencies (ϖ) of SSSS edged angle-ply square panel; E11/E22 = 40, G12 = G13 = 0.6E22, G23 = 0.5E22 and             
ν12 = 0.25. 

b/h 

2 layers (45/-45)  8 layers (45/-45/45…) 

Present results 
(Reddy and 
Phan 1985) 

Present results 
(Reddy and 
Phan 1985) 9-NHE 9-NLE 8-NSE 9-NHE 9-NLE 8-NSE 

5 10.335 10.244 10.243 10.335  12.892 12.863 12.862 12.892 

10 13.044 12.975 12.975 13.044 19.289 19.235 19.235 19.289 

20 14.179 14.154 14.153 14.179 23.259 23.225 23.225 23.259 

25 14.338 14.322 14.321 14.338 23.924 23.899 23.899 23.924 

50 14.561 14.557 14.556 14.561 24.909 24.902 24.901 24.909 

100 14.618 14.617 14.617 14.618  25.176 25.174 25.174 25.176 

Table 3:  Comparison of γcr for cross-ply square panels (0/90/0) under linearly varying loads; E1/E2 = 40, G12 = G13 = 0.6E22, G23 = 0.5E2 and 
ν12 =0.25. 

Load pattern (α) Source h/b = 0.01 h/b = 0.05 h/b = 0.1 

0.5 Zhong and Gu (2007) 47.267 41.075 29.432 

9–Heterosis 47.261 40.939 29.228 

9–Lagrangian 47.259 40.930 29.225 

8–Serendipity 47.256 40.921 29.120 

     

1.0 Zhong and Gu (2007) 64.982 56.705 40.999 

9–Heterosis 64.975 56.486 40.525 

9–Lagrangian 64.962 56.478 40.514 

8–Serendipity 64.960 56.457 40.500 

     

1.5 Zhong and Gu (2007) 91.374 80.336 47.708 

9–Heterosis 91.355 79.989 48.300 

9–Lagrangian 91.338 79.957 48.291 

8–Serendipity 91.331 79.930 48.285 

 

2.0 Zhong and Gu (2007) 129.785 114.837 47.872 

9–Heterosis 129.758 114.167 48.720 

9–Lagrangian 129.730 114.152 48.660 

8–Serendipity 129.725 113.980 48.514 

 



 

 

3.2  Comparative studies– unstiffened panel with cutouts 

To broaden the comparative study, the validation of the panel with various cutout sizes is extended to include the analysis 
of buckling issues under uniformly distributed edge loads. Critical buckling loads are assessed for panels comprised of 8-
layered (0/90)2s and 40-layered (45/-45/0/90)5s laminates using the heterosis element. The validation encompasses cutouts 
of six different sizes. Results are presented in Table 4, alongside those obtained using the FE package ANSYS and findings 
from similar studies reported by other researchers (Jain and Kumar, 2004; Ghannadpour et al., 2006). The results obtained 
using the FE package ANSYS are enclosed in parentheses. A notable agreement is observed between the outcomes of the 
present study and those from existing literature and the FE package ANSYS. 

Table 4:  Non-dimensional buckling load parameters (γcr) for simply supported square laminates with central circular cutout under 

uniform edge loads; E11 = 130.0 GPa, E22 = 10.0 GPa and ν12 = 0.35, G12 = G13 = 5.0 GPa, G23 = 3.4 GPa. 

φ/b 

40-layers (45/-45/0/90)5S, b/h = 75  8-layers (0/90)2S, b/h = 100 

Present Jain and Kumar 
(2004) 

Present Ghannadpouret 
al., (2006) 

0.0 19.16 (19.16) 19.23  13.82 (13.83) 13.79 

0.1 18.41 (18.43) 18.56  12.83 (12.84) 12.80 

0.2 16.94 (16.96) 17.10  10.84 (10.85) 10.82 

0.3 15.40 (15.41) 15.30  8.98   (08.99) 8.97 

0.4 14.63 (14.63) 14.63  7.52   (07.52) 7.51 

0.5 13.96 (13.97) 13.84  6.40   (06.40) 6.39 

3.3 Comparative studies– stiffened panel 

Additionally, the buckling behavior of a simply supported panel with a central single stiffener under uniformly distributed 
edge load across width b is investigated for varying bending rigidity of the stiffener. The parameter δ ranges from 0.05 to 
0.20, while β varies from 5 to 15. Results, presented in Table 5 in non-dimensional form as 𝛾𝑐𝑟 = 𝑃𝑐𝑟𝑏2/(𝜋2𝐷),  are 
compared with classical solutions of Timoshenko and Gere (1961), numerical solutions from Mukhopadhyay and 
Mukherjee (1990), and Hamedani and Ranji (2013). Across all cases, the present results align well with those in existing 
literature, affirming the accuracy of both the geometric stiffness matrix for the plate and the stiffeners. 

Table 5: Validation of non-dimensional critical loads for a simply supported square stiffened panel. 

𝛃̅ η 

Non-dimensional buckling load 

NeglectingT and e  Considering T and e 

Timoshenko 
and Gere (1961) 

Mukhopadhyay 
and Mukherjee 

(1990) 

Hamedani 
and Ranji 

(2013) 

Present 
(heterosis) 

 Hamedani 
and Ranji 

(2013) 

Present 
(heterosis) 

5 0.05 12.00 11.72 11.80 11.80  11.91 11.86 
0.10 11.10 10.93 10.98 10.98  11.09 11.27 
0.20 9.72 9.70 9.69 9.69  9.86 10.01 

         

10 0.05 16.00 16.00 15.97 15.97  18.16 17.91 
0.10 16.00 16.00 15.97 15.97  16.97 17.20 
0.20 15.80 15.44 15.67 15.67  15.04 15.77 

         

15 0.05 16.00 16.00 15.97 15.97  20.41 20.30 
0.10 16.00 16.00 15.97 15.97  20.41 20.33 
0.20 16.00 16.00 15.97 15.97  19.36 20.33 

  T and e = Torsional rigidity and eccentricity of the stiffener 



 

 

3.4 Stability analysis of perforated composite laminates with various patterns of stiffener subjected to diverse non-

uniform edge loadings. 

In many scenarios, stiffened panels undergo diverse forms of non-uniform edge loading, leading to uneven stress 
distribution within the panel. This non-uniform stress distribution significantly impacts the stability characteristics of the 
stiffened panels. Additionally, the presence of a cutout within the panel can induce local buckling, potentially influencing 
global buckling behavior and causing an overall decline in stiffness, the extent of which relies on the size and shape of the 
cutout. The reduction in stiffness due to cutouts can be mitigated by selecting an appropriate number of stiffeners and its 
eccentricity. Therefore, it is imperative to conduct a comprehensive investigation into the factors influencing the stability 
attributes of the structure. Thus, this study delves into the impact of various stiffeners and their eccentricity on the stability 
characteristics of composite laminates under diverse non-uniform edge loads. The assorted types of non-uniform loading 
and stiffener patterns considered for the case study are depicted in figure 2 and figure 3, respectively. An eight-layered 
symmetric cross-ply (0/90)2S and angle-ply (±45)2S laminated configurations are employed for the panel, with the ply-
orientation of the stiffener consistently parallel to its axis, irrespective of its orientation. Moreover, the thickness-to-width 
ratio of the panel (h/b) is set at 0.01, and the stiffener width matches the panel thickness unless stated otherwise. Various 
parametric analyses are conducted in the subsequent subsections. 

3.4.1 Effect of various non-uniform edge loads on different cutout sizes. 

The study investigates the impact of various non-uniform in-plane edge loads on the buckling behavior of square panels 
with SSSS edges, using cross-ply and angle-ply laminate configurations and the results are plotted in figures 6(a) and 6(b) 
respectively.  

  

  
Figure 6 Variation of γcr with different cutout sizes (φ/b) for (a) (0/90)2s and (b) (±45)2s stacking panel. 

Figure 6(a) reveals that the buckling resistance of the panel declines as the cutout size increases, regardless of the loading 
patterns. Conversely, Figure 6(b) demonstrates a different behavior with the angle-ply laminate scheme, showing higher 
buckling resistance. Although the buckling resistance still decreases with the cutout size, an increase is observed for cutout 
sizes φ/b ≥ 0.5 in pure in-plane bending and φ/b ≥ 0.3 under inverse sinusoidal loading. This phenomenon is likely due to 
the stress redistribution from the cutout area to the stiffer regions at the panel edges. This redistribution is more 
significant under specific loading conditions, particularly with pure in-plane bending (α = 2.0) and inverse sinusoidal edge 
loads. Additionally, the figures show that for a given cutout size, significantly higher buckling resistance occurs with pure in-
plane bending (α = 2.0) and inverse sinusoidal edge loads, while it is negligible for uniformly distributed and sinusoidal edge 
loads. The increased buckling resistance in pure bending (α = 2.0) can be attributed to tensile stresses that counteract the 
loss of bending stiffness due to the cutout. Similarly, the higher buckling resistance under inverse sinusoidal edge loads 
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may result from stress concentration towards the panel edges, where stiffness is considerably greater. In contrast, 
sinusoidal and uniformly distributed edge loads tend to concentrate the majority of stresses toward the central portion of 
the panel, resulting in lower buckling resistance. 

3.4.2 Effect of stiffener eccentricities on various non-uniform edge loads 

In this section, the buckling behavior of a square panel with SSSS edges, featuring a centrally placed stiffener has been 
examined. The investigation is mainly focused on the effect of stiffener eccentricities (est) under various loading conditions. 
The panel configurations include a cross-ply scheme (0/90)2s and an angle-ply scheme (±45°)2s, with results shown in 
Figures 7(a) and 7(b), respectively. The stiffener's fiber orientation remains parallel to its axis, and the panel's thickness-to-
width ratio (h/b) is 0.01, with the stiffener's width matching the panel's thickness. A stiffener eccentricity of est = 0.5 
represents a panel without a stiffener, corresponding to a stiffener depth of dst = 0.0. 

         
Figure 7 Variation of γcr with stiffener eccentricities (est) for (a) (0/90)2s and (b) (±45)2s stacking SSSS edged stiffened panel under 

various non-uniform edge loads. 

Figure 7(a) demonstrates that the buckling resistance of the stiffened panel increases sharply with increasing stiffener 
eccentricity (est) upto around 2.0 to 3.0, depending on the loading conditions, and then stabilizes regardless of further 
increase in the stiffener eccentricities (est). IT is also noticed that the panel subjected to pure bending (α = 2.0) and inverse 
sinusoidal edge loads exhibit higher buckling resistance, while those under uniformly distributed edge load and sinusoidal 
edge load show the least buckling resistance. 

In contrast, Figure 7(b) reveals a different behavior for the angle-ply laminate scheme, characterized by generally higher 
buckling resistance. Here, the buckling resistance of the stiffened panel increases with stiffener eccentricities (est) across 
most loading conditions, except for panels with uniformly distributed loads (UDL, α = 0.0), linearly varying edge loads,         
α = 0.5, and sinusoidal edge loads. In these cases, the buckling resistance increases upto a certain point of stiffener 
eccentricity (est) and then declining as stiffener eccentricity continues to increase. This trend may be due to a reduction in 
the stiffener's torsional stiffness. In both configurations, the stiffened panel with pure in-plane bending exhibits the highest 
buckling resistance, while those with uniformly distributed edge loads show the least. 

3.4.3 Effect of number of stiffeners on various loading cases. 

This section examines the impact of the number of stiffeners (ns) on the buckling behavior of panels under various non-
uniform loading conditions, using cross-ply (0/90)2s and angle-ply (±45)2s lamination schemes. The results are shown in 
figures 8(a) and 8(b). The stiffener's ply orientation is always parallel to its axis, and the panel has a thickness-to-width ratio 
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(h/b) of 0.01, with the stiffener's width matching the panel's thickness. Stiffeners are equidistantly spaced as illustrated in 
Figure 3. 
Figures 8(a) and 8(b) reveal that the buckling resistance of the panel consistently increases with the number of stiffeners, 
regardless of the loading conditions. Additionally, for a given number of stiffeners, the stiffened panel subjected to pure 
bending and inverse sinusoidal edge load demonstrates the highest buckling resistance, while the panel under uniformly 
distributed edge load exhibits the least buckling resistance. This trend is observed in both cross-ply and angle-ply laminate 
schemes. However, panels with the cross-ply laminate scheme show higher buckling resistance compared to those with the 
angle-ply scheme. 

   
Figure 8 Variation of γcr with equispaced number of stiffeners (nst) for (a) (0/90)2s and (b) (±45)2s stacking sequences of SSSS edged 

square stiffened panels. 

3.4.4 Effect of panel aspect ratios on different loading cases. 

Figures 9(a) and 9(b) illustrate the effect of different panel aspect ratios on the buckling behavior of a panel with a centrally 
placed stiffener, considering both cross-ply and angle-ply lamination schemes. The stiffener eccentricity (est) is fixed at 3.0. 
In Figure 9(a), the panel's buckling resistance remains relatively constant across all panel aspect ratios, irrespective of the 
loading conditions. For any given panel aspect ratio, the stiffened panel subjected to inverse sinusoidal edge load exhibits 
the highest buckling resistance, while the panel under uniformly distributed edge load shows the least buckling resistance 
when compared to other loading scenarios. This indicates a general stability in buckling performance for cross-ply 
laminates regardless of the aspect ratio changes. 
Conversely, Figure 9(b) reveals a different trend for panels with an angle-ply laminate scheme. Here, the buckling 
resistance of the stiffened panel consistently decreases as the panel aspect ratio increases, regardless of the loading 
conditions. However, exceptions are noted for panels under in-plane bending loads, specifically with α = 2.0 and α = 1.5, 
where the buckling resistance remains constant across all panel aspect ratios. This suggests that the angle-ply laminate 
scheme is more sensitive to changes in aspect ratio, leading to a decline in buckling performance except in specific loading 
cases where the resistance is stabilized by the in-plane bending loads. 
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Figure 9 Variation of γcr with different panel aspect ratios by considering (a) (0/90)2s and (b) (±45)2s stacking sequences of SSSS edged 
square panels. 

4 Conclusion 

The results obtained from the analysis of a panel's stability under various non-uniform edge loadings and different stiffener 
patterns are summarized below: 

1. Among all loading types, the panel exhibits highest buckling resistance under pure in-plane bending (α = 2.0) as well as 
inverse sinusoidal edge loads and lowest under uniform edge loads (α = 0.0). 

2. In the case of a cross-ply laminate scheme, the buckling resistance of the panel increases with the rise in stiffener 
eccentricity (est) up to a certain point, after which it remains constant regardless of the loading cases.  

3. For angle-ply laminates, the buckling resistance sharply increases with stiffener eccentricity (est) up to a certain point 
and then levels off, except under uniformly distributed loads (α = 0.0), linearly varying edge loads (α = 0.5), and 
sinusoidal edge loads, where it declines after reaching a certain eccentricity. 

4. The buckling resistance of the panel increases with the number of stiffeners, regardless of the loading cases. However, 
there is an abrupt increase in resistance in the case of pure bending (α = 0.5) and inverse sinusoidal edge loads. 

5. For cross-ply laminates, the panel's buckling resistance remains constant across all aspect ratios, regardless of loading 
conditions. In contrast, for angle-ply laminates, buckling resistance consistently decreases with aspect ratio, except 
under in-plane bending loads (α = 2.0 and α = 1.5), where it remains constant. 

Editor: Marco L. Bittencourt 
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