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Abstract 
Computational mechanics has become an essential tool in engineering, just as the use of hyperelastic 
materials has seen remarkable growth in everyday applications. Therefore, it is fundamental to study 
hyperelastic models that represent the behavior of these materials, such as elastomers and polymers. With 
that in mind, the Mooney-Rivlin, Neo-Hookean, Ogden, and Yeoh models were implemented in a 
computational code in FORTRAN using the Positional Finite Element Method with Reissner kinematics and the 
Newton-Raphson method for nonlinear analysis of plane frames with samples of elastomers added with 
different percentages of carbon black. Ultimately, it was concluded that the Yeoh and Ogden models 
presented coherent values and that the use of the formulation for nonlinear analysis of plane frame performs 
well after the modifications proposed by this work. These modifications consisted of adding the first and 
second strain invariants of the simple shear formulation to include the consideration of distortion in the 
specific strain energy of hyperelastic models. 
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1 INTRODUCTION 

The properties of materials and structural behavior are critical factors for a successful structural design, and 
understanding them is essential for designing safe and efficient structures. Computational mechanics, through numerical 
simulations to model and analyze complex systems, has become an essential tool for engineers in this regard (Wang et 
al., 2019; Navas et al., 2020). 

By using computational mechanics, engineers can simulate how different materials will behave under various 
conditions, enabling them to predict the behavior of a structure before its construction. This can help identify potential 
problems early in the design process and lead to more efficient and cost-effective designs. However, while simulations 
can provide valuable information, there is always some degree of uncertainty involved, and it is essential to verify the 
accuracy of simulations through experimental testing (Samaniego et al., 2020). 

The Finite Element Method (FEM) is a widely used numerical technique in structural analysis, mechanical 
engineering, and other fields. FEM is based on the principle of minimum potential energy, which states that the 
deformation of a structure under external loads will tend to minimize the potential energy of the system (Muzel et al., 
2020). 

In positional formulations of the FEM, the nodal positions of a structure are taken as fundamental unknowns, which 
are used to derive the equations of motion and solve for stresses, strains, and other physical quantities of interest. This 
approach allows for flexible and efficient modeling of complex structures, as it divides the problem into smaller, simpler 
elements that can be analyzed individually and then assembled into a larger system. (Greco and Peixoto, 2021; Reis and 
Coda, 2014) 

The use of highly deformable and elastic materials, such as elastomers and polymers, has increased in engineering 
applications, and hyperelastic models are commonly used to represent their behavior. They exhibit a highly nonlinear 
response to deformation, and therefore, traditional linear elasticity models are not suitable for describing their behavior. 
(Basheer, 2020; Jing and Jian, 2019) 

Hyperelastic models are more appropriate because they can capture the nonlinear stress-strain relationships of 
these materials. These models are characterized by a strain energy density function, which describes the relationship 
between stored energy and material deformation. However, it should be noted that hyperelastic models are not 
universally applicable, and their accuracy may vary depending on the specific material properties and deformation 
regime under consideration. Therefore, it is important to select an appropriate model that fits the specific material and 
deformation conditions of interest (Motevalli et al., 2019; Taghizadeh and Darijani, 2018; Talebi and Darijani, 2021; Li et 
al., 2019). 

There are some fundamental distinctions between hyperelastic and linear elastic materials. Specifically, it is noted 
that the stress-strain relationship of hyperelastic materials is derived from a strain energy density function, which is not 
the case for linear elastic materials. Additionally, hyperelastic materials exhibit physical nonlinearity, while the geometric 
nonlinearity of structures is due to displacement affecting the loading condition (Dastjerdi et al., 2022; Seguini and 
Nedjar, 2016; Darijani and Naghdabadi, 2010). 

However, depending on the context, there may be additional nuances to consider, such as the specific behaviors of 
different types of hyperelastic materials or the impact of loading rate or temperature on material behavior. 

2 POSITIONAL FEM FOR PLANE FRAMES 

Ramos and Carrazedo (2020) describes that the main characteristic of positional FEM is that it adopts nodal positions 
as its primary variables instead of displacements. This approach allows for a more accurate nonlinear description of solid 
geometry. By using nodal positions as primary variables, the method can more precisely capture the behavior of the solid 
under deformation, which is important for many engineering applications (Paulino and Leonel, 2021). 

In this topic, the formulation of the positional finite element method for plane frames developed in Maciel's (2008) 
studies will be presented. 

2.1 Total potential energy functional 

The potential energy functional of the system (Equation 1), expressed in the Lagrangian configuration of the object, 
is provided in the positional formulation by: 

𝛱 = 𝑈𝑒 +𝐾𝑐 + 𝐾𝑎 − 𝑃             (1) 



  

Where 𝑈𝑒 = potential energy of elastic deformation; 𝑃 = potential energy of externally applied forces; 𝐾𝑐 = kinetic 
energy of the body (considered null in static or quasi-static situations); 𝐾𝑎 = energy loss due to damping. 

The potential energy of elastic deformation (𝑈𝑒) can be described in Equation 2 by the integral of the specific elastic 
strain energy of the initial volume (𝑉0) as follows: 

𝑈𝑒 = ∫ 𝑢𝑒𝑑
⬚

𝑉0
𝑉0              (2) 

Where 𝑢𝑒 = specific elastic strain energy of the body. 
The kinetic energy of the body (𝐾𝑐) can be described by the integral developed over the initial volume (𝑉0), consid-

ering the density of the body (𝜌0) in the Lagrangian reference frame, as indicated in Equation 3: 

𝐾𝑐 = ∫ 𝜌0
𝑥𝑖˙ 𝑥𝑖˙

2

⬚

𝑉0
𝑑𝑉0             (3) 

Where 𝑥𝑖˙  = vectorial velocity of the material point. 
The vectorial velocity of the material point (𝑥𝑖˙ ) is given in Equation 4 by: 

𝑥𝑖˙ =
𝑑(𝑥)

𝑑𝑡
              (4) 

Where 𝑥 = position vector of the point. 
The potential energy of the externally applied forces (𝑃) for a system of conservative forces is given in Equation 5 

by: 

𝑃 = 𝐹𝑇𝑋              (5) 

Where 𝐹 = vector of external forces; 𝑋 = vector of positions of the applied external forces. 
The energy loss due to damping (𝐾𝑎) can be described by the integral resulting from the derivative with respect to 

positions and is given in Equation 6 by: 

𝜕𝐾𝑎

𝜕𝑥𝑖
= ∫

𝜕𝑘𝑎

𝜕𝑥𝑖
𝑑𝑉0

⬚

𝑉0
= ∫ 𝑐𝑚𝜌0𝑥𝑖˙ 𝑑𝑉0

⬚

𝑉0
           (6) 

 
Where 𝐾𝑎 = specific dissipated energy functional; 𝐶𝑚 = damping constant. 
Thus, by substituting all the terms presented separately in Equations 2, 3, and 5 into Equation 1, the potential energy 

functional of the system can be described as: 

𝛱 = ∫ 𝑢𝑒𝑑
⬚

𝑉0
𝑉0 + ∫ 𝜌0

𝑥𝑖˙ 𝑥𝑖˙

2

⬚

𝑉0
𝑑𝑉0 + 𝐾𝑎 − 𝐹𝑗𝑋𝑗          (7) 

Therefore, Maciel (2008) demonstrates up to Equation 7 how potential energy can be expressed as a function of 
the position of a body, including external forces and kinetic energy. Additionally, Maciel (2008) emphasizes the need to 
solve the elastic problem by minimizing the potential energy functional using the theorem of minimum total potential 
energy. This theorem is expressed in Equation 7 and must be applied to the unknowns of the problem at each instant in 
time, which in this case is the position vector at equilibrium. Thus, we have: 

𝜕𝛱

𝜕𝑥𝑖
|
𝑡
= ∫

𝜕𝑢𝑒

𝜕𝑥𝑖
𝑑𝑉0 + ∫

𝜕

𝜕𝑥𝑖
(𝜌0

𝑥𝑖˙ 𝑥𝑖˙

2
)𝑑𝑉0 +

𝜕𝐾𝑎

𝜕𝑥𝑖
−
𝜕𝐹𝑗𝑋𝑗

𝜕𝑥𝑖

⬚

𝑉0

⬚

𝑉0
         (8) 

Where 𝑥 = vector of unknown positional measure at body equilibrium. 
By substituting Equation 6 into Equation 8, we have: 

𝜕𝛱

𝜕𝑥𝑖
|
𝑠+1

= ∫
𝜕𝑢𝑒

𝜕𝑥𝑖
𝑑𝑉0 + ∫

𝜕

𝜕𝑥𝑖
(𝜌0

𝑥𝑖˙ 𝑥𝑖˙

2
)𝑑𝑉0 + ∫ 𝑐𝑚𝜌0𝑥𝑖˙ 𝑑𝑉0

⬚

𝑉0
−
𝜕𝐹𝑗𝑋𝑗

𝜕𝑥𝑖

⬚

𝑉0

⬚

𝑉0
       (9) 

Where 𝑠 + 1 = current time; 𝑠 = immediately preceding time. 



  

The variables of the discretized body, such as positions, accelerations, stresses, and velocities of a finite element, 
must be estimated using shape functions: 

𝑥𝑖 = Փ𝑗𝑋𝑖
𝑗
                         (10) 

�̇�𝑖 = Փ𝑗�̇�𝑖
𝑗
                         (11) 

�̇̈�𝑖 = Փ𝑗 �̇̈�𝑖
𝑗
                         (12) 

Where 𝑋𝑖
𝑗
 = nodal position value; �̇�𝑖

𝑗
 = nodal velocity value; �̇̈�𝑖

𝑗
 = nodal acceleration value; Փ𝑗 = shape functions 

corresponding to the number of nodes in the discretization. 
Thus, from Equations 10, 11, and 12, Equation 9 can be rewritten to represent the equation of motion for the non-

linear problem as follows: 

𝜕𝛱

𝜕𝑋
|
𝑠+1

=
𝜕𝑈𝑒

𝜕𝑋
|
𝑠+1

+ 𝐶�̇�𝑠+1 +𝑀�̈�𝑠+1 − 𝐹𝑠+1                     (13) 

Where 𝑀 = mass matrix; 𝐶 = damping matrix proportional to mass; 𝐹𝑠+1 = nodal loads. 
This mass matrix can be represented by: 

𝑀 = ∫ 𝜌0Փ𝑘Փ𝑗𝑑𝑉0
⬚

𝑉0
                        (14) 

Similarly, the damping can be represented by: 

𝐶 = 2𝑐𝑚𝑀                         (15) 

For the nodal loads, we have: 

𝐹𝑠+1 = 𝐹0[𝐶1 + 𝐶2𝑡 + 𝐶3𝑡
2 + 𝐶4𝑡

3 + 𝐶5𝑠𝑖𝑛(𝐶6𝑡) + 𝐶7𝑐𝑜𝑠(𝐶8𝑡) + 𝐶9𝑒
𝑐
10𝑡]                 (16) 

Where 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6, 𝐶7, 𝐶8, 𝐶9, 𝐶10 = define the variation of 𝐹0 over time. 
In the scenario where there is no movement, the effects of inertia forces and damping forces balance each other 

out. As a result, Equation 13 transforms into Equation 17: 

𝜕𝛱

𝜕𝑋𝑖
=
𝜕𝑈𝑒

𝜕𝑋𝑖
− 𝐹 = 0                        (17) 

The approach to solve Equation 17, which is inherently nonlinear, involves employing the iterative Newton-Raphson 
method for each time interval. This procedure is described in more detail in the following section. 

2.2 Solution to the static problem 

According to Maciel (2008), to solve Equation 17 corresponding to the static problem, an iterative technique is 
essential to ensure that the solution converges accurately. In the context of this study, the Newton-Raphson method is 
applied. Thus, Equation 17 can be expressed as Equation 18: 

𝜕𝛱

𝜕𝑋𝑖
= 𝑔𝑖(𝑋) = 𝑓𝑖(𝑋) − 𝐹𝑖 = 0                       (18) 

Where 𝑋 = vector of nodal positions. 
Equation 18 can be written in vector form in Equations 19 and 20 as follows: 

𝑔(𝑋, 𝐹) = 0                         (19) 

𝑓(𝑋) − 𝐹 = 0                         (20) 



  

It is worth noting that for the scope of this research, only conservative forces are used. However, Equation 20 
encompasses the direct use of non-conservative forces if necessary. It is also emphasized that 𝑔(𝑋, 𝐹) demonstrates 
nonlinear characteristics regarding the parameters 𝑋 and 𝐹. According to Maciel (2008), to solve Equation 20, it is 
necessary to expand Taylor's series up to linear components for a value 𝛥𝑋, as shown in Equations 21 and 22: 

𝑔(𝑋) = 0 ≃ 𝑔(𝑋0) + 𝛻𝑔(𝑋0)𝛥𝑋                       (21) 

𝛥𝑋 = −[𝛻𝑔(𝑋0)]
−1𝑔(𝑋0)                       (22) 

Where 𝑋 = unknown position vector; 𝑋0 = trial position vector. 
It is worth noting that the trial position vector 𝑋0 is usually determined in the previous iteration. Additionally, from 

the derivative relative to the nodal position 𝑋𝑘, oneobtains the Hessian matrix 𝛻𝑔(𝑋0), which can be expressed in 
Equation 23 as: 

𝛻𝑔(𝑋0) =
𝜕𝑓𝑖(𝑋)

𝜕𝑋𝑘
=

𝜕2𝑈𝑒

𝜕𝑋𝑖𝜕𝑋𝑘
                       (23) 

From Equation 23, one can observe the symmetry of the Hessian matrix. Consequently, the iterative Newton-
Raphson process is described as follows: 

(1) Select the initial position 𝑋0; 

(2) Using this provisional solution 𝑋0, calculate the unbalanced vector 𝑔(𝑋0) based on Equation 19; 

(3) Evaluate the Hessian matrix at 𝑋0, using Equation 23; 

(4) Employ Equation 22 to calculate the change in the position vector 𝛥𝑋 to refine 𝑋0; 

(5) Determine the convergence norm by dividing 𝛥𝑋 by 𝑋0; 

(6) Check if the calculated norm is less than the specified tolerance; 

(7) If yes, the method has reached convergence; 

(8) If not, update 𝑋0 to 𝑋 and repeat the entire procedure until the norm is less than the tolerance. 

According to Maciel (2008), depending on the load value and structural shape changes, it is necessary to partition 
the structure into load levels. This ensures that structural equilibrium is achieved at each level, progressing until the final 
load balance is achieved. 

3 REISSNER KINEMATICS FOR PLANE FRAMES 

In this section, Reissner kinematics for plane frames is discussed according to the work of Maciel (2008), where a 
refined approach is introduced for analyzing the deformation of structures. 

3.1 Geometry Mapping 

For the study of Reissner kinematics for plane frames according to Maciel (2008), it is essential to establish a 
mapping of the geometry of the analyzed body and determine the measures of deformation. From Figure 1, one can 
observe the initial configuration of the body (B0) as well as the configuration of the body in its current state (B1). 
Additionally, it is worth noting the presence of an auxiliary dimensionless space that serves as a facilitator of the 
connection between the initial configuration B0 and the current state configuration B1. 



  

 

Figure 1 Body Deformation Representation – Adapted from Maciel (2008) 

Furthermore, in Figure 1, one can also observe the gradient tensors AI and AII, which transition from the temporary 
configuration of the dimensionless state to the initial configuration of the body B0, as well as from the temporary config-
uration of the dimensionless state to the configuration of the body in its current state B1. It is worth noting that according 
to Maciel (2008), the gradient tensor AI depends on the initial shape and the kinematics used, while the gradient tensor 
AII depends on the current or final position of the body. 

From this, assuming a generic point 𝑝 = (𝑥, 𝑦), it can be represented in terms of dimensionless coordinates, as well 
as initial or current nodal positions in Equations 24 and 25 as follows: 

𝑝0(𝜉, 𝜂) = 𝑝𝑚
0 (𝜉) +

ℎ

2
𝜂𝑁
→
0(𝜉)                       (24) 

𝑝1(𝜉, 𝜂) = 𝑝𝑚
1 (𝜉) +

ℎ

2
𝜂𝑁
→
1(𝜉)                       (25) 

Where ℎ = thickness; 𝑝𝑚
𝑖 = (𝑥𝑚

𝑖 , 𝑦𝑚
𝑖 ) = point belonging to the midline; 𝑁𝑖⃗⃗ ⃗⃗  = unit vector determining the position of 

the section. 
Therefore, one can observe the generic cross-section of the element described in Figure 2: 

 

Figure 2 Generic cross-sectional view of the element – Adapted from Maciel (2008) 

Thus, according to Maciel (2008), by using the unit vector �⃗⃗�  in Equations 24 and 25, which describe a generic point 
in dimensionless coordinates, and converting to Cartesian coordinates, Equation 26 can be obtained: 

(𝑥𝑖(𝜉, 𝜂), 𝑦𝑖(𝜉, 𝜂)) = (𝑥𝑚
𝑖 (𝜉), 𝑦𝑚

𝑖 (𝜉)) +
ℎ

2
𝜂 (−𝑠𝑒𝑛𝜃𝑖(𝜉), 𝑐𝑜𝑠𝜃𝑖(𝜉))                  (26) 

With that, Equation 26 can be expressed in terms of 𝑥 and 𝑦 in Equations 27 and 28: 

𝑥𝑖(𝜉, 𝜂) = 𝑥𝑚
𝑖 (𝜉) −

ℎ

2
𝜂𝑠𝑒𝑛𝜃𝑖(𝜉)                       (27) 



  

𝑦𝑖(𝜉, 𝜂) = 𝑦𝑚
𝑖 (𝜉) +

ℎ

2
𝜂𝑐𝑜𝑠𝜃𝑖(𝜉)                       (28) 

Where 𝑖 = 0 = initial configuration; 𝑖 = 1 = current configuration. 
Furthermore, from Equations 27 and 28, one can derive in dimensionless coordinates to obtain the gradients AI and 

AII in Equation 29 as follows: 

𝐴𝑖 = [
𝐴11
𝑖 𝐴12

𝑖

𝐴21
𝑖 𝐴22

𝑖
] = [

𝑑𝑥𝑖

𝑑𝜉

𝑑𝑥𝑖

𝑑𝜂

𝑑𝑦𝑖

𝑑𝜉

𝑑𝑦𝑖

𝑑𝜂

]                       (29) 

Thus, the elements of 𝐴𝑖 can be obtained in Equations 30, 31, 32, and 33: 

𝐴11
𝑖 =

𝑑𝑥𝑚

𝑑𝜉
−
ℎ

2
𝜂
𝑑𝜃

𝑑𝜉
𝑐𝑜𝑠𝜃                        (30) 

𝐴12
𝑖 =

−ℎ

2
𝑠𝑒𝑛𝜃                         (31) 

𝐴21
𝑖 =

𝑑𝑥𝑚

𝑑𝜉
−
ℎ

2
𝜂
𝑑𝜃

𝑑𝜉
𝑠𝑒𝑛𝜃                        (32) 

𝐴22
𝑖 =

ℎ

2
𝑐𝑜𝑠𝜃                         (33) 

Where 𝑖 = 𝐼 = dimensionless space transformation to configuration B0; 𝑖 = 𝐼𝐼 = dimensionless space transformation 
to configuration B1. 

3.2 Deformation Measurement 

After the proper mapping of the geometry and obtaining the gradients AI and AII, attention should be paid to the 
calculation of elongations in the dimensionless directions 𝜉 and 𝜂. For the transverse elongation 𝜆𝑡, onehas the unit 

vector 𝑀𝑡⃗⃗⃗⃗  ⃗ = [1,0]
𝑇, while for the longitudinal elongation 𝜆𝑛, one has the unit vector 𝑀𝑛⃗⃗ ⃗⃗  ⃗ = [0,1]

𝑇 according to Maciel 

(2008). It is possible to observe the unit vectors 𝑀𝑡⃗⃗⃗⃗  ⃗ and 𝑀𝑛⃗⃗ ⃗⃗  ⃗ in Figure 3: 

 

Figure 3 Auxiliary dimensionless space and geometry mapping - Adapted from Maciel (2008) 

With that, elongations can be obtained through Equations 34 and 35: 

𝜆𝑡
𝑖 = 𝜆(𝑀𝑡⃗⃗⃗⃗  ⃗) = |𝐴

𝑖 [
1
0
]| = √(𝐴11

𝑖 )
2
+ (𝐴21

𝑖 )
2
                     (34) 

𝜆𝑛
𝑖 = 𝜆(𝑀𝑛⃗⃗ ⃗⃗  ⃗) = |𝐴

𝑖 [
0
1
]| = 1                       (35) 

From Equation 36, the calculation of the angle 𝛼 represented in Figure 3 is obtained, as the angle between the 
vectors in configuration B1. 



  

𝛼 = 𝑎𝑟𝑐𝑐𝑜𝑠 {
[10][𝐴𝐼𝐼

𝑇 𝐴𝐼𝐼][
0
1
]

𝐴𝑡
𝐼𝐼𝐴𝑛

𝐼𝐼 } = 𝑎𝑟𝑐𝑐𝑜𝑠 {
𝐴11
𝐼𝐼 𝐴12

𝐼𝐼 +𝐴21
𝐼𝐼 𝐴22

𝐼𝐼

√(𝐴11
𝐼𝐼 )

2
+(𝐴21

𝐼𝐼 )
2
}                    (36) 

Thus, the distortion of configuration B0 can be calculated from Equation 37: 

𝛾𝑚 = 𝛼 −
𝜋

2
= 𝑎𝑟𝑐𝑐𝑜𝑠 {

𝐴11
𝐼𝐼 𝐴12

𝐼𝐼 +𝐴21
𝐼𝐼 𝐴22

𝐼𝐼

√(𝐴11
𝐼𝐼 )

2
+(𝐴21

𝐼𝐼 )
2
} −

𝜋

2
                     (37) 

Similarly, the elongations of configuration B0 can be calculated from Equations 38 and 39: 

𝜆𝑡 =
𝜆𝑡
𝐼𝐼

𝜆𝑡
𝐼 =

√(𝐴11
𝐼𝐼 )

2
+(𝐴21

𝐼𝐼 )
2

√(𝐴11
𝐼 )

2
+(𝐴21

𝐼 )
2
                        (38) 

𝜆𝑛 =
𝜆𝑛
𝐼𝐼

𝜆𝑛
𝐼 = 1                         (39) 

Additionally, the strains can be calculated from Equations 40 and 41: 

𝜀𝑡 = 𝜆𝑡 − 1 =
√(𝐴11

𝐼𝐼 )
2
+(𝐴21

𝐼𝐼 )
2

√(𝐴11
𝐼 )

2
+(𝐴21

𝐼 )
2
− 1                       (40) 

𝜀𝑛 = 𝜆𝑛 − 1 = 0                        (41) 

Where 𝜀𝑡 = nonlinear engineering strain measurement in direction �⃗�  in configuration B0; 𝜀𝑛 = nonlinear engineering 

strain measurement in direction �⃗⃗�  in configuration B0. 

3.3 Static Equations 

In the static equation, the terms related to the kinetic energy of the body and the damping energy are removed 
from the total potential energy functional of the system. Therefore, one has Equation 42: 

𝛱 = ∫
1

2
𝐸 (𝜀𝑡

2 +
𝛾𝑚
2

2
) 𝑑𝑉0

⬚

𝑉0
− 𝐹𝑗𝑋𝑗                      (42) 

Therefore, the discretization of the plane frame must be considered according to Figure 4: 

 

Figure 4 Finite element with 'n' nodes and its nodal variables - Adapted from Maciel (2008) 

From the consideration of the finite element shown in Figure 4, the unknowns 𝑥𝑚, 𝑦𝑚 e 𝜃 can be obtained as follows 
according to Maciel (2008) in Equations 43, 44, and 45: 

𝑥𝑚(𝜉, 𝜂) = 𝛷𝑖𝑋𝑖                        (43) 

𝑦𝑚(𝜉, 𝜂) = 𝛷𝑖𝑌𝑖                         (44) 



  

𝜃(𝜉, 𝜂) = 𝛷𝑖𝛩𝑖                         (45) 

Where 𝑋, 𝑌, 𝛩 = nodal positions of the finite element; 𝛷 = shape approximation functions. 
With that, Equations 27 and 28 are resumed as follows in Equations 46 and 47: 

𝑥𝑖 = (𝛷𝑘𝑋𝑘)
𝑖 −

ℎ

2
𝜂𝑠𝑒𝑛(𝛷𝑘𝛩𝑘)

𝑖                       (46) 

𝑦𝑖 = (𝛷𝑘𝑌𝑘)
𝑖 +

ℎ

2
𝜂𝑐𝑜𝑠(𝛷𝑘𝛩𝑘)

𝑖                       (47) 

From this, Equations 30, 31, 32, and 33 are resumed as follows in Equations 48, 49, 50, and 51: 

𝐴11
𝑖 = 𝛽𝑗𝑋𝑗

𝑖 −
ℎ

2
𝜂(𝛽𝑗𝛩𝑗

𝑖)𝑐𝑜𝑠(𝛷𝑘𝛩𝑘
𝑖 )                      (48) 

𝐴12
𝑖 =

−ℎ

2
𝜂𝑠𝑒𝑛(𝛷𝑘𝛩𝑘

𝑖 )                        (49) 

𝐴21
𝑖 = 𝛽𝑗𝑌𝑗

𝑖 −
ℎ

2
𝜂(𝛽𝑗𝛩𝑗

𝑖)𝑠𝑒𝑛(𝛷𝑘𝛩𝑘
𝑖 )                      (50) 

𝐴22
𝑖 =

ℎ

2
𝜂𝑐𝑜𝑠(𝛷𝑘𝛩𝑘

𝑖 )                        (51) 

Where in Equation 52: 

𝛽𝑗 =
𝑑𝛷𝑗

𝑑𝜉
                         (52) 

Therefore, one has in Equation 53 and 54: 

𝛱 → 𝑓(𝑝)                         (53) 

𝑝 = (𝑋1, 𝑌1, 𝛩1, 𝑋2, 𝑌2, 𝛩2, 𝑋3, 𝑌3, 𝛩3, . . . , 𝑋(3𝑛−1), 𝑌(2𝑛−1), 𝛩(3𝑛))                   (54) 

With this, the method consists of minimizing the total potential energy functional for the plane frames (Equation 
42) in terms of nodal positions. According to Maciel (2008), the energy functional is derived with respect to the degree 
of freedom pi in Equations 55 and 56: 

𝜕𝛱

𝜕𝑝𝑖
= ∫

1

2
𝐸

𝜕

𝜕𝑝𝑖
(𝜀𝑡
2 +

𝛾𝑚
2

2
)𝑑𝑉0

⬚

𝑉0
− 𝐹𝑖                      (55) 

𝑓𝑖
𝑚(𝑝) = ∫

1

2
𝐸

𝜕

𝜕𝑝𝑖
(𝜀𝑡
2 +

𝛾𝑚
2

2
)𝑑𝑉0

⬚

𝑉0
                      (56) 

Where 𝑓𝑖
𝑚(𝑝) = vector of internal forces referring to position pi. 

4 HYPERELASTIC MODELS 

Hyperelastic materials are a particular type of material that exhibit large deformations and are commonly used in 
applications such as rubber and biological tissues. The notable difference between hyperelastic materials and linear 
elastic materials is that to accurately model the behavior of hyperelastic materials using the positional finite element 
method, it is necessary to express their constitutive equation in terms of the derivative of the strain energy density, as 
can be observed in Figure 5. This is because hyperelastic materials store and release energy during deformation, and this 
energy is related to the material's stress state. However, there are challenges associated with deriving the strain energy 
density for a hyperelastic material, which can be a complex and time-consuming process. (Perônica et al., 2022; Anssari-
Benam and Horgan, 2022; Khaniki et al., 2022) 



  

 

Figure 5 Stress-strain curve for linear elastic (a) and hyperelastic (b) models respectively - Adapted from Perônica et al. (2022) 

For a more in-depth study of hyperelastic models, according to Perônica et al. (2022), one should address the work 
of Ogden (1984) on the description of the motion of bodies with the theory of continuum mechanics. According to Ogden 
(1984), one has Equation 57: 

𝑋 = 𝜒(𝑥, 𝑡)                         (57) 

Where 𝑋 = position vector of the body with respect to the deformed configuration at time t; 𝑥 = position vector of 
the body with respect to the reference configuration at time t. 

With this, one has the deformation gradient A in Equations 58 and 59: 

𝐴𝑖𝑗 =
𝜕𝑋𝑖

𝜕𝑥𝑗
                         (58) 

𝐴𝑖𝑗 = [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

]                        (59) 

Where 𝜆𝑖 = principal stretches (eigenvalues of the elastic tensors). 
From this, one has the right and left Cauchy-Green deformation tensors respectively in Equations 60 and 61 

according to Perônica et al. (2022): 

𝐶 = 𝐴𝑇𝐴                         (60) 

𝐵 = 𝐴𝐴𝑇                         (61) 

So, one has Equation 62: 

𝐶𝑖𝑗 = 𝐵𝑖𝑗 = [

𝜆1
2 0 0

0 𝜆2
2 0

0 0 𝜆3
2

]                       (62) 

Where the first principal invariant I1 can be obtained through the trace of the Cauchy-Green deformation tensor in 
Equation 63: 

𝐼1 = 𝑡𝑟(𝐵 𝑜𝑢 𝐶) = 𝜆1
2 + 𝜆2

2 + 𝜆3
2                       (63) 

Additionally, the second principal invariant I2 can be obtained through Equation 64: 

𝐼2 =
𝐼1
2−𝑡𝑟(𝐵2 𝑜𝑢 𝐶2)

2
= 𝜆1

2𝜆2
2 + 𝜆2

2𝜆3
2 + 𝜆1

2𝜆3
2                     (64) 

Moreover, the third principal invariant I3 can also be obtained through the determinant of the Cauchy-Green 
deformation tensor in Equation 65: 

𝐼3 = 𝑑𝑒𝑡(𝐵 𝑜𝑢 𝐶) = 𝜆1
2𝜆2
2𝜆3
2 = 𝐽2                      (65) 



  

Where 𝐽 = determinant of A (volume change). 
It is worth noting that according to Perônica et al. (2022), considering the assumption of incompressibility, the 

second and third directions are equal, therefore 𝜆2 =
1

√𝜆1
 and 𝜆3 =

1

√𝜆1
. Thus, one has Equations 66, 67, and 68: 

𝐼1 = 𝜆1
2 + (

1

√𝜆1
)
2

+ (
1

√𝜆1
)
2

= 𝜆1
2 +

2

𝜆1
                      (66) 

𝐼2 = 𝜆1
2 (

1

√𝜆1
)
2

+ (
1

√𝜆1
)
2

(
1

√𝜆1
)
2

+ 𝜆1
2 (

1

√𝜆1
)
2

=
1

𝜆1
2 + 2𝜆1                    (67) 

𝐼3 = 𝜆1
2 (

1

√𝜆1
)
2

(
1

√𝜆1
)
2

= 1                       (68) 

Therefore, as an essential aspect of a hyperelastic model, there is the energy density function (often denoted as 𝑊 
or 𝛹), which is a mathematical function that describes how the stored energy within a material changes as it deforms. 
(Jerábek and Écsi, 2019) 

This function is expressed in terms of deformation measures (Equation 69), which quantify how much a material 
has been deformed. The most common deformation measures include the use of strain invariants, as well as the principal 
stretches. 

𝜓 = 𝜓(𝐼1, 𝐼2, 𝐼3) = 𝜓(𝜆1, 𝜆2, 𝜆3)                       (69) 

With that, according to Perônica et al. (2022), the Cauchy tensor component can be represented in terms of the 
principal stretches in Equations 70 and 71 as follows: 

𝜎𝑖 = 𝜆𝑖
𝜕𝜓

𝜕𝜆𝑖
                         (70) 

𝜎 = 2(𝜆 −
1

𝜆2
) (

𝜕𝜓

𝜕𝐼1
+
1

𝜆

𝜕𝜓

𝜕𝐼2
)                       (71) 

4.1 Mooney-Rivlin Model 

The Mooney-Rivlin hyperelastic model is a constitutive model used to describe the deformation behavior of rubber-
like materials such as elastomers. In this model, the strain energy density function is represented as a polynomial function 
of the components of the strain tensor. (Mooney, 1940) 

The mathematical expression for the strain energy density function in the Mooney-Rivlin hyperelastic model is given 
by Equation 72 as: 

𝜓𝑀𝑅(𝐼1, 𝐼2) = 𝐶10(𝐼1 − 3) + 𝐶01(𝐼2 − 3)                      (72) 

Where 𝐶10 and 𝐶01 are material constants that depend on the specific material being modeled. 
Substituting the first and second strain invariants obtained previously, one has Equation 73: 

𝜓𝑀𝑅 = 𝐶10 (𝜆1
2 +

2

𝜆1
− 3) + 𝐶01 (

1

𝜆1
2 + 2𝜆1 − 3)                     (73) 

From this, we can obtain the Cauchy stress tensor component using Equation 74: 

𝜎𝑀𝑅 = 2(𝜆1 −
1

𝜆1
2)(𝐶10 +

𝐶01

𝜆1
)                       (74) 

4.2 Neo-Hookean Model 

The Neo-Hookean model is a type of hyperelastic model obtained through a particularization of the Mooney-Rivlin 
model and is used to describe the mechanical behavior of materials undergoing large deformations, such as rubber or 
soft biological tissues. This model assumes that the material is isotropic, meaning that its properties are the same in all 
directions. 

The strain energy function for the Neo-Hookean model can be expressed as Equation 75: 



  

𝜓𝑁𝐻(𝐼1) = 𝐶10(𝐼1 − 3)                        (75) 

Substituting the first strain invariant obtained previously, one has in Equation 76: 

𝜓𝑁𝐻 = 𝐶10 (𝜆1
2 +

2

𝜆1
− 3)                       (76) 

From this, we can obtain the Cauchy stress tensor component in Equation 77: 

𝜎𝑁𝐻 = 2(𝜆1 −
1

𝜆1
2) (𝐶10)                        (77) 

4.3 Ogden Model 

The Ogden hyperelastic model has a mathematical structure, more complex than previous methods, that is primarily 
used to describe the mechanical behavior of elastomers and predict the stress-strain relationship of elastomers under 
different loading conditions and for very high deformations. (Ogden, 1972; Ogden, 1984) 

The strain energy density function for the Ogden model is expressed in Equation 78 as follows: 

𝜓𝑂𝐺(𝜆1, 𝜆2, 𝜆3) = ∑
2𝜇𝑝

𝛼𝑝

𝑁
𝑝=1 (𝜆1

(𝛼𝑝) + 𝜆2
(𝛼𝑝) + 𝜆3

(𝛼𝑝) − 3)                    (78) 

Where 𝜇𝑝, 𝛼𝑝= material constants depending on the specific material being modeled. 

It is worth noting that according to Perônica et al. (2022), considering the assumption of incompressibility made in 

the previous chapter, the second and third directions are equal. Therefore, 𝜆2 =
1

√𝜆1
 and 𝜆3 =

1

√𝜆1
. Thus, Equation 79 is 

obtained. 

𝜓𝑂𝐺(𝜆1, 𝜆2, 𝜆3) = ∑
2𝜇𝑝

𝛼𝑝

𝑁
𝑝=1 (𝜆1

(𝛼𝑝) + (
2

√𝜆1
)
(𝛼𝑝)

− 3)                    (79) 

To demonstrate the mathematical formulation of the Ogden hyperelastic model, we can start with the definition of 
the model for 𝑁 = 3 in Equation 80. 

𝜓𝑂𝐺 =
2𝜇1

𝛼1
(𝜆1
(𝛼1) + (

2

√𝜆1
)
(𝛼1)

− 3) +
2𝜇2

𝛼2
(𝜆1
(𝛼2) + (

2

√𝜆1
)
(𝛼2)

− 3) +
2𝜇3

𝛼3
(𝜆1
(𝛼3) + (

2

√𝜆1
)
(𝛼3)

− 3)               (80) 

From this, the Cauchy stress tensor component can be obtained, for 𝑁 = 3, in Equation 81. 

𝜎𝑂𝐺 = 2𝜇1 (𝜆1
(𝛼1−1) − 𝜆1

(−
𝛼1
2
−1)) + 2𝜇2 (𝜆1

(𝛼2−1) − 𝜆1
(−

𝛼2
2
−1)) + 2𝜇3 (𝜆1

(𝛼3−1) − 𝜆1
(−

𝛼3
2
−1))               (81) 

4.4 Yeoh Model 

The Yeoh (1990) hyperelastic model is a mathematical framework derived from the polynomial model and an 
extension of the Neo-Hookean model. The strain energy density function 𝜓 in the Yeoh hyperelastic model is typically 
represented as follows in Equation 82: 

𝜓𝑌𝐸(𝐼1) = ∑ 𝐶𝑝0(𝐼1 − 3)
𝑝𝑁

𝑝=1                        (82) 

To demonstrate the mathematical formulation of the Yeoh model, one can start with the definition of the model 
for 𝑁 = 3 in Equation 83: 

𝜓𝑌𝐸 = 𝐶10(𝐼1 − 3) + 𝐶20(𝐼1 − 3)
2 + 𝐶30(𝐼1 − 3)

3                    (83) 

Substituting the first invariant of deformation obtained previously for 𝑁 = 3, one has in Equation 84: 

𝜓𝑌𝐸 = 𝐶10 (𝜆1
2 +

2

𝜆1
− 3) + 𝐶20 (𝜆1

2 +
2

𝜆1
− 3)

2
+ 𝐶30 (𝜆1

2 +
2

𝜆1
− 3)

3
                  (84) 

From this, the Cauchy tensor component can be obtained, for 𝑁 = 3, in Equation 85: 



  

𝜎𝑌𝐸 = 2(𝜆1 −
1

𝜆1
2) (𝐶10 + 2𝐶20(𝐼1 − 3) + 3𝐶30(𝐼1 − 3)²)                    (85) 

4.5 Internal force vector and Hessian matrix 

For the context of this research, it is necessary to calculate the parameters internal force vector 𝑞𝑖 and Hessian 
matrix 𝐾𝑖𝑗 for plane frames according to Reissner's kinematics and the formulation of hyperelastic models based on the 

stretch 𝜆 addressed in previous chapters. 

4.5.1 Linear Elastic Model 

According to Maciel (2008), for the linear elastic model, the specific strain energy is given by Equation 86: 

𝑢𝑒 =
1

2
𝐸 (𝜀𝑡

2 +
𝛾𝑡𝑛
2

2
)                        (86) 

With that, Equation 86 is substituted into Equation 87 to obtain the elastic potential energy in Equation 88: 

𝑈𝑒 = ∫ 𝑢𝑒𝑑𝑉0
⬚

𝑉0
                         (87) 

𝑈𝑒 = ∫
1

2
𝐸 (𝜀𝑡

2 +
𝛾𝑡𝑛
2

2
)𝑑𝑉0

⬚

𝑉0
                       (88) 

Thus, the internal force vector 𝑞𝑖 is obtained from the gradient of the elastic potential energy represented by 
Equation 89: 

𝑞𝑖 = 𝛻𝑈𝑒 =
𝜕𝑈𝑒

𝜕𝑋𝑖
=

𝜕

𝜕𝑋𝑖
[∫

1

2
𝐸 (𝜀𝑡

2 +
𝛾𝑡𝑛
2

2
)𝑑𝑉0

⬚

𝑉0
]                     (89) 

𝑞𝑖 =
1

2
𝐸 ∫ ∫

𝜕

𝜕𝑋𝑖
(𝜀𝑡
2 +

𝛾𝑡𝑛
2

2
) 𝑏𝐽0𝑑𝜉

1

−1
𝑑𝜂

1

−1
                      (90) 

𝑞𝑖 = 𝐸𝑏𝐽0 (εt
𝜕ε𝑡

𝜕𝑋𝑖
+
γ𝑡𝑛

2

𝜕γ𝑡𝑛

𝜕𝑋𝑖
)𝜔1𝜔2                      (91) 

Where 𝐸 = Young's modulus; 𝑏 = width of the element; 𝐽0 = Jacobian of the numerical integration transformation 
by Gauss-Legendre method; 𝜔1, 𝜔2 = weights associated with numerical integration by Gauss-Legendre method. 

Furthermore, by applying the gradient to the internal force vector in Equation 89, the Hessian matrix 𝐾𝑖𝑗 can be 

found from Equation 92. 

𝐾𝑖𝑗 = 𝛻𝑞𝑖 =
𝜕

𝜕𝑋𝑗
[
𝜕

𝜕𝑋𝑖
[∫

1

2
𝐸 (𝜀𝑡

2 +
𝛾𝑡𝑛
2

2
)𝑑𝑉0

⬚

𝑉0
]]                     (92) 

𝐾𝑖𝑗 =
1

2
𝐸 ∫ ∫

𝜕

𝜕𝑋𝑗

𝜕

𝜕𝑋𝑖
(𝜀𝑡
2 +

𝛾𝑡𝑛
2

2
) 𝑏𝐽0𝑑𝜉

1

−1
𝑑𝜂

1

−1
                     (93) 

𝐾𝑖𝑗 = 𝐸𝑏𝐽0 ((
𝜕ε𝑡
2

𝜕𝑋𝑖𝑗
+ εt

𝜕2ε𝑡

𝜕𝑋𝑖𝑗
2 ) +

1

2

𝜕γ𝑡𝑛
2

𝜕𝑋𝑖𝑗
+
1

2
γ𝑡𝑛

𝜕2γ𝑡𝑛

𝜕𝑋𝑖𝑗
2 )𝜔1𝜔2                    (94) 

4.5.2 Neo-Hookean Model 

In a similar manner to what was done for the linear elastic model, in hyperelastic models, the specific free 
deformation energy is used as the material constitutive law. By substituting the specific free energy of the Neo-Hookean 
model given in Equation 76 into Equation 87, one has from Equation 95: 

𝑈𝑒 = ∫ 𝐶10 (𝜆1
2 +

2

𝜆1
− 3)

⬚

𝑉0
𝑑𝑉0                       (95) 

However, when conducting preliminary tests on implementing this formulation, it was noted that the equations for 
the strain invariants from uniaxial tensile tests are not sufficient for the approach of planar frames with Reissner 
kinematics. Therefore, the first strain invariant from simple shear tests was added to consider distortion in the 
deformation energy of the model. 



  

Therefore, one has the following equation from Equation 96: 

𝑈𝑒 = ∫ 𝐶10(𝐼1𝑇𝑈 + 𝐼1𝐶𝑆 − 3)
⬚

𝑉0
𝑑𝑉0                      (96) 

𝑈𝑒 = ∫ 𝐶10 ((𝜆1
2 +

2

𝜆1
) + (γ𝑡𝑛

2 + 3) − 3)
⬚

𝑉0
𝑑𝑉0                     (97) 

𝑈𝑒 = ∫ 𝐶10 (𝜆1
2 +

2

𝜆1
+ γ𝑡𝑛

2 )
⬚

𝑉0
𝑑𝑉0                      (98) 

Where 𝐼1𝑇𝑈  is the first strain invariant for uniaxial tensile test, and 𝐼1𝐶𝑆  is the first strain invariant for simple shear 

test. 
Thus, the internal force vector 𝑞𝑖 is obtained by the gradient of the elastic potential energy represented by Equation 

99: 

𝑞𝑖 = 𝛻𝑈𝑒 =
𝜕𝑈𝑒

𝜕𝑋𝑖
=

𝜕

𝜕𝑋𝑖
[∫ 𝐶10 (𝜆1

2 +
2

𝜆1
+ γ𝑡𝑛

2 )
⬚

𝑉0
𝑑𝑉0]                    (99) 

𝑞𝑖 = 𝐶10 ∫ ∫
𝜕

𝜕𝑋𝑖
(𝜆1
2 +

2

𝜆1
+ γ𝑡𝑛

2 )𝑏𝐽0𝑑𝜉
1

−1
𝑑𝜂

1

−1
                   (100) 

𝑞𝑖 = 𝐶10𝑏𝐽0 (2𝜆1
𝜕𝜆1

𝜕𝑋𝑖
−
2
𝜕𝜆1
𝜕𝑋𝑖

𝜆1
2 + 2γ𝑡𝑛

𝜕γ𝑡𝑛

𝜕𝑋𝑖
)𝜔1𝜔2                   (101) 

Furthermore, by applying the gradient to the internal force vector in Equation 99, one can find the Hessian matrix 
𝐾𝑖𝑗 from Equation 102: 

𝐾𝑖𝑗 = 𝛻𝑞𝑖 =
𝜕

𝜕𝑋𝑗
[
𝜕

𝜕𝑋𝑖
[∫ 𝐶10 (𝜆1

2 +
2

𝜆1
+ γ𝑡𝑛

2 )
⬚

𝑉0
𝑑𝑉0]]                  (102) 

𝐾𝑖𝑗 = 𝐶10𝑏𝐽0 ∫ ∫
𝜕

𝜕𝑋𝑗

𝜕

𝜕𝑋𝑖
(𝜆1
2 +

2

𝜆1
+ γ𝑡𝑛

2 )𝑑𝜉
1

−1
𝑑𝜂

1

−1
                  (103) 

𝐾𝑖𝑗 = 𝐶10𝑏𝐽0

(

 2(
𝜕𝜆1

2

𝜕𝑋𝑖𝑗
+ 𝜆1

𝜕2𝜆1

𝜕𝑋𝑖𝑗
2 ) − (

2(𝜆1
𝜕2𝜆1

𝜕𝑋𝑖𝑗
2 −2

𝜕𝜆1
2

𝜕𝑋𝑖𝑗
)

𝜆1
3 )+ 2(

𝜕γ𝑡𝑛
2

𝜕𝑋𝑖𝑗
+ γ𝑡𝑛

𝜕2γ𝑡𝑛

𝜕𝑋𝑖𝑗
2 )

)

 𝜔1𝜔2               (104) 

4.5.3 Mooney-Rivlin Model 

By substituting the specific free energy of the Mooney-Rivlin model as shown in Equation 73 into Equation 87, one 
has from Equation 105: 

𝑈𝑒 = ∫ 𝐶10 (𝜆1
2 +

2

𝜆1
− 3) + 𝐶01 (

1

𝜆1
2 + 2𝜆1 − 3)

⬚

𝑉0
𝑑𝑉0                  (105) 

However, upon conducting preliminary implementation tests of this formulation, it was noticed that the equation 
for the strain invariants of uniaxial traction test is not sufficient for the approach of planar frames with Reissner 
kinematics. Therefore, the first and second strain invariants of simple shear test were added so that distortion is 
considered in the deformation energy of the model. 

Therefore, the following equation is obtained from Equation 106: 

𝑈𝑒 = ∫ 𝐶10(𝐼1𝑇𝑈 + 𝐼1𝐶𝑆 − 3) + 𝐶01(𝐼2𝑇𝑈 + 𝐼2𝐶𝑆 − 3)
⬚

𝑉0
𝑑𝑉0                  (106) 

𝑈𝑒 = ∫ 𝐶10 ((𝜆1
2 +

2

𝜆1
) + (γ𝑡𝑛

2 + 3) − 3) + 𝐶01 ((
1

𝜆1
2 + 2𝜆1) + (γ𝑡𝑛

2 + 3) − 3)
⬚

𝑉0
𝑑𝑉0              (107) 

𝑈𝑒 = ∫ 𝐶10 (𝜆1
2 +

2

𝜆1
+ γ𝑡𝑛

2 ) + 𝐶01 (
1

𝜆1
2 + 2𝜆1 + γ𝑡𝑛

2 )
⬚

𝑉0
𝑑𝑉0                  (108) 

Thus, the internal force vector 𝑞𝑖 is obtained from the gradient of the elastic potential energy represented by 
Equation 109: 



  

𝑞𝑖 = 𝛻𝑈𝑒 =
𝜕𝑈𝑒

𝜕𝑋𝑖
=

𝜕

𝜕𝑋𝑖
[∫ 𝐶10 (𝜆1

2 +
2

𝜆1
+ γ𝑡𝑛

2 ) + 𝐶01 (
1

𝜆1
2 + 2𝜆1 + γ𝑡𝑛

2 )
⬚

𝑉0
𝑑𝑉0]               (109) 

𝑞𝑖 = ∫ ∫ (𝐶10
𝜕

𝜕𝑋𝑖
(𝜆1
2 +

2

𝜆1
+ γ𝑡𝑛

2 ) + 𝐶01
𝜕

𝜕𝑋𝑖
(
1

𝜆1
2 + 2𝜆1 + γ𝑡𝑛

2 ))𝑏𝐽0𝑑𝜉
1

−1
𝑑𝜂

1

−1
               (110) 

𝑞𝑖 = 𝑏𝐽0(𝐶10 (2𝜆1
𝜕𝜆1

𝜕𝑋𝑖
−
2
𝜕𝜆1
𝜕𝑋𝑖

𝜆1
2 + 2γ𝑡𝑛

𝜕γ𝑡𝑛

𝜕𝑋𝑖
) + 𝐶01 (−

2
𝜕𝜆1
𝜕𝑋𝑖

𝜆1
3 + 2

𝜕𝜆1

𝜕𝑋𝑖
+ 2γ𝑡𝑛

𝜕γ𝑡𝑛

𝜕𝑋𝑖
))𝜔1𝜔2              (111) 

Furthermore, by applying the gradient to the internal force vector in Equation 109, we can find the Hessian matrix 
𝐾𝑖𝑗 from Equation 112: 

𝐾𝑖𝑗 = 𝛻𝑞𝑖 =
𝜕

𝜕𝑋𝑗
[
𝜕

𝜕𝑋𝑖
[∫ 𝐶10 (𝜆1

2 +
2

𝜆1
+ γ𝑡𝑛

2 ) + 𝐶01 (
1

𝜆1
2 + 2𝜆1 + γ𝑡𝑛

2 )
⬚

𝑉0
𝑑𝑉0]]               (112) 

𝐾𝑖𝑗 = ∫ ∫ (𝐶10
𝜕

𝜕𝑋𝑗

𝜕

𝜕𝑋𝑖
(𝜆1
2 +

2

𝜆1
+ γ𝑡𝑛

2 ) + 𝐶01
𝜕

𝜕𝑋𝑗

𝜕

𝜕𝑋𝑖
(
1

𝜆1
2 + 2𝜆1 + γ𝑡𝑛

2 ))𝑏𝐽0𝑑𝜉
1

−1
𝑑𝜂

1

−1
              (113) 

𝐾𝑖𝑗 = 𝑏𝐽0

(

 
 
𝐶10

(

 2(
𝜕𝜆1

2

𝜕𝑋𝑖𝑗
+ 𝜆1

𝜕2𝜆1

𝜕𝑋𝑖𝑗
2 ) − (

2(𝜆1
𝜕2𝜆1

𝜕𝑋𝑖𝑗
2 −2

𝜕𝜆1
2

𝜕𝑋𝑖𝑗
)

𝜆1
3 )+ 2(

𝜕γ𝑡𝑛
2

𝜕𝑋𝑖𝑗
+ γ𝑡𝑛

𝜕2γ𝑡𝑛

𝜕𝑋𝑖𝑗
2 )

)

 + 𝐶01

(

 −(
2(𝜆1

𝜕2𝜆1

𝜕𝑋𝑖𝑗
2 −3

𝜕𝜆1
2

𝜕𝑋𝑖𝑗
)

𝜆1
4 )+ 2

𝜕2𝜆1

𝜕𝑋𝑖𝑗
2 +

2(
𝜕γ𝑡𝑛

2

𝜕𝑋𝑖𝑗
+ γ𝑡𝑛

𝜕2γ𝑡𝑛

𝜕𝑋𝑖𝑗
2 )

)

 

)

 
 
𝜔1𝜔2                     (114) 

4.5.4 Ogden Model 

By substituting the specific strain energy of the Ogden model as exposed in Equation 79 into Equation 87, one has, 
for 𝑁 = 1, Equation 115: 

𝑈𝑒 = ∫
2𝜇1

𝛼1
(𝜆1
(𝛼1) + (

2

√𝜆1
)
(𝛼1)

− 3)
⬚

𝑉0
𝑑𝑉0                    (115) 

However, upon conducting preliminary implementation tests of this formulation, it was noted that the equation is 
not sufficient for the approach of planar frames with Reissner kinematics. Therefore, the first invariant of simple shear 
deformation test was added so that distortion is considered in the deformation energy of the model. 

Therefore, one has the following equation starting from Equation 116: 

𝑈𝑒 = ∫
2𝜇1

𝛼1
(𝜆1
(𝛼1) + (

2

√𝜆1
)
(𝛼1)

+ 𝐼1𝐶𝑆 − 3)
⬚

𝑉0
𝑑𝑉0                   (116) 

𝑈𝑒 = ∫
2𝜇1

𝛼1
(𝜆1
(𝛼1) + (

2

√𝜆1
)
(𝛼1)

+ (γ𝑡𝑛
2 + 3) − 3)

⬚

𝑉0
𝑑𝑉0                  (117) 

𝑈𝑒 = ∫
2𝜇1

𝛼1
(𝜆1
(𝛼1) + (

2

√𝜆1
)
(𝛼1)

+ γ𝑡𝑛
2 )

⬚

𝑉0
𝑑𝑉0                   (118) 

Thus, the internal force vector 𝑞𝑖 is obtained from the gradient of the elastic potential energy represented by 
Equation 119: 

𝑞𝑖 = 𝛻𝑈𝑒 =
𝜕𝑈𝑒

𝜕𝑋𝑖
=

𝜕

𝜕𝑋𝑖
[∫

2𝜇1

𝛼1
(𝜆1
(𝛼1) + (

2

√𝜆1
)
(𝛼1)

+ γ𝑡𝑛
2 )

⬚

𝑉0
𝑑𝑉0]                 (119) 



  

𝑞𝑖 = ∫ ∫
2𝜇1

𝛼1

𝜕

𝜕𝑋𝑖
(𝜆1
(𝛼1) + (

2

√𝜆1
)
(𝛼1)

+ γ𝑡𝑛
2 )𝑏𝐽0𝑑𝜉

1

−1
𝑑𝜂

1

−1
                  (120) 

𝑞𝑖 = 𝑏𝐽0 (
2𝜇1

𝛼1
(𝛼1𝜆1

(𝛼1−1) 𝜕𝜆1

𝜕𝑋𝑖
− 𝛼1

𝜕𝜆1

𝜕𝑋𝑖
𝜆1
(
−𝛼1−2

2
)
+ 2γ𝑡𝑛

𝜕γ𝑡𝑛

𝜕𝑋𝑖
))𝜔1𝜔2                (121) 

Furthermore, by applying the gradient to the internal force vector in Equation 119, one can find the Hessian matrix 
𝐾𝑖𝑗 from Equation 122: 

𝐾𝑖𝑗 = 𝛻𝑞𝑖 =
𝜕

𝜕𝑋𝑗
[
𝜕

𝜕𝑋𝑖
[∫

2𝜇1

𝛼1
(𝜆1
(𝛼1) + (

2

√𝜆1
)
(𝛼1)

+ γ𝑡𝑛
2 )

⬚

𝑉0
𝑑𝑉0]]                 (122) 

𝐾𝑖𝑗 = ∫ ∫
2𝜇1

𝛼1

𝜕

𝜕𝑋𝑗

𝜕

𝜕𝑋𝑖
(𝜆1
(𝛼1) + (

2

√𝜆1
)
(𝛼1)

+ γ𝑡𝑛
2 )𝑏𝐽0𝑑𝜉

1

−1
𝑑𝜂

1

−1
                 (123) 

𝐾𝑖𝑗 = 𝑏𝐽0

(

  
 2𝜇1
𝛼1

(

 
 
𝛼1 ((𝛼1 − 1)

𝜕𝜆1
2

𝜕𝑋𝑖𝑗
𝜆1
(𝛼1−2) +

𝜕2𝜆1

𝜕𝑋𝑖𝑗
2 𝜆1

(𝛼1−1)) − 𝛼1(
(−𝛼1−2)

𝜕𝜆1
2

𝜕𝑋𝑖𝑗
𝜆1

(−𝛼1−4)
2

2
+
𝜕2𝜆1

𝜕𝑋𝑖𝑗
2 𝜆1

(−𝛼1−2)

2 )+ 2(
𝜕γ𝑡𝑛

2

𝜕𝑋𝑖𝑗
+

γ𝑡𝑛
𝜕2γ𝑡𝑛

𝜕𝑋𝑖𝑗
2 )

)

 
 

)

  
 
𝜔1𝜔2                      (124) 

It is worth noting that for 𝑁 = 2, 𝑁 = 3, and 𝑁 = 4, the values of the internal force vector 𝑞𝑖 and Hessian matrix 
𝐾𝑖𝑗 can be obtained by adding cumulative terms of the model for 𝑁 = 1, differentiating only the constitutive coefficients 

𝜇 and 𝛼. 

4.5.5 Yeoh Model 

Upon substituting the specific free energy of the Yeoh model as shown in Equation 84 into Equation 87, one has 
from Equation 125: 

𝑈𝑒 = ∫ 𝐶10 (𝜆1
2 +

2

𝜆1
− 3) + 𝐶20 (𝜆1

2 +
2

𝜆1
− 3)

2
+ 𝐶30 (𝜆1

2 +
2

𝜆1
− 3)

3⬚

𝑉0
𝑑𝑉0               (125) 

However, upon conducting preliminary tests of implementing this formulation, it was noticed that the equation for 
the strain invariants from the uniaxial tensile test is not sufficient for the approach of plane frames with Reissner 
kinematics. Therefore, the first strain invariant from the simple shear test was added so that distortion is considered in 
the deformation energy of the model. 

Therefore, one has the following equations starting from Equation 126: 

𝑈𝑒 = ∫ 𝐶10(𝐼1𝑇𝑈 + 𝐼1𝐶𝑆 − 3) + 𝐶20(𝐼1𝑇𝑈 + 𝐼1𝐶𝑆 − 3)
2
+ 𝐶30(𝐼1𝑇𝑈 + 𝐼1𝐶𝑆 − 3)

3⬚

𝑉0
𝑑𝑉0              (126) 

𝑈𝑒 = ∫ 𝐶10 ((𝜆1
2 +

2

𝜆1
) + (γ𝑡𝑛

2 + 3) − 3) + 𝐶20 ((𝜆1
2 +

2

𝜆1
) + (γ𝑡𝑛

2 + 3) − 3)
2
+ 𝐶30 ((𝜆1

2 +
2

𝜆1
) + (γ𝑡𝑛

2 + 3) − 3)
3⬚

𝑉0
𝑑𝑉0

                        (127) 

𝑈𝑒 = ∫ 𝐶10 (𝜆1
2 +

2

𝜆1
+ γ𝑡𝑛

2 ) + 𝐶20 (𝜆1
2 +

2

𝜆1
+ γ𝑡𝑛

2 )
2
+ 𝐶30 (𝜆1

2 +
2

𝜆1
+ γ𝑡𝑛

2 )
3⬚

𝑉0
𝑑𝑉0               (128) 

Thus, the internal force vector 𝑞𝑖 is obtained by the gradient of the elastic potential energy represented from Equa-
tion 129: 



  

𝑞𝑖 = 𝛻𝑈𝑒 =
𝜕𝑈𝑒

𝜕𝑋𝑖
=

𝜕

𝜕𝑋𝑖
[∫ 𝐶10 (𝜆1

2 +
2

𝜆1
+ γ𝑡𝑛

2 ) + 𝐶20 (𝜆1
2 +

2

𝜆1
+ γ𝑡𝑛

2 )
2
+ 𝐶30 (𝜆1

2 +
2

𝜆1
+ γ𝑡𝑛

2 )
3⬚

𝑉0
𝑑𝑉0]             (129) 

𝑞𝑖 = ∫ ∫ (𝐶10
𝜕

𝜕𝑋𝑖
(𝜆1
2 +

2

𝜆1
+ γ𝑡𝑛

2 ) + 𝐶20
𝜕

𝜕𝑋𝑖
(𝜆1
2 +

2

𝜆1
+ γ𝑡𝑛

2 )
2
+ 𝐶30

𝜕

𝜕𝑋𝑖
(𝜆1
2 +

2

𝜆1
+ γ𝑡𝑛

2 )
3
)𝑏𝐽0𝑑𝜉

1

−1
𝑑𝜂

1

−1
            (130) 

𝑞𝑖 = 𝑏𝐽0(𝐶10 (2𝜆1
𝜕𝜆1

𝜕𝑋𝑖
−
2
𝜕𝜆1
𝜕𝑋𝑖

𝜆1
2 + 2γ𝑡𝑛

𝜕γ𝑡𝑛

𝜕𝑋𝑖
) + 𝐶20 (4𝜆1

3 𝜕𝜆1

𝜕𝑋𝑖
+ 4

𝜕𝜆1

𝜕𝑋𝑖
+ 4𝜆1

2γ𝑡𝑛
𝜕γ𝑡𝑛

𝜕𝑋𝑖
−
8
𝜕𝜆1
𝜕𝑋𝑖

𝜆1
3 +

8γ𝑡𝑛
𝜕γ𝑡𝑛
𝜕𝑋𝑖

𝜆1
+ 4γ𝑡𝑛

2 𝜆1
𝜕𝜆1

𝜕𝑋𝑖
−

4γ𝑡𝑛
2 𝜕𝜆1
𝜕𝑋𝑖

𝜆1
2 + 4γ𝑡𝑛

3 𝜕γ𝑡𝑛

𝜕𝑋𝑖
) + 𝐶30 (

24γ𝑡𝑛(𝜆1
𝜕γ𝑡𝑛
𝜕𝑋𝑖

−γ𝑡𝑛
𝜕𝜆1
𝜕𝑋𝑖
)

𝜆1
3 +

6(−γ𝑡𝑛
4 𝜕𝜆1
𝜕𝑋𝑖
+4γ𝑡𝑛

3 𝜆1
𝜕γ𝑡𝑛
𝜕𝑋𝑖

)

𝜆1
2 + 6𝜆1

5 𝜕𝜆1

𝜕𝑋𝑖
+ 6γ𝑡𝑛

5 𝜕γ𝑡𝑛

𝜕𝑋𝑖
+ 18𝜆1

2 𝜕𝜆1

𝜕𝑋𝑖
+

12(γ𝑡𝑛
2 𝜕𝜆1

𝜕𝑋𝑖
+ 2γ𝑡𝑛𝜆1

𝜕γ𝑡𝑛

𝜕𝑋𝑖
) + 3 (2𝜆1

4γ𝑡𝑛
𝜕γ𝑡𝑛

𝜕𝑋𝑖
+ 4𝜆1

3γ𝑡𝑛
2 𝜕𝜆1

𝜕𝑋𝑖
) + 3 (4γ𝑡𝑛

3 𝜆1
2 𝜕γ𝑡𝑛

𝜕𝑋𝑖
+ 2γ𝑡𝑛

4 𝜆1
𝜕𝜆1

𝜕𝑋𝑖
) −

24
𝜕𝜆1
𝜕𝑋𝑖

𝜆1
4 ))𝜔1𝜔2            (131) 

Furthermore, by applying the gradient to the internal force vector in Equation 129, the Hessian matrix 𝐾𝑖𝑗 can be 

obtained from Equation 132: 

𝐾𝑖𝑗 = 𝛻𝑞𝑖 =
𝜕

𝜕𝑋𝑗
[
𝜕

𝜕𝑋𝑖
[∫ 𝐶10 (𝜆1

2 +
2

𝜆1
+ γ𝑡𝑛

2 ) + 𝐶20 (𝜆1
2 +

2

𝜆1
+ γ𝑡𝑛

2 )
2
+ 𝐶30 (𝜆1

2 +
2

𝜆1
+ γ𝑡𝑛

2 )
3⬚

𝑉0
𝑑𝑉0]]             (132) 

𝐾𝑖𝑗 = ∫ ∫ (𝐶10
𝜕

𝜕𝑋𝑗

𝜕

𝜕𝑋𝑖
(𝜆1
2 +

2

𝜆1
+ γ𝑡𝑛

2 ) + 𝐶20
𝜕

𝜕𝑋𝑗

𝜕

𝜕𝑋𝑖
(𝜆1
2 +

2

𝜆1
+ γ𝑡𝑛

2 )
2
+ 𝐶30

𝜕

𝜕𝑋𝑗

𝜕

𝜕𝑋𝑖
(𝜆1
2 +

2

𝜆1
+ γ𝑡𝑛

2 )
3
)𝑏𝐽0𝑑𝜉

1

−1
𝑑𝜂

1

−1
  (133) 

𝐾𝑖𝑗 = 𝑏𝐽0

(

 
 
 
𝐶10

(

 2(
𝜕𝜆1

2

𝜕𝑋𝑖𝑗
+ 𝜆1

𝜕2𝜆1

𝜕𝑋𝑖𝑗
2 ) −

2(𝜆1
𝜕2𝜆1

𝜕𝑋𝑖𝑗
2 −2

𝜕𝜆1
2

𝜕𝑋𝑖𝑗
)

𝜆1
3 + 2(

𝜕γ𝑡𝑛
2

𝜕𝑋𝑖𝑗
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5 RESULTS AND DISCUSSIONS 

In this chapter, numerical examples were developed based on the formulation discussed in the previous chapters, 
employing the positional finite element method for plane frames using the Reissner kinematics. Subsequently, compari-
sons were made with theoretical results and experimental data available in the structural engineering literature, aiming 
to validate the developed software. 

5.1 Uniaxial traction in hyperelastic bar 

Based on the work of Pascon (2008) and Perônica et al. (2022), Figure 6 depicts a hyperelastic bar with a second-
kind support at node 1 and a first-kind support at node 3, under uniaxial traction with horizontal force applied from left 
to right at node 3. 

 

Figure 6 Hyperelastic bar under uniaxial traction - Adapted from Perônica et al. (2022) 

As observed in Figure 6, the length is L = 10 cm, the area is A = 1.0 cm², and the inertia is Iz = 8.33 x 10-2 cm4. 
Additionally, 50 load steps were used with 1 finite element using quadratic approximation and a convergence tolerance 
in positions of 10-6. 

The purpose of this numerical example is to compare and validate the results obtained from the developed software 
with the formulations described in the previous chapters for hyperelastic models, using experimental data from the study 
by Paula et al. (2019). Paula et al. (2019) conducted uniaxial tensile tests on elastomer samples with different percentages 
of carbon black, namely 0%, 10%, 30%, and 60%, and concluded that the higher the percentage of carbon black added to 
the elastomers, the greater the stiffness of the samples. 

Furthermore, by comparing the developed formulation with these tests, it is possible to adjust the calibration of the 
constitutive material constants using the least squares method. This improves the accuracy of the models and allows 
their use in subsequent numerical examples. As mentioned earlier, this research analyzed four hyperelastic models: Neo-
Hookean (Mod. NH), Mooney-Rivlin (Mod. MR), Yeoh (Mod. YE), and Ogden (Mod. OG), in addition to the linear elastic 
model (Mod. EL). 

Therefore, the least squares method can be applied to determine the material constitutive coefficients by defining 
an objective function that quantifies the difference between the strain energy density function and the stress vs. strain 
data observed experimentally by Paula et al. (2019). With this, based on the equations obtained in the previous sections, 
it is possible to determine the constitutive coefficients for points (𝜀𝑖,𝜎𝑖). In this way, the sum of the squares of the differ-
ences between the experimental and estimated points is minimized, resulting in a linear system where the unknowns 
are the constitutive coefficients of the hyperelastic models. 

From obtaining the constitutive constants for the different carbon black samples, it was possible to use the formu-
lations of the hyperelastic models, develop the computational code in FORTRAN, and obtain the results of the displace-
ments of the bar considering 0%, 10%, 30%, and 60% of carbon black, as per the experiment conducted by Paula et al. 
(2019), illustrated in Figure 7: 



  

 

 

Figure 7 Force vs. displacement plot for elastomer with carbon black additions: a) 0% b) 10% c) 30% d) 60% 

It is worth noting that for the sample with 0% carbon black, only the OG and YE models achieved a correlation 
coefficient R² greater than 0.99, while the others obtained R² slightly above 0.90. Additionally, the NH and MR models 
reached such R² after reducing points from the stress-strain curve. The OG and YE models were able to capture all 25 
points from the experimental curves of Paula et al. (2019), and the NH and MR models captured 18 and 20 points respec-
tively, making the models coherent only in the initial portion of the curve where there is predominance of a linear be-
havior. Such behavior was expected given the formulation with fewer constitutive constants of the NH and MR models. 

For the sample with 10% carbon black, only the OG and YE models achieved an R² greater than 0.99, while the others 
obtained an R² slightly above 0.90. Additionally, the NH and MR models reached such R² after reducing points from the 
stress-strain curve. The OG and YE models were able to capture all 25 points from the experimental curves of Paula et al. 
(2019), and the NH and MR models captured 14 and 19 points respectively, making the models coherent only in the initial 
portion of the curve, similar to the case with 0% carbon black. 

For the sample with 30% carbon black, only the OG and YE models achieved an R² greater than 0.99, while the others 
obtained an R² slightly above 0.90. Additionally, the NH model reached such R² after reducing points from the stress-
strain curve. The OG, YE, and MR models were able to capture all 21 points from the experimental curves of Paula et al. 
(2019), and the NH model captured only 9 points, making the model coherent only in the initial portion of the curve 
where there is predominance of linear behavior. Although the MR model captured all points of the curve, the NH and 
MR models continued to exhibit the expected linear behavior due to the formulation with fewer constitutive constants. 
Furthermore, it can be observed that with the increase in the percentage to 30% carbon black, and consequently, an 
increase in the stiffness of the elastomer, the OG and YE models maintain high accuracy, but their curves show a subtle 
deviation from the curves of the NH, MR, and EL models. 

For the sample with 60% carbon black, only the OG, YE, and MR models achieved an R² greater than 0.99, while the 
NH model obtained an R² slightly above 0.90. All models were able to capture the 17 points from the experimental curves 
of Paula et al. (2019), and following the subtle trend observed in the previous case, it can be noted that with the increase 
in the percentage to 60% carbon black, and consequently, an increase in the stiffness of the elastomer, the OG and YE 
models remain the models with the highest observed accuracy. However, the curves of these models show a tendency 
to approximate the curves of the NH, MR, and EL models, demonstrating a trend towards linearization with the increase 
in material stiffness. 



  

Such results for elastomers with carbon black additions, obtained through the developed computational code, were 
consistent with the experimental study by Paula et al. (2019) and with the computational code development study for 
truss analysis by Perônica et al. (2022). However, it can be observed that the most accurate models in all elastomer 
samples regardless of stiffness were the Ogden and Yeoh hyperelastic models, which directly corroborates with the 
aforementioned literature. 

5.2 Arch plane frame instability 

Based on the work of Maciel (2008), Figure 8 depicts a plane frame in an arch configuration, fixed at one end and 
supported at the other, with a transverse load applied from top to bottom along the axis of symmetry of the arch. 

 

Figure 8 Arch plane frame - Adapted from Maciel (2008) 

As observed in Figure 8, one has a radius R = 100, EA = 100EI, EI = 106, and angle α = 145°. Additionally, we used 50 
load steps and 20 finite elements with cubic approximation and convergence tolerance of 10-6. For the validation of the 
computational code in plane frames, Figure 9 presents the comparison between longitudinal, transverse displacements, 
and rotation from the study by Maciel (2008), which, in turn, corroborated with the analytical solutions of critical load 
from the studies by Dadeppo and Schmidt (1975) and Ibrahimbegovic (1995). 

 

 



  

Figure 9 Force vs. displacement and rotation graphs for linear elastic model 

It is worth highlighting the high accuracy of the developed computational code with the study by Maciel (2008) and 
the aforementioned literature, considering that the maximum critical load convergence value of Maciel (2008), Ibra-
himbegovic (1995), and the present study was 897.3 when using the Reissner kinematics, as well as that of the study by 
Dadeppo and Schmidt (1975) was 897 with Euler-Bernoulli kinematics. Such validation is necessary to evaluate the same 
numerical example for the hyperelastic models. Therefore, for the analysis of the hyperelastic models with the elastomer 
samples from the study by Paula et al. (2019), the values of the constitutive constants obtained for 0%, 10%, 30%, and 
60% carbon black were used respectively. 

With that, one has in Figure 10 the graphs of F vs. δx, F vs. δy, and F vs. ω for the circular arch elastomer plane frame 
with 0% carbon black: 

 

 

Figure 10 Force vs. displacement and rotation graphs for elastomer with 0% carbon black. 

For the sample with 0% carbon black, the differences between the hyperelastic models are accentuated, especially 
with the OG model compared to the others, given that the MR, NH, and YE models showed similar results in longitudinal, 
transverse, and rotational displacements. This difference partially corroborates with the results of the previous numerical 
examples, considering that only the OG model showed discrepancies, whereas in the previous numerical examples, the 
NH and MR models were the most discrepant due to the lower number of constants and consequently, the lower com-
plexity of the formulations, making the models less accurate. 

With that, one has in Figure 11 the graphs of F vs. δx, F vs. δy, and F vs. ω for the circular arch plane frame made of 
elastomer with 10% carbon black. 



  

 

 

Figure 11 Force vs. displacement and rotation graphs for elastomer with 10% carbon black. 

For the sample with 10% carbon black, the differences between the hyperelastic models are pronounced, especially 
between the models with greater differences in the number of constants and formulation complexity. The OG and YE 
models showed similar results to each other, while the NH and MR models also showed similar results for longitudinal 
displacement, transverse displacement, and rotation. 

With that, one has in Figure 12 the graphs of F vs. δx, F vs. δy, and F vs. ω for the circular arch plane frame of 
elastomer with 30% carbon black. 

 



  

 

Figure 12 Force vs. displacement and rotation graphs for elastomer with 30% carbon black. 

For the sample with 30% carbon black, the differences between the hyperelastic models are accentuated, mainly 
between the MR model and the others. The OG, NH, and YE models showed similar results in terms of longitudinal, 
transverse displacement, and rotation. This difference partially corroborates with the results of previous numerical ex-
amples, considering that only the MR model showed a significant difference, whereas in previous numerical examples, 
the NH and MR models were the most discrepant due to the lower number of constants and consequently, the lower 
complexity of the formulations, making the models less accurate. 

With that, one has in Figure 13 the graphs of F vs. δx, F vs. δy, and F vs. ω for the circular arch elastomer plane frame 
with 60% carbon black. 

 

 

Figure 13 Force vs. displacement and rotation graphs for elastomer with 60% carbon black. 

For the 60% carbon black sample, the trend of results directly corroborated with the analysis of the results for the 
10% carbon black sample. 
 
 



  

5.3 Articulated diamond-shaped plane frame 

From the work of Maciel (2008), one has in Figure 14 the representation of an articulated diamond-shaped plane 
frame with applied symmetry. 

 

Figure 14 Articulated diamond-shaped plane frame - Adapted from Maciel (2008) 

As observed in Figure 14, the length is L=1, E=1, I=1, and area A=10000. Additionally, 50 load steps were used along 
with 20 finite elements with quadratic approximation and a convergence tolerance of 10−6. It is important to highlight 
that whenever the nomenclatures "(T)" and "(C)" appear in this section, they refer to tension and compression forces in 
the structure, respectively. 

For the validation of the computational code in plane frames, a comparison is presented in Figure 15 between the 
longitudinal and transverse displacements, as well as the rotation for traction and compression in the plane frame from 
the study by Maciel (2008), which in turn corroborated with the analytical solutions from the studies by Jenkins et al. 
(1966) and Mattiasson (1981). 

 

 

Figure 15 Force vs. displacement and rotation graphs for linear elastic model 



  

It is worth noting the high accuracy of the developed computational code with the study by Maciel (2008) and the 
aforementioned literature. Such validation is necessary to evaluate the same numerical example for hyperelastic models. 
Therefore, for the analysis of hyperelastic models with elastomer samples from the study by Paula et al. (2019), a load 
value 106 times higher than the load in the study by Maciel (2008) and a cross-sectional area 10 times smaller were used 
to allow the applicability of the obtained constitutive constant values for 0%, 10%, 30%, and 60% carbon black content, 
respectively. 

With that, one has in Figure 16 the graphs of F vs. δx, F vs. δy, and F vs. ω for the articulated diamond-shaped plane 
frame made of elastomer with 0% carbon black: 

 

 

Figure 16 Force vs. displacement and rotation graphs for elastomer with 0% carbon black. 

For the sample with 0% carbon black, the differences between the hyperelastic models are very subtle both in trac-
tion and compression. In traction, the largest difference between the models was 4.35%, while in compression, it was 
6.19%. Additionally, the smallest difference in traction was 0.43%, while in compression, it was 0.87%. This difference in 
accuracy between traction and compression results corroborates with the studies of Marczak and Iturrioz (2006), as well 
as with the studies of Perônica et al. (2022), which state that although compression follows the same theoretical equa-
tions in hyperelastic models, the difference arises because the experimental adjustment is made based on an experi-
mental curve for uniaxial traction, thus, the compression behavior is predicted and not adjusted. 

With that, one has in Figure 17 the graphs of F vs. δx, F vs. δy, and F vs. ω for the articulated diamond-shaped 
elastomer plane frame with 10% carbon black. 



  

 

 

Figure 17 Force vs. displacement and rotation graphs for elastomer with 10% carbon black. 

For the sample with 10% carbon black, the greatest difference between the hyperelastic models in traction and 
compression occurs between the OG and MR models, while the smallest difference in traction and compression occurs 
between the YE and OG models. The differences between the hyperelastic models are more pronounced in compression. 

With this, one has in Figure 18 the graphs of F vs. δx, F vs. δy, and F vs. ω for the articulated diamond-shaped 
elastomer plane frame with 30% carbon black. 

 
 



  

 

Figure 18 Force vs. displacement and rotation graphs for elastomer with 30% carbon black. 

For the 30% carbon black sample, the largest difference between the hyperelastic models in traction and compres-
sion occurs between the YE and MR models, while the smallest difference in traction and compression occurs between 
the NH and OG models. The differences between the hyperelastic models are pronounced, both in traction and compres-
sion, mainly from the MR model compared to the others, considering that the OG, NH, and YE models showed similar 
results in longitudinal, transverse displacement, and rotation. 

With that, one has in Figure 19 the graphs of F vs. δx, F vs. δy, and F vs. ω for the articulated diamond-shaped 
elastomer plane frame with 60% carbon black. 

 

 

Figure 19 Force vs. displacements and rotation graphs for elastomer with 60% carbon black. 

For the sample with 60% carbon black, the greatest difference between the hyperelastic models in traction and 
compression occurs between the OG and NH models, while the smallest difference in traction and compression occurs 
between the YE and OG models. The differences between the hyperelastic models are pronounced in both compression 
and traction, especially among the models with the greatest difference in the number of constants and formulation com-
plexity. The OG and YE models showed similar results, while the NH and MR models also exhibited similar longitudinal, 
transverse displacement, and rotation. 



  

6 CONCLUSION 

Finally, it was successfully developed a FORTRAN computational code for the nonlinear analysis of plane frames 
considering hyperelastic models using the positional finite element method combined with the use of Reissner kinemat-
ics. It is worth noting the difficulty of directly comparing the developed formulation for plane frames using hyperelastic 
models, given that there aren’t numerical or experimental studies in the literature for plane frames with hyperelastic 
models. 

From this, it is worth highlighting the importance of experimental tests and appropriate stress vs. strain curves in 
the study and accuracy of hyperelastic models, given that the formulation of these models depends directly on the ad-
justment of the constitutive constants from experimental test data. Such statement was evidenced in the numerical 
example where there was an analysis of traction and compression behavior in the plane frame, where for traction, the 
accuracy of the computational code was much more evident than in compression, starting from the fact that the models 
were adjusted with experimental data from the uniaxial traction study by Paula et al. (2019), and thus, the behavior in 
compression was predicted by theoretical equations, and the constitutive constants were not obtained for both traction 
and compression behaviors. This difference in accuracy between traction and compression results corroborates with the 
studies of Marczak and Iturrioz (2006), as well as with the studies of Perônica et al. (2022). 

Regarding the accuracy of the hyperelastic models, it is noted that the Yeoh and Ogden models presented the most 
adjusted and coherent values, while the models that deviated the most were the Neo-Hookean and Mooney-Rivlin mod-
els. Such observation can be explained by the complexity and number of constants present in the formulation of these 
models, with the endorsement of studies by Paula et al. (2019) and Perônica et al. (2022), which also found higher pre-
cision in models with a greater number of constants. The differences between the hyperelastic models and the linear 
elastic model were significant but expected, considering that hyperelastic models can better capture the nonlinearity of 
the stress-strain curve of hyperelastic materials. 

It can be stated that the use of the positional finite element method formulation for the nonlinear analysis of plane 
frames with the use of hyperelastic models performed well, especially after the modifications proposed by this work in 
the formulations of the hyperelastic models. These modifications consisted of adding the first and second invariants of 
deformation from the simple shear formulation in order to consider the distortion in the specific strain energy of the 
hyperelastic models using Reissner kinematics. 

Furthermore, it was observed that there is a significant increase in material stiffness with the increase in the per-
centage of carbon black addition, which consequently caused a decrease in displacements in the numerical examples. 
Moreover, with the increase in the percentage of carbon black and the consequent decrease in displacements, there was 
no reduction in computational accuracy. On the contrary, with the increase in the percentage of carbon black and the 
consequent increase in material stiffness, there was a tendency for approximation and linearization of the behavior of 
the hyperelastic models with the linear elastic model. 

In summary, the research analysis objectives were successfully achieved, considering that the study could contribute 
to various gaps in the nonlinear analysis of plane frames using hyperelastic materials with the positional finite element 
method. Furthermore, such a study was conducted without the need for extensive computational resources, demon-
strating the efficiency of the computational code and the FORTRAN language. 

Author’s Contribuitions: Conceptualization, Daniel Nelson Maciel, Rodrigo Barros, Joel Araújo do Nascimento Neto, José 
Neres da Silva Filho; Methodology, Leandro dos Santos, Daniel Nelson Maciel; Investigation, Leandro dos Santos, Daniel 
Nelson Maciel; Writing - original draft, Leandro dos Santos, Daniel Nelson Maciel; Writing - review & editing, Leandro dos 
Santos, Daniel Nelson Maciel, Rodrigo Barros, Joel Araújo do Nascimento Neto, José Neres da Silva Filho; Supervision, 
Daniel Nelson Maciel 
 

Editor: (Filled by: Journal Staff) 

 



  

References 

W. Yi Wang, J. Li, W. Liu e Z.-K. Liu, “Integrated computational materials engineering for advanced materials: A brief 
review”, Comput. Mater. Sci., vol. 158, pp. 42–48, fevereiro, 2019, https://doi.org/10.1016/j.commatsci.2018.11.001 

J. Navas, S. Bonnet, J. Voirin e G. Journaux, “Models as enablers of agility in complex systems engineering”, INCOSE Int. Symp., 
vol. 30, n.º 1, pp. 339–355, julho, 2020, https://doi.org/10.1002/j.2334-5837.2020.00726.x 

E. Samaniego et al., “An energy approach to the solution of partial differential equations in computational mechanics via 
machine learning: Concepts, implementation and applications”, Comput. Methods Appl. Mechanics Eng., vol. 362, p. 112790, 
abril, 2020, https://doi.org/10.1016/j.cma.2019.112790 

S. David Müzel, E. P. Bonhin, N. M. Guimarães e E. S. Guidi, “Application of the Finite Element Method in the Analysis of 
Composite Materials: A Review”, Polymers, vol. 12, n.º 4, p. 818, abril, 2020, https://doi.org/10.3390/polym12040818 

M. Greco e D. H. N. Peixoto, “Comparative assessments of strain measures for nonlinear analysis of truss structures at large 
deformations”, Eng. Computations, novembro, 2021, https://doi.org/10.1108/ec-01-2021-0056 

M. C. J. Reis e H. B. Coda, “Physical and geometrical non-linear analysis of plane frames considering elastoplastic semi-rigid 
connections by the positional FEM”, Latin Amer. J. Solids Struct., vol. 11, n.º 7, pp. 1163–1189, dezembro, 2014, 
https://doi.org/10.1590/s1679-78252014000700006 

A. A. Basheer, “Advances in the smart materials applications in the aerospace industries”, Aircr. Eng. Aerosp. Technol., vol. 92, 
n.º 7, pp. 1027–1035, junho, 2020, https://doi.org/10.1108/aeat-02-2020-0040 

L. Jing e B. Jian, “Study on Factors Affecting Sealing Performance of Proton Exchange Membrane Fuel Cell End Plate”, in 2019 
Int. Conf. Advances Construction Machinery Vehicle Eng. (ICACMVE), Changsha, China, 2019-05-14–16. IEEE, 2019, 
https://doi.org/10.1109/icacmve.2019.00023 

M. Motevalli, J. Uhlemann, N. Stranghöner e D. Balzani, “Geometrically nonlinear simulation of textile membrane structures 
based on orthotropic hyperelastic energy functions”, Composite Struct., vol. 223, p. 110908, setembro, 2019, 
https://doi.org/10.1016/j.compstruct.2019.110908 

D. M. Taghizadeh e H. Darijani, “Mechanical Behavior Modeling of Hyperelastic Transversely Isotropic Materials Based on a New 
Polyconvex Strain Energy Function”, Int. J. Appl. Mechanics, vol. 10, n.º 09, p. 1850104, novembro, 2018, 
https://doi.org/10.1142/s1758825118501041 

S. Talebi e H. Darijani, “A pseudo-strain energy density function for mechanical behavior modeling of visco-hyperelastic 
materials”, Int. J. Mech. Sci., vol. 208, p. 106652, outubro, 2021, https://doi.org/10.1016/j.ijmecsci.2021.106652 

H. Li, P. Xue, T. Zhang e B. Wen, “Nonlinear vibration study of fiber-reinforced composite thin plate with strain-dependent 
property based on strain energy density function method”, Mechanics Adv. Mater. Struct., vol. 27, n.º 9, pp. 761–773, Janeiro, 
2019, https://doi.org/10.1080/15376494.2018.1495792 

S. Dastjerdi, A. Alibakhshi, B. Akgöz e Ö. Civalek, “A Novel Nonlinear Elasticity Approach for Analysis of Nonlinear and 
Hyperelastic Structures”, Eng. Anal. with Boundary Elements, vol. 143, pp. 219–236, outubro, 2022, 
https://doi.org/10.1016/j.enganabound.2022.06.015 

M. Seguini e D. Nedjar, “Modelling of soil–structure interaction behaviour: geometric nonlinearity of buried structures 
combined to spatial variability of soil”, Eur. J. Environmental Civil Eng., vol. 21, n.º 10, pp. 1217–1236, fevereiro, 2016, 
https://doi.org/10.1080/19648189.2016.1153525 

H. Darijani e R. Naghdabadi, “Hyperelastic materials behavior modeling using consistent strain energy density functions”, Acta 
Mech., vol. 213, n.º 3-4, pp. 235–254, Janeiro, 2010, https://doi.org/10.1007/s00707-009-0239-3 

É. S. Ramos e R. Carrazedo, “Cross-section modeling of the non-uniform corrosion due to chloride ingress using the positional 
finite element method”, J. Brazilian Soc. Mech. Sci. Eng., vol. 42, n.º 10, setembro, 2020, https://doi.org/10.1007/s40430-020-
02627-5 

D. M. S. Paulino e E. D. Leonel, “Topology optimization and geometric nonlinear modeling using positional finite 
elements”, Optim. Eng., julho, 2021, https://doi.org/10.1007/s11081-021-09661-9 

D. N. Maciel, “Análise de problemas elásticos não lineares geométricos empregando o método dos elementos finitos 
posicional”, Univ. Sao Paulo, 2008, http://www.teses.usp.br/teses/disponiveis/18/18134/tde-08052008-090039/ 

https://doi.org/10.1016/j.commatsci.2018.11.001
https://doi.org/10.1002/j.2334-5837.2020.00726.x
https://doi.org/10.1016/j.cma.2019.112790
https://doi.org/10.3390/polym12040818
https://doi.org/10.1108/ec-01-2021-0056
https://doi.org/10.1590/s1679-78252014000700006
https://doi.org/10.1108/aeat-02-2020-0040
https://doi.org/10.1109/icacmve.2019.00023
https://doi.org/10.1016/j.compstruct.2019.110908
https://doi.org/10.1142/s1758825118501041
https://doi.org/10.1016/j.ijmecsci.2021.106652
https://doi.org/10.1080/15376494.2018.1495792
https://doi.org/10.1016/j.enganabound.2022.06.015
https://doi.org/10.1080/19648189.2016.1153525
https://doi.org/10.1007/s00707-009-0239-3
https://doi.org/10.1007/s40430-020-02627-5
https://doi.org/10.1007/s40430-020-02627-5
https://doi.org/10.1007/s11081-021-09661-9
http://www.teses.usp.br/teses/disponiveis/18/18134/tde-08052008-090039/


  

D. S. Perônica, D. N. Maciel, R. Barros, J. A. d. Nascimento Neto e J. N. d. Silva Filho, “Análise não linear de treliças considerando 
modelos hiperelásticos pelo método dos elementos finitos posicional”, Res., Soc. Develop., vol. 11, n.º 10, Agosto, 2022, art. 
n.º e449111032684, https://doi.org/10.33448/rsd-v11i10.32684 

A. Anssari-Benam e C. O. Horgan, “New results in the theory of plane strain flexure of incompressible isotropic hyperelastic 
materials”, Proc. Roy. Soc. A: Math., Physical Eng. Sci., vol. 478, n.º 2258, fevereiro, 2022, 
https://doi.org/10.1098/rspa.2021.0773 

H. B. Khaniki, M. H. Ghayesh, R. Chin e M. Amabili, “A review on the nonlinear dynamics of hyperelastic structures”, Nonlinear 
Dyn., Agosto, 2022, https://doi.org/10.1007/s11071-022-07700-3 

R. W. Ogden, “Non-linear elastic deformations”, Eng. Anal., vol. 1, n.º 2, p. 119, junho, 1984, https://doi.org/10.1016/0264-
682x(84)90061-3 

R. Jerábek e L. Écsi, “Numerical Study of Material Degradation of a Silicone Cross-Shaped Specimen Using a Thermodynamically 
Consistent Mooney-Rivlin Material Model”, Mater. Sci. Forum, vol. 952, pp. 258–266, abril, 2019, 
https://doi.org/10.4028/www.scientific.net/msf.952.258 

M. Mooney, “A Theory of Large Elastic Deformation”, J. Appl. Phys., vol. 11, n.º 9, pp. 582–592, setembro, 1940, 
https://doi.org/10.1063/1.1712836 

R. W. Ogden “Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike 
solids”, Proc. Roy. Soc. London. A. Math. Physical Sci., vol. 326, n.º 1567, pp. 565–584, fevereiro, 1972, 
https://doi.org/10.1098/rspa.1972.0026 

O. H. Yeoh, “Characterization of Elastic Properties of Carbon-Black-Filled Rubber Vulcanizates”, Rubber Chemistry Technol., 
vol. 63, n.º 5, pp. 792–805, novembro, 1990, https://doi.org/10.5254/1.3538289 

J. P. Pascon, “Modelos constitutivos para materiais hiperelásticos: estudo e implementação computacional”, Univ. Sao Paulo, 
2008. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-17042008-084851/ 

J. P. A. Paula, D. F. Lalo, Á. M. Almeida e M. Greco, “Comparative curve fitting through hyperelastic constitutive models for 
several formulations of carbonbrack-filled rubber vulcanizates”, in Ibero-latin-amer. congr. comput. methods eng., Natal, Brasil, 
2019-11-11–14. Belo Horizonte: ABMEC, 2019, pp. 1–18. 

D. A. DaDeppo e R. Schmidt, “Instability of Clamped-Hinged Circular Arches Subjected to a Point Load”, J. Appl. Mechanics, 
vol. 42, n.º 4, pp. 894–896, dezembro, 1975, https://doi.org/10.1115/1.3423734 

A. Ibrahimbegović, “On finite element implementation of geometrically nonlinear Reissner's beam theory: three-dimensional 
curved beam elements”, Comput. Methods Appl. Mechanics Eng., vol. 122, n.º 1-2, pp. 11–26, abril, 1995, 
https://doi.org/10.1016/0045-7825(95)00724-f 

J. A. Jenkins, T. B. Seitz e J. S. Przemieniecki, “Large deflections of diamond-shaped frames”, Int. J. Solids Struct., vol. 2, n.º 4, 
pp. 591–603, outubro, 1966, https://doi.org/10.1016/0020-7683(66)90041-2 

K. Mattiasson, “Numerical results from large deflection beam and frame problems analysed by means of elliptic integrals”, Int. 
J. Numer. Methods Eng., vol. 17, n.º 1, pp. 145–153, Janeiro, 1981, https://doi.org/10.1002/nme.1620170113 

R. J. Marczak e I. Iturrioz, in Caracterização do Comportamento de Materiais Hiperelásticos. SENAI – Dep. Reg. Rio Gd. Sul, 2006, 
pp. 1–137. https://www.senairs.org.br/sites/default/files/documents/caracterizacao-de-comportamento-de-materiais-
hiperelasticos.pdf 

https://doi.org/10.33448/rsd-v11i10.32684
https://doi.org/10.1098/rspa.2021.0773
https://doi.org/10.1007/s11071-022-07700-3
https://doi.org/10.1016/0264-682x(84)90061-3
https://doi.org/10.1016/0264-682x(84)90061-3
https://doi.org/10.4028/www.scientific.net/msf.952.258
https://doi.org/10.1063/1.1712836
https://doi.org/10.1098/rspa.1972.0026
https://doi.org/10.5254/1.3538289
http://www.teses.usp.br/teses/disponiveis/18/18134/tde-17042008-084851/
https://doi.org/10.1115/1.3423734
https://doi.org/10.1016/0045-7825(95)00724-f
https://doi.org/10.1016/0020-7683(66)90041-2
https://doi.org/10.1002/nme.1620170113
https://www.senairs.org.br/sites/default/files/documents/caracterizacao-de-comportamento-de-materiais-hiperelasticos.pdf
https://www.senairs.org.br/sites/default/files/documents/caracterizacao-de-comportamento-de-materiais-hiperelasticos.pdf

