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Abstract 
In this paper, a mathematical model of large amplitude vibration 
of a uniform cantilever beam arising in the structural engineering 
is proposed. Two efficient and easy mathematical techniques called 
variational iteration method and He’s variational approach are 
used to solve the governing differential equation of motion. To 
assess the accuracy of solutions, we compare the results with the 
Runge-Kutta 4th order. An excellent agreement of the approxi-
mate frequencies and periodic solutions with the numerical results 
and published results has been demonstrated. The results show 
that both methods can be easily extended to other nonlinear oscil-
lations and it can be predicted that both methods can be found 
widely applicable in engineering and physics. 
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1 INTRODUCTION 

The Structural engineering theory is based upon physical laws and empirical knowledge of the 
structural performance of different landscapes and materials. Many engineering structures can be 
modelled as a slender, flexible cantilever beam carrying a lumped mass with rotary inertia at an 
intermediate point along its span; hence they experience large-amplitude vibration (Wu, 2003; 
Herisanu and Marinca, 2010; Cveticanin and Kovacic, 2007; Hamdan and Shabaneh, 1997; Hamdan 
and Dado, 1997). 

In general, such problems are not amenable to exact treatment and approximate techniques 
must be resorted to. So, many new techniques have appeared in the open literature such as: varia-
tional iteration method (He, 2007a; Barari et al., 2011), homotopy perturbation method (Torabi 
and Yaghoobi, 2011; Torabi et al., 2011; Saravi et al., 2013), homotopy analysis method (Liao, 
2003; Khan et al., 2012)and some other methods (Nikkar et al., 2012; Ghasempoor et al., 2102; Ak-
barzade and Khan, 2012; Alinia et al., 2011; Ganji, 2012; Torabi et al., 2012; Sheikholeslami et al., 
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2012a; 2012b; Bayat et al., 2011; Rafieipour et al., 2012; Marinca and Herisanu, 2010; Salehi et al., 
2012; Hamidi et al., 2012) 

The variational iteration method (VIM) and variational approach (VA) which were introduced 
by He (He; 2007a;2007b) are very powerful methods in solving non-linear differential equations and 
studying nonlinear vibration of beams. The Variational Approach which is also called He’s varia-
tional approach, as well as the variational iteration method, was utilized here to obtain the analyti-
cal expression for the following model of nonlinear oscillations in the structural engineering prob-
lems: 
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With initial conditions:  
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This system describes the uni-modal large-amplitude free vibrations of a slender inextensible 

cantilever beam carrying an intermediate mass with a rotary inertia. The third and fourth terms in 
equation (1) represent inertia-type cubic non-linearity arising from the inextensibility assumption. 
The last term is a static-type cubic nonlinearity associated with the potential energy stored in bend-
ing. The modal constants α and β result from the discretization procedure and they have specific 
values for each mode as described in (Hamdan and Dado, 1997). 
 

2 DESCRIPTION OF THE VARIATIONAL ITERATION METHOD  
 
To clarify the basic ideas of proposed method consider the following general differential equation, 
 

)(tgNuLu =+  (3) 
 
Where, L is a linear operator, and N a nonlinear operator, g(t) an inhomogeneous or forcing 

term. According to the variational iteration method, we can construct a correct functional as fol-
lows: 
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Where λ is a general Lagrange multiplier, which can be identified optimally via the variational 

theory, the subscript n denotes the nth approximation, nu~ is considered as a restricted variation, i.e. 

nu~δ = 0. 
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For linear problems, its exact solution can be obtained by only one iteration step due to the fact 
that the Lagrange multiplier can be exactly identified. In this method, the problems are initially 
approximated with possible unknowns and it can be applied in non-linear problems without lineari-
zation or small parameters. The approximate solutions obtained by the proposed method rapidly 
converge to the exact solution. 
 
3   IMPLEMENTATION OF VARIATIONAL ITERATION METHOD  
 
Now, we can solve the following equation: 
 

0322 =++++ uuuuuuu βαα   (5) 
 
with initial conditions: 
 

0)0(,)0( == uAu   (6) 
 
Assume that the circular frequency of the system (5) is ω, we have the following linearized equa-
tion: 
 

02 =+ uu ω  (7) 
 
So we can rewrite Eq. (5) in the form: 
 

0)(2 =++ ufuu ω  (8) 
 
Where 0)1()( 3222 =+++−= uuuuuuuf βααω   
Applying the proposed method, the following iterative formula is formed as: 
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Its stationary conditions can be obtained as follows: 
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The Lagrange multiplier, therefore, can be identified as; 
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Substituting the identified multiplier into Eq. (9) results in the following iteration formula: 
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Assuming its initial approximate solution has the form: 
 

)cos()(0 tAtu ω=  (13) 
 
And substituting Eq. (13) into Eq. (5) leads to the following residual: 
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By the formulation (12), we can obtain 
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In the same manner, the rest of the components of the iteration formula can be obtained. In order 
to ensure that no secular terms appear in u1, resonance must be avoided. To do so, the coefficient of 
cos(ωt) in Eq. (14) requires being zero, i.e., 
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4 DESCRIPTION OF THE HE’S VARIATIONAL APPROACH 

In 2007, the variational approach was proposed by He (He, 2007b).   In this method, a variational 
principle for the nonlinear oscillations is established, then a Hamiltonian is constructed, from which 
the angular frequency can be obtained by a lacation method. To explain the method precisely, con-
sider the following generalized nonlinear oscillations without forced terms: 

0)0(',)0(,0)(" 2 ===++ uAuufuu εω  (17) 

where f is a nonlinear function of u, u ' and u". 
For simplicity, if function f depends on u only, its variational functional can be obtained as: 
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where F is the potential, dF / du = f . 
Its Hamiltonian reads 
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which should be an invariant during the oscillation. With the invariant, we can apply the location 
method to identify the frequency by suitable choice of trial functions (He, 2006). If, by chance, the 
exact solution had been chosen as the trial function, then it would be possible to make the residual 
zero for all values of t by appropriate choice of ω. From this point of view, He’s variational method 
is completely different from the classical variational methods, but has little likeness to Ritz method. 
Because, Ritz method is only valid for fixed domain, but in He’s variational method, the integral 
boundary is not fixed. So He’s functional formulation can be called as variational functional with 
movable domain. Therefore, He’s variational approach is quite different from the classic Ritz meth-
od in calculus of variation. Following the approach adopted by the (Öziş and Yildirim, 2006) in a 
previous publication, He’s method has been used to determine the periodic solutions and the periods 
of strongly nonlinear systems given below in subsequent three examples (Öziş and Yildirim, 2006). 
More recently, He’s method also adopted by D’Acunto for self-excited systems (D’Acunto, 2006a; 
2006b). 
 
5 IMPLEMENTATION OF HE’S VARIATIONAL APPROACH 

The governing equation of the system is: 
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We can, now, easily obtain the following variational formulation: 
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Assume that its approximate solution can be expressed as: 
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Where  ω is the frequency to be determined and A is the amplitude of oscillation. Substituting 

Eq. (22) into Eq. (21) results in 
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Making J stationary with respect to A, according to He’s method (He, 2007b), we obtain: 
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So the frequency can be approximated as: 
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and zero-order approximate solution from Eq.(22) is: 
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6 RESULTS AND DISSCUSIONS 

A mathematical model describing the process of large amplitude vibration of a uniform cantilever 
beam arising in the structural engineering is proposed. Two different analytical methods are applied 
to solve the dynamic model of the large amplitude non-linear oscillation equation. In order to verify 
the precision of the methods, current results were compared with Runge-Kutta 4th order method in 
Tables 1 and 2. It is observable that our results are in excellent agreement with the results provided 
by Runge-Kutta 4th order. The behavior of ),( tAu  obtained by VIM and VA at α=π and β=0.15 
is shown in Figs. 1 and 2. The comparison of the displacement versus time for results obtained from 
VIM, VA and Runge-Kutta 4th order has been depicted in Figs. 3 and 4 for α=π , β=0.15 and 
A=5. 
 

Table 1   Comparison between VIM & VA with time marching solution for the motion equation (5), when t = 0.5(s),  
α=π and β=0.15 

 
ERROR(VA)   ERROR(VIM)  RKF  VA  VIM  A 
0.0185212186   0.0185212185  0.9649139805  0.9463927619  0.9463927620  1 
0.0199238168   0.0199238168  1.9703577348  1.9504339180  1.9504339180  2 
0.0195142731   0.0195142731  2.9697956251  2.9502813520  2.9502813520  3 
0.0202060710   0.0202060710  3.9667529060  3.9465468350  3.9465468350  4 
0.0216474111   0.0216474111  4.9625929831  4.9409455720  4.9409455720  5 
0.0331421087   0.0331421087  9.9364326547  9.9032905460  9.9032905460  10 
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Table 2   Comparison between VIM & VA with time marching solution for the motion equation (5), when t = 0.5(s), α= β=1 

ERROR(VA)   ERROR(VIM)  RKF  VA  VIM  A 
0.0173279026   0.0173279026  0.8750048474  0.8576769447  0.8576769447  1 
0.0706300330   0.0706300330  1.7464536880  1.6758236550  1.6758236550  2 
0.1308394173   0.1308394183  2.6177613293  2.4869219120  2.4869219110  3 
0.1900128169   0.1900128169  3.4892642069  3.2992513900  3.2992513900  4 
0.2477216042   0.2477216042  4.3609001902  4.1131785860  4.1131785860  5 
0.5255028914   0.5255028894  8.7198747164  8.1943718250  8.1943718270  10 

            
 

 
 

Figure 2  VIM deflection at α=π and β=0.15 
 

 
 

Figure 3   VA deflection at α= π and β=0.15 
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Figure 4   Comparison between VIM and VA periodic solutions versus time with Runge-Kutta 4th order for α=β=0.1 and A = 5. 

 

 
Figure 5   Comparison between VIM and VA periodic solutions versus time with Runge-Kutta 4th order for α=β=0.1 and A = 5. 

 
7 CONCLUSIONS 

In this study, a mathematical model describing the process of large amplitude vibration of a uni-
form cantilever beam arising in the structural engineering is proposed. Variational approach and 
efficient approximate method (VIM) is employed to derive the nonlinear vibration of a uniform 
cantilever beam. The frequency of both methods is exactly the same. Comparing with numerical 
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Results, it is shown that the approximate analytical solutions are in very good agreement with the 
corresponding solutions. 
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