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Abstract 

This paper presents a new triangular multi-layer nonlinear shell finite element with incremental degrees of 
freedom, suitable for large displacements and rotations. This is a nonconforming element with 6 nodes, 
quadratic displacement and linear rotation field based on Rodrigues incremental rotation parameters, with a 
total of 21 DoFs. The novelty of this element is the extension to a multilayer, fully incremental situation of the 
T6-3iKL element, a kinematical model with properties from Kirchhoff-Love theory, approximating the shell 
director across layers as constant. The model is numerically implemented, and results are compared to 
different references in multiple examples, showing the capabilities of the formulation. It is believed that the 
possibly simplest multilayer extension, combined with fully incremental DoFs, simple kinematic, no necessity 
of artificial parameters such as penalties, a relatively small number of DoFs, possibility to use various 3D 
material models, easily connected with multiple branched shells and beams, and geometric exact theory 
create a simple yet powerful shell element. 
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1 INTRODUCTION 

The finite element method is, until this day, an important numerical method for solving partial differential equations 
with many special applications in solid mechanics and engineering. Among the possible elements, shells still are widely 
used in structural engineering due to their relatively simple models (in terms of degrees of freedom (DoF) quantities) 
capable of simulating complex structures with thin aspect ratios and very few elements. 

In the present work, a rigid shear model based on the Kirchhoff-Love shell theory is considered. In a succinct 
manner, the theory does not exhibit shear strain due to three fundamental kinematic hypotheses (see Reddy (2006)): 
(1) Straight lines perpendicular to the mid-surface (i.e., transverse normal) before deformation remain straight after 
deformation; (2) Inextensible transverse normal; (3) The transverse normals rotate such that they remain 
perpendicular to the middle surface after deformation. As presented by Sanchez, Pimenta and Ibrahimbegovic (2023), 
the advantages of using Kirchhoff-Love shells when compared with other possibilities are the better numerical 
convergence in very thin shells and the fewer DoF. The theory requires a C1-continuity in the interface between 
adjacent elements, which may be a challenge. Among the possibilities to deal with such ordeal, there is the well 
stablished TUBA family elements, initially developed for plates by Argyris, Fried and Scharpf (1968), expanded for 
shells by Argyris and Lochner (1972) and recently revisited by Ivannikov, Tiago and Pimenta (2015). Other possible 
approach is to impose rotation continuity with the use of penalty parameters at the midside node and with mesh 
refinement, such as done by Viebahn, Pimenta and Schröder (2017) and Sanchez, Pimenta and Silva (2020). Yet 
another possibility, presented by Cirak and Ortiz (2001), is the use of subdivision surfaces, with progressive division of 
the mesh until the C1 continuity is achieved. For the meshless case, as seen in Ivannikov, Tiago and Pimenta (2014), 
the requirement can be achieved with the multiple fixed least squares (MFLS) approximation functions and their 
generalized version, considering the use of proper weights and base functions. The presented options are just a few 
of the possibilities, as the research field for Kirchhoff-Love plates and shells has been active in the past two decades, 
with some additional works being by Pimenta, Neto, Campello (2010), Rabczuk, Areias, and Belytschko (2007), Kiendl, 
Bletzinger, Linhard and Wüchner (2009), Bohinc, Brank and Ibrahimbegovic (2014), Silva, Maassen, Pimenta and 
Schröder (2021) and Wu, Pimenta and Wriggers (2024). 

In this work we present an extension of the triangular Kirchhoff-Love shell element T6-i3KL developed by Sanchez, 
Pimenta and Ibrahimbegovic (2023) to the multi-layer consideration with incremental degrees of freedom, creating a 
new element. 

The main multi-layer consideration used to build the element is based on the thin nature of Kirchhoff-Love 
shells. It is assumed that rotation along the layers remains constant, regardless of possible change of material and 
thickness. This consideration greatly simplifies the multi-layer kinematics and eliminate the need of multiple 
independent variables along the thickness. The theory defines the energy of the system by conjugating the first 
Piola-Kirchhoff stress tensor and the deformation gradient, allowing for contribution of each layer in the internal 
energy of the shell. 

We assume a plane reference configuration for the mid-surface, and the rotation is considered with the Rodrigues 
formula, in a pure lagrangian way, considering Rodrigues parameter and incremental rotation. In the present work, we 
have a nonconforming element with 6 nodes, a quadratic displacement and a linear rotation field based on Rodrigues 
incremental rotation parameters, giving in total 21 degrees of freedom. The numerical implementation is done using 
AceGen and AceFEM, fully utilizing the automation of the packages as a mean to obtain physical quantities such as the 
residual force vector and the stiffness matrix. The degrees of freedom of the element are all incremental. The adaptation 
from a full displacement formulation, presented by Sanchez, Pimenta and Ibrahimbegovic (2023), to an incremental 
displacement is a step towards a formulation in dynamics (following and improving upon the previous work in Campello, 
Pimenta and Wriggers (2011)). We note that the main novelty of this work is the multilayer formulation. The fully 
incremental formulation is an additional uniqueness when compared with the initial semi-incremental formulation 
present at the reference work.  

In regard to the notation considered throughout the text, italic Latin or Greek lowercase letters (a, b, ..., α, β) denote 
scalars quantities, bold italic Latin or Greek lowercase letters (𝐚𝐚,𝐛𝐛, . . . ,𝜶𝜶,𝜷𝜷) denote vectors, bold italic Latin or Greek 
capital letters (𝐀𝐀,𝐁𝐁, . . . ) denote matrix and second order tensors. Summation convention over repeated indices, with 
values {1, 2, 3} for latin letters and {1, 2} for greek letters 
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2 SHELL FORMULATION 

2.1 Multi-Layer consideration 

The main consideration that guides the current multi-layer theory is that, due to the thin nature of the Kirchhoff-
Love shell, the shell director does not change direction along each layer, see Figure 1. This greatly simplifies the multi-
layer kinematics, as there is no need of specific inter-layer displacement equations to deal with the shell director variation 
along the thickness, as usually is the case for Reissner-Mindlin models. 

In the model, we assume the middle plane of the shell as the reference to obtain the kinematics equations and to 
apply the FEM mesh and external loads. 

 
Figure 1 a) Shell director along layers; b) Shell description and kinematics 

2.2 Kinematics 

It is assumed that the middle plane is in the reference configuration of the shell and it is flat, see Figure 1, with an 
orthogonal coordinate system {𝒆𝒆1𝑟𝑟 , 𝒆𝒆2𝑟𝑟 , 𝒆𝒆3𝑟𝑟} where 𝒆𝒆1 

𝑟𝑟  and 𝒆𝒆2𝑟𝑟  are in the middle plane of the shell and 𝒆𝒆3𝑟𝑟  is normal to the 
plane. In the current configuration, the orthogonal coordinate system is {𝒆𝒆1, 𝒆𝒆2, 𝒆𝒆3}, with the relation 𝒆𝒆𝑖𝑖 = 𝑸𝑸𝒆𝒆𝑖𝑖𝑟𝑟  valid, 
where 𝑸𝑸 is the rotation tensor. 

The definition of any point in the reference configuration will then be given by 

𝛏𝛏 = 𝛇𝛇 + 𝒂𝒂𝑟𝑟 , 𝛇𝛇 = ξ𝛼𝛼𝒆𝒆𝛼𝛼𝑟𝑟  ∈ 𝛺𝛺𝑟𝑟 and 𝒂𝒂𝑟𝑟 = ζ𝒆𝒆3𝑟𝑟  ∈ 𝐻𝐻𝑟𝑟 , (1) 

where 𝛇𝛇 are the coordinates of a material point in the shell middle plane and 𝒂𝒂𝑟𝑟 is the fiber direction of the shell at this 
point. The thickness ℎ of the shell in the reference configuration is considered through the parameter ζ ∈ H = [−ℎ𝑏𝑏,ℎ𝑡𝑡], 
where ℎ = ℎ𝑏𝑏 + ℎ𝑡𝑡. 

In a similar manner to the definition of a material point in the reference configuration, the definition of any point in 
the current is given by 

𝒙𝒙 = 𝒛𝒛 + 𝒂𝒂, 𝒛𝒛 = 𝜻𝜻 + 𝒖𝒖 and 𝒂𝒂 = 𝑸𝑸𝒂𝒂𝒓𝒓,  (2) 

𝒛𝒛 represents the current position of a point in the middle surface and 𝒂𝒂 the position along the thickness of the shell, 
in 𝒆𝒆3 direction. 

Adopting the notation 𝜕𝜕(∙) 𝜕𝜕(𝜉𝜉𝛼𝛼)⁄ = (∙),𝛼𝛼, the deformation gradient can be obtained from: 

𝐅𝐅 = 𝒙𝒙,𝛼𝛼 ⊗ 𝒆𝒆𝛼𝛼𝑟𝑟 +
𝜕𝜕𝒙𝒙
𝜕𝜕𝜕𝜕

⊗ 𝒆𝒆3𝑟𝑟 = 𝒇𝒇𝑎𝑎 ⊗ 𝒆𝒆𝛼𝛼𝑟𝑟 + 𝒇𝒇3 ⊗ 𝒆𝒆3𝑟𝑟 = �𝒛𝒛,𝛼𝛼 + 𝜿𝜿𝛼𝛼 × 𝒂𝒂�⊗ 𝒆𝒆𝛼𝛼𝑟𝑟 + 𝑸𝑸𝒆𝒆3𝑟𝑟 ⊗ 𝒆𝒆3𝑟𝑟 . (3) 

where 

𝑲𝑲𝛼𝛼 = 𝑸𝑸,𝛼𝛼𝑸𝑸T and 𝜿𝜿𝛼𝛼 = axial(𝑲𝑲𝛼𝛼). (4) 
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The back-rotated deformation gradient and the strains are defined as 

𝑭𝑭𝑟𝑟 = 𝑸𝑸T𝑭𝑭 = 𝑰𝑰 + 𝜸𝜸𝛼𝛼𝑟𝑟 ⊗ 𝒆𝒆𝛼𝛼𝑟𝑟 ,  (5) 

with 

𝜸𝜸𝛼𝛼𝑟𝑟 = 𝛈𝛈𝛼𝛼𝒓𝒓 + 𝜿𝜿𝛼𝛼𝑟𝑟 × 𝒂𝒂𝑟𝑟  ;            𝜼𝜼𝛼𝛼𝑟𝑟 = 𝑸𝑸𝑇𝑇𝒛𝒛,𝛼𝛼 − 𝒆𝒆𝛼𝛼𝑟𝑟 ;          𝜿𝜿𝛼𝛼𝑟𝑟 = axial�𝑸𝑸T𝑸𝑸,𝛼𝛼�. (6) 

In the previous equations, the vectors 𝜼𝜼𝛼𝛼𝑟𝑟  and 𝜿𝜿𝛼𝛼𝑟𝑟  are the cross-sectional generalized strains. 
It is important to remark that, due to the Kirchhoff-Love assumption, 𝜸𝜸𝛼𝛼𝑟𝑟 ∙ 𝒆𝒆3𝑟𝑟 = 𝜼𝜼𝛼𝛼𝑟𝑟 ∙ 𝒆𝒆3𝑟𝑟 = 0. 

2.3 Rodrigues rotation vector 

The rotation vector can be represented as 𝜽𝜽 = 𝜃𝜃𝒆𝒆, with 𝜃𝜃 being the rotation around the axis 𝒆𝒆. As presented in 
Campello, Pimenta and Wriggers (2003), the rotation tensor can be a function of the Rodrigues rotation vector as 𝜶𝜶 =
𝒕𝒕𝒂𝒂𝒕𝒕(𝜃𝜃 2⁄ )

𝜃𝜃 2⁄
𝜽𝜽, restricting the rotation at −𝜋𝜋 < 𝜃𝜃 < +𝜋𝜋. As such, the rotation tensor can be defined as  

𝑸𝑸 = 𝑰𝑰 + ℎ(𝛼𝛼) �𝑨𝑨 +
1
2
𝑨𝑨2� ,     with     ℎ(𝛼𝛼) =

4
4 + 𝛼𝛼2

, (7) 

𝛼𝛼 = ‖𝜶𝜶‖ and 𝑨𝑨 = Skew(𝜶𝜶). 
For other possible descriptions of the Rodrigues rotation dealing with large displacements and rotations, we refer 

to the work of Ibrahimbegovic, Brank and Courtois (2001). 

2.4 Variational formulation and material equations 

The stiffness matrix of the current work is obtained through the variational formulation and with the help of AceGen. 
The usage of this software allows for multiple material models readily implemented with automatic differentiation, as 
long as the material model is given with a strain energy function. In the present work, in order to assure the convergence 
of the simulations, we work here with two polyconvex material models suitable for large displacements and rotation, 
this being in alignment with Brank, Korelc and Ibrahimbegović (2002). 

As the materials considered are hyperelastic, there exists a total strain energy function 𝜓𝜓 that describes the elastic 
energy stored in the body. Here, we define the functional 

�(𝒖𝒖) = � �𝜓𝜓�𝑪𝑪(𝒖𝒖)� − 𝜌𝜌0𝒃𝒃� ∙ 𝒖𝒖�𝑑𝑑𝑑𝑑
⬚

𝐵𝐵
− � (�̅�𝒕 ∙ 𝒖𝒖)𝑑𝑑𝑑𝑑

⬚

𝜕𝜕𝐵𝐵
. (8) 

The directional derivative of the functional is obtained as 

𝛿𝛿�(𝒖𝒖) = 𝐷𝐷�(𝒖𝒖) ∙ 𝒗𝒗 =
𝜕𝜕
𝜕𝜕𝛼𝛼

�(𝒖𝒖 + 𝛼𝛼𝒗𝒗)𝛼𝛼=0 = 0. (9) 

One can define the internal total energy for the shell as 

�(𝒖𝒖) = 𝑈𝑈𝑖𝑖𝑖𝑖𝑡𝑡 = � � 𝜓𝜓(𝜉𝜉1𝑟𝑟 , 𝜉𝜉2𝑟𝑟)𝑑𝑑𝐻𝐻𝑑𝑑𝛺𝛺
⬚

𝐻𝐻𝑟𝑟

⬚

𝛺𝛺
= � 𝜓𝜓�(𝜉𝜉1𝑟𝑟 , 𝜉𝜉2𝑟𝑟)𝑑𝑑𝛺𝛺

⬚

𝛺𝛺
. (10) 

The strain energy is, obviously, material dependent, with two options presented in the current work. The internal 
stress and material tangent moduli are obtained by 

𝑷𝑷 =
𝜕𝜕𝜓𝜓
𝜕𝜕𝑭𝑭

          and           𝑫𝑫𝛼𝛼𝛼𝛼
𝑟𝑟 =

𝜕𝜕𝝈𝝈𝛼𝛼𝑟𝑟

𝜕𝜕𝜺𝜺𝛼𝛼𝑟𝑟
=

𝜕𝜕2𝜓𝜓�
𝜕𝜕𝜺𝜺𝛼𝛼𝑟𝑟 𝜕𝜕𝜺𝜺𝛼𝛼𝑟𝑟

. (11) 
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The first material described is the Ciarlet-Simo neo-Hookean isotropic material, defined by the polyconvex strain 
energy function 

𝜓𝜓 =
1
2
𝜆𝜆 �

1
2

(𝐽𝐽2 − 1) − ln( 𝐽𝐽 )� +
1
2
𝜇𝜇(𝐼𝐼1 − 3 − 2 ln( 𝐽𝐽)), (12) 

with the invariants, Cauchy-Green stress tensor and Lamé coefficients given as 

𝐼𝐼1 = 𝑡𝑡𝑡𝑡 𝑪𝑪 = 𝒇𝒇𝑖𝑖 ∙ 𝒇𝒇𝑖𝑖 ,    𝐼𝐼2 = 𝒕𝒕𝒓𝒓(Cof 𝑪𝑪) = 𝒈𝒈𝑖𝑖 ∙ 𝒈𝒈𝑖𝑖    and   𝐼𝐼3 = det𝑪𝑪 = 𝐽𝐽2 = �𝒇𝒇1 ∙ (𝒇𝒇2 × 𝒇𝒇3)�
2, (13) 

𝑪𝑪 = 𝑭𝑭T𝑭𝑭, (14) 

𝜆𝜆 =
𝐸𝐸𝐸𝐸

(1 + 𝐸𝐸)(1 − 2𝐸𝐸)       and       𝜇𝜇 =
𝐸𝐸

2(1 + 𝐸𝐸). (15) 

The second material is anisotropic, polyconvex in both the isotropic and anisotropic contributions, as presented by 
Viebahn, Pimenta and Schröder (2017), Schröder and Neff (2010) and Schröder et al (2016) and is given as 

𝜓𝜓(𝑪𝑪) = 𝜓𝜓𝑖𝑖_𝑝𝑝(𝑪𝑪) + 𝜓𝜓𝑎𝑎_𝑝𝑝(𝑪𝑪) = 𝜓𝜓𝑖𝑖_𝑝𝑝(𝑪𝑪) + �𝛼𝛼1
(𝑖𝑖) 〈𝐼𝐼4

(𝑖𝑖) − 1〉𝛼𝛼2
(𝑖𝑖)

2

𝑖𝑖

, (16) 

where 𝛼𝛼1
(𝑖𝑖) and 𝛼𝛼2

(𝑖𝑖) are variables in relation to material properties in the 𝒎𝒎(𝑖𝑖) direction, "〈⬚〉" are Macaulay brackets 
and 𝐼𝐼4

(𝑖𝑖) is an invariant defined as 

𝐼𝐼4
(𝑖𝑖) = 𝑡𝑡𝑡𝑡 �𝑑𝑑𝛼𝛼𝛼𝛼

(𝑖𝑖)𝒇𝒇𝛼𝛼 ∙ 𝒇𝒇𝛼𝛼�, (17) 

with 

𝑑𝑑𝛼𝛼𝛼𝛼
(𝑖𝑖) = �𝒆𝒆𝛼𝛼 ∙ 𝒎𝒎(𝑖𝑖)��𝒆𝒆𝛼𝛼 ∙ 𝒎𝒎(𝑖𝑖)� = 𝒆𝒆𝛼𝛼 ∙ 𝑴𝑴(𝑖𝑖)𝒆𝒆𝛼𝛼        and         𝑴𝑴(𝑖𝑖) = 𝒎𝒎(𝑖𝑖) ⊗𝒎𝒎(𝑖𝑖). (18) 

In relation to the isotropic part, we use the neo-Hookean material model previously presented. 

2.5 Plane stress 

The plane stress condition is a necessity when the shell theory does not consider thickness variation. As such, the 
present work enforces this condition analytically for the presented materials by adding the term 𝜸𝜸33𝑟𝑟 = 𝛾𝛾33𝒆𝒆3𝑟𝑟  to eq. (5), 
rewriting it as 

𝑭𝑭𝑟𝑟 = 𝑰𝑰 + 𝜸𝜸𝛼𝛼𝑟𝑟 ⊗ 𝒆𝒆𝛼𝛼𝑟𝑟 + 𝜸𝜸33𝑟𝑟 ⊗ 𝒆𝒆3𝑟𝑟 .  (19) 

The plane stress is then enforced by 𝜏𝜏33 = 𝝉𝝉3𝑟𝑟 ∙ 𝒆𝒆3𝑟𝑟 = 0. 
With eq. (11), eq. (12) and eq. (19), one arrives at 

𝜏𝜏33 = 2(1 + 𝛾𝛾33)
𝜕𝜕𝜓𝜓
𝜕𝜕𝐼𝐼1

+
𝜕𝜕𝜓𝜓
𝜕𝜕𝐽𝐽

𝐽𝐽,̅ (20) 

where 𝐽𝐽 ̅ = 𝒆𝒆3𝑟𝑟 ∙ (𝑓𝑓1𝑟𝑟 × 𝑓𝑓2𝑟𝑟). After some manipulations, one arrives at 
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𝛾𝛾33 = �
𝜆𝜆 + 2𝜇𝜇
𝜆𝜆𝐽𝐽2̅ + 2𝜇𝜇

− 1. (21) 

3 INCREMENTAL DESCRIPTION OF DEGREES OF FREEDOM 

3.1 General incremental relations  

The incremental nature of the formulation takes into account some general relations. We consider a mean value 
correlation 

(∙)1/2 =
1
2

((∙)𝑖𝑖+1 + (∙)𝑖𝑖).  (22) 

and 

(∙)1/2 +
1
2
∆(∙) = (∙)𝑖𝑖+1,  (23) 

(∙)1/2 −
1
2
∆(∙) = (∙)𝑖𝑖 . (24) 

We also define a general rule for a generic product of generic quantities as 

∆(A ∗ B) = A1/2 ∗ ∆B + ∆A ∗ B1/2. (25) 

These relations are used throughout the section. It is important to remark that the incremental aspects of the DoF 
in the theory follow the same logic of the presented by Campello, Pimenta and Wriggers (2011), with alterations when 
required. 

3.2 Incremental description of rotation 

The incremental rotational variables are presented as  

𝑸𝑸Δ = 𝑰𝑰 + ℎ(𝛼𝛼Δ) �𝑨𝑨Δ +
1
2
𝑨𝑨Δ2� ,     with     ℎ(𝛼𝛼Δ) =

4
4 + 𝛼𝛼Δ2

, (26) 

where 𝛼𝛼Δ = ‖𝜶𝜶Δ‖ and 𝑨𝑨Δ = Skew(𝜶𝜶Δ). 
The update of the rotation vector is done by 

𝛼𝛼i+1 =
4

4 − 𝜶𝜶i ∙ 𝜶𝜶Δ
�𝜶𝜶i + 𝜶𝜶Δ −

1
2
𝜶𝜶i × 𝜶𝜶Δ�, (27) 

where 𝜶𝜶𝑖𝑖+1 is the next step of 𝜶𝜶i. We also update the rotation tensor following the relations 

𝑸𝑸i+1 = 𝑸𝑸Δ𝑸𝑸i,   with   𝑸𝑸i+1 = 𝑄𝑄�(𝜶𝜶i+1),     𝑸𝑸Δ = 𝑄𝑄�(𝜶𝜶Δ)    and   𝑸𝑸𝑖𝑖 = 𝑄𝑄�(𝜶𝜶i). (28) 

As 𝑸𝑸 applies to the shell director, one may also define 

𝒆𝒆3𝑖𝑖+1 = 𝑸𝑸Δ𝒆𝒆3𝑖𝑖 . (29) 



A fully incremental simple triangular multilayer Kirchhoff-Love shell element Gustavo Canário Gomes et al. 

Latin American Journal of Solids and Structures, 2024, 21(9), e563 7/18 

Here we bring the description of the rotation vector in relation to a scalar parameter 𝜑𝜑Δ, first presented by da Costa 
e Silva et al (2019) in relation to vector 𝒆𝒆3 and, here, described in relation to 𝒆𝒆1 to obtain the rotation vector in agreement 
with Sanchez, Pimenta and Ibrahimbegovic (2023). This is done as 𝒆𝒆1 can be calculated only by displacement. Thus, we 
have 

𝜶𝜶Δ =
𝒆𝒆1𝑖𝑖 × 𝒆𝒆1𝑖𝑖+1

‖𝒆𝒆1𝑚𝑚‖2
+ 𝜑𝜑Δ

𝒆𝒆1𝑚𝑚

‖𝒆𝒆1𝑚𝑚‖
,      with      𝒆𝒆1𝑚𝑚 =

1
2
�𝒆𝒆1𝑖𝑖+1 + 𝒆𝒆1𝑖𝑖 �. (30) 

3.3 Rotation tensor correlations 

In this section we focus in some useful rotation tensor correlations. These are initially presented for 𝑸𝑸, but also hold 
for its incremental equivalents. Afterwards, we deal with specific definitions for the incremental quantities. 

We begin with the Cayley transform of (7), resulting in 

𝑸𝑸 = �𝑰𝑰 +
1
2
𝑨𝑨� �𝑰𝑰 −

1
2
𝑨𝑨�

−1

= �𝑰𝑰 −
1
2
𝑨𝑨�

−1

�𝑰𝑰 +
1
2
𝑨𝑨�. (31) 

Based on the previous equation and with some basic manipulations, one can obtain 
1
2

(𝑰𝑰 + 𝑸𝑸) = �𝑰𝑰 −
1
2
𝑨𝑨�

−1

 (32) 

and 

𝑸𝑸 − 𝑰𝑰 = 𝑨𝑨�𝑰𝑰 −
1
2
𝑨𝑨�

−1

= �𝑰𝑰 −
1
2
𝑨𝑨�

−1

𝑨𝑨. 
(33) 

Let us now focus on specific equations. We define the back-rotated incremental rotation tensor and the relation 
with the skew tensor of the incremental rotation, respectively 

𝑸𝑸∆
𝑟𝑟 = 𝑸𝑸𝑖𝑖+1

T 𝑸𝑸∆𝑸𝑸𝑖𝑖+1 = 𝑸𝑸𝑖𝑖
T𝑸𝑸∆𝑸𝑸𝒊𝒊, (34) 

𝑸𝑸∆
𝑟𝑟 − 𝑰𝑰 = 𝑨𝑨∆𝑟𝑟 �𝑰𝑰 −

1
2
𝑨𝑨∆�

−1

. 
(35) 

We also need to obtain the increment of the rotation tensor 

∆𝑸𝑸 = 𝑸𝑸𝑖𝑖+1 − 𝑸𝑸𝑖𝑖 = 𝑸𝑸𝑖𝑖(𝑸𝑸∆
𝑟𝑟 − 𝑰𝑰). (36) 

Considering (35), the equation above becomes 

∆𝑸𝑸 = 𝑸𝑸𝑖𝑖𝑨𝑨∆𝑟𝑟 �𝑰𝑰 −
1
2
𝑨𝑨∆𝑟𝑟�

−1

= 𝑸𝑸𝑖𝑖𝑨𝑨∆𝑟𝑟𝑸𝑸𝑖𝑖
T𝑸𝑸𝑖𝑖 �𝑰𝑰 −

1
2
𝑨𝑨∆𝑟𝑟�

−1

= 𝑨𝑨∆𝑸𝑸1/2 . (37) 

With ∆𝑸𝑸 defined, we now present 𝑸𝑸1/2. With the help of (22), (28) and (34), one can define 

𝑸𝑸1/2 =
1
2

(𝑸𝑸𝑖𝑖+1 + 𝑸𝑸𝑖𝑖) =
1
2

(𝑸𝑸∆𝑸𝑸𝑖𝑖 + 𝑸𝑸𝑖𝑖) =
1
2

(𝑸𝑸𝑖𝑖𝑸𝑸∆
𝑟𝑟 + 𝑸𝑸i) =

1
2
𝑸𝑸𝑖𝑖(𝑸𝑸∆

𝑟𝑟 + 𝑰𝑰).  (38) 

With equation (34), (38) becomes 

𝑸𝑸1/2 =
1
2
𝑸𝑸𝑖𝑖�𝑸𝑸𝑖𝑖

𝐓𝐓𝑸𝑸∆𝑸𝑸𝑖𝑖 + 𝑰𝑰� =  
1
2

(𝑸𝑸∆ + 𝑰𝑰)𝑸𝑸𝑖𝑖  (39) 

and with (32), 
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𝑸𝑸1/2 = �𝑰𝑰 −
1
2
𝑨𝑨∆�

−1

 𝑸𝑸𝑖𝑖 . (40) 

Using (31), the previous equations becomes 

𝑸𝑸1/2 = �𝑰𝑰 +
1
2
𝑨𝑨∆�

−1

 𝑸𝑸𝑖𝑖+1  (41) 

additionally,  

det�𝑸𝑸1/2� = ℎ(𝛼𝛼∆) =
4

4 + 𝛼𝛼2
. (42) 

3.4 Incremental strains 

In the present work, the increment of displacements and rotations are considered as DOFs. This consideration 
facilitates the development and convergence of dynamic formulations, a possible next step of the current formulation. 

The curvature vectors presented in eq. (4) and eq. (6) can be rewritten in relation to Rodrigues rotation parameters 
as 

𝜿𝜿𝛼𝛼𝑟𝑟 = 𝚵𝚵T𝜶𝜶,𝛼𝛼        and        𝜿𝜿𝛼𝛼 = 𝚵𝚵𝜶𝜶,𝛼𝛼      with      𝚵𝚵 =
4

4 + 𝛼𝛼2
�𝑰𝑰 +

1
2
𝑨𝑨�. (43) 

In the same fashion as Campello, Pimenta and Wriggers (2011), we use the incremental formulation of the curvature 
vectors as 

𝜿𝜿𝑖𝑖+1𝑟𝑟 = 𝜿𝜿𝛼𝛼𝑖𝑖𝑟𝑟 + Δ𝜿𝜿𝛼𝛼𝑟𝑟 ,   with  Δ𝜿𝜿𝛼𝛼𝑟𝑟 = det�𝑸𝑸1/2�𝑸𝑸1/2
−1 𝜶𝜶Δ,𝛼𝛼. (44) 

Regarding the rotation, it is implemented incrementally and as so, at every step the rotation vector 𝜶𝜶 is updated as 

𝜶𝜶𝑖𝑖+1 =
4

4 − 𝜶𝜶𝑖𝑖 ∙ 𝜶𝜶Δ
�𝜶𝜶𝑖𝑖 + 𝜶𝜶Δ −

1
2
𝜶𝜶𝑖𝑖 × 𝜶𝜶Δ�, (45) 

with 𝜶𝜶Δ updated as in eq. (30). Regarding the curvature vector, it is incremented as in eq. (44). 
At every step, the increment parameters are reset as 𝜶𝜶Δ = 𝟎𝟎, 𝜑𝜑Δ = 0, and Δ𝜿𝜿𝛼𝛼𝑟𝑟 = 𝟎𝟎. 
The displacements are updated according to the following expression 

𝒖𝒖𝑖𝑖+1 = 𝒖𝒖i + 𝒖𝒖∆, (46) 

in which 𝒖𝒖𝑖𝑖+1 is the displacement of the next step, 𝒖𝒖i the current and 𝒖𝒖∆ the increment. One also need to define 
the vectors 

𝒛𝒛1/2,𝛼𝛼 =
1
2 �
𝒛𝒛𝑖𝑖+1,𝛼𝛼 + 𝒛𝒛𝑖𝑖,𝛼𝛼�.  (47) 

𝒛𝒛𝑖𝑖+1,𝛼𝛼 = 𝒛𝒛1/2,𝛼𝛼 +
1
2
∆𝒛𝒛,𝛼𝛼. (48) 

With this, one can write the incremental strain as 
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∆𝜼𝜼𝛼𝛼r = ∆�𝑸𝑸T𝒛𝒛,𝛼𝛼 − 𝒆𝒆𝛼𝛼𝑟𝑟 � = ∆𝑸𝑸T𝒛𝒛1/2,𝛼𝛼 + 𝑸𝑸1/2
T ∆𝒛𝒛,𝛼𝛼.  (49) 

considering (47), (48) and (37), and that 𝑨𝑨T = −𝑨𝑨 the equation above can be rewritten as 

∆𝜼𝜼𝛼𝛼r = ∆�𝑸𝑸T𝒛𝒛,𝛼𝛼 − 𝒆𝒆𝛼𝛼𝑟𝑟 � = −𝑸𝑸1/2
T 𝑨𝑨∆𝒛𝒛1/2,𝛼𝛼 + 𝑸𝑸1/2

T 𝒖𝒖∆,𝛼𝛼.  (50) 

or, considering the cross product property and rearranging 

∆𝜼𝜼𝛼𝛼r = 𝑸𝑸1/2
T �𝒖𝒖∆,𝛼𝛼 + 𝒛𝒛1/2,𝛼𝛼 × 𝜶𝜶∆�.  (51) 

At every step, the increment parameters are reset as 𝒖𝒖Δ = 𝟎𝟎 and Δ𝜼𝜼𝛼𝛼𝑟𝑟 = 𝟎𝟎. 

4 THE FINITE ELEMENT 

The element created is an extrapolation of the T6-3iKL developed by Sanchez, Pimenta and Ibrahimbegovic (2023). 
The new element, entitled T6-3iKLMI is a six-noded displacement based triangular element (see Figure 2). The 
discretization of the element coordinates and displacement field is done with area coordinates and quadratic 
interpolation and, an additional scalar rotation parameter (𝜑𝜑Δ). The rotation vector 𝜶𝜶∆ is a linear non-conform field over 
the shell element obtained indirectly by the scalar DoF 𝜑𝜑Δ shared between adjacent elements. This model renders a 
quite efficient element, with a reduced number of DoF when compared with usual models that consider the rotation 
using three-dimensional vectors as DoF. This characteristic associated with the simplification of the continuous shell 
director along the multi-layers, constitutes an incredibly simple and efficient multi-layer element with incremental DoF. 

 
Figure 2 T6-3iKLMI 

This recent description of the rotation, proposed by Sanchez, Pimenta and Ibrahimbegovic (2023) is a quite 
interesting adoption, reducing the number of DoF involved in the analysis while not reducing the quality of results. Such 
advantage is fully used in the present work with the adoption of a constant rotation through the layers of the element 
due to the small thickness. 

The element uses 3 integration points at the mid-side nodes of the shell plane and, when integrating along the 
thickness, each layer has 3 integration points, using Simpson’s 1/3 rule. Obviously, by integrating each layer separately, 
one allows for use of different materials and thickness at each layer. 

We here give a brief presentation of implementation details. The AceGen and AceFem computer codes from the 
software Wolfram Mathematica were used as the implementation environment. AceGen allows for the implementation 
of the element itself, with a symbolic type language and a vast quantity of pre-programmed capabilities, such as multiple 
Gauss points distributions, elements geometry and multiple commands already present in Mathematica readily available. 
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Another remarkable quality of AceGen, fully used throughout the implementation of the element here presented, is the 
automated differentiation. The main use of such feature in the current research was to obtain the element residual 
vector and its stiffness matrix directly from the differentiation of the energy polyconvex strain energy function in relation 
to the DoFs. Regarding AceFem, this is another package that also possesses multiple pre-programed routines which 
greatly facilitate the geometry construction, meshing, boundary conditions imposition, analysis and post-processing. As 
some of its remarkable characteristics are fully programed Newton and arc-length methods, associated with multiple 
possible linear system solution methods and, high quality images and animations obtained at post-processing (see 
section 5 for examples, as all the mesh, deformed configurations and graphs were generated within AceFem). 

5 RESULTS 

5.1 Cantilever Beam 

The cantilever beam was an example proposed by Simo, Fox and Rifai (1990), revisited by Wriggers and Gruttmann 
(1993), Campello, Pimenta and Wriggers (2003) and Sanchez, Pimenta and Ibrahimbegovic (2023) to analyze the behavior 
of the element when used under conditions of high rotations and displacement in and out of plane, in this work, with 
multiple layers possibility. As for the geometry and the mesh, shown in Figure 3, a cross section of 𝑏𝑏 = 0.1 × ℎ = 0.1 is 
used, with length 𝐿𝐿 = 1.0. One end of the beam is clamped, while the other is subjected to different values of a 
concentrated force 𝑃𝑃, variable from 0 to 1000. The beam material has an Young’s modulus 𝐸𝐸 = 107 and Poisson’s ratio 
𝑣𝑣 = 0.3 for all the layers, with neo-Hookean material model. 

The values for comparison are the results of displacement of the midpoint of the free end of the beam, which are 
compared with that obtained in the work of Wriggers and Gruttmann (1993), where the maximum deflection are 
𝑢𝑢𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑎𝑎𝑖𝑖𝑝𝑝 = 0.8425 and 𝑢𝑢𝑜𝑜𝑜𝑜𝑡𝑡−𝑜𝑜𝑜𝑜−𝑝𝑝𝑝𝑝𝑎𝑎𝑖𝑖𝑝𝑝 = 0.8406. 

 
Figure 3 – In and out of plane cantilever beam 

5.2 Raasch Challenge 

The Raasch challenge is an example that, due to the coupling of four different modes of deformation (Shear, Twist, 
stretch and bending), is considered a challenge. The geometry of the problem is presented in Figure 4. The problem is 
compose of a curved strip hook, with first radius R1 = 14", second radius R2 = 46" and thickness t = 2". The left side 
of the hook is clamped, and the right is subjected to an upward in-plane total shear force of 1.0 lb. Regarding the mesh, 
we assume a variable N, which is the number of lateral divisions and, along the hook curves, there are a total of 6N 
divisions, equally divided between each curve. As presented by Sanchez, Pimenta and Ibrahimbegovic (2023), the vertical 
expected displacement is 4.3966 in, obtained with the finite element method and with a different kinematical model, 
which explain the slight difference in results from the ones presented by Sanchez, Pimenta and Ibrahimbegovic (2023). 
The results for multiple refinements with multiple layers (from 1 up to 9 layers), seem to be acceptable as they have a 
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small divergence in relation to the expected value (see Figure 4 for the normalized result in relation to the expected value 
for all values of N and number of layers). 

 

 
Figure 4 – Raasch challenge geometry and normalized vertical displacements 

5.3 Lateral Buckling cantilever beam 

The buckling cantilever beam example analyzes the ability of the element to describe buckling behaviour. This was 
proposed by Silva (2020), adapted from the work of Pimenta and Yojo (1993) As for the geometry and the mesh, shown 
in Figure 5, a cross section of 𝑏𝑏 = 11.64 mm × ℎ = 100 mm is used, with length 𝐿𝐿 = 2400 mm. One end of the beam 
is clamped, while the other, parallel to ℎ, is subjected to a concentrated force 𝑃𝑃 = 10000 N and a lateral load, 𝑃𝑃𝐿𝐿 = 1 N, 
is applied just to impose the initial instability into the system. The beam material has an Young’s modulus 𝐸𝐸 = 210 GPa 
and Poisson’s ratio 𝑣𝑣 = 0.3125 for all the 3 layers adopted, with neo-Hookean material model. The deformed 
configuration and the, respectively from left to right, lateral and vertical displacements of the tip of the beam are 
presented in Figure 5. 

 

 
Figure 5 – Lateral and vertical displacements / Undeformed and deformed configurations of buckling cantilever beam 

5.4 Ring plate loaded at free edge 

This example is a classic in the literature, referring to Campello, Pimenta and Wriggers (2003) for results comparison. 
A circular ring plate with a radial rip is loaded at the free edge by 𝑝𝑝 = 0.1fkN/m, with the other edge being fully clamped. 
The external and internal plate radius are 𝑅𝑅 = 10.0 m and 𝑡𝑡 = 6.0 m, respectively, with thickness ℎ = 0.03 m. The 
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material considered is neo-Hookean, with 𝐸𝐸 = 2.1 ∙ 108kN/m2 and 𝑣𝑣 = 0. The mesh along with the deformed 
configuration and the vertical displacement in three points (A, B, C) are presented in Figure 6. 

 

 
Figure 6 – Vertical Displacements / Undeformed and deformed configurations of ring plate loaded at free edge 

5.5 Pull-out of an open cylinder 

This example consists of applying two diametrically opposite point forces in an open cylinder (see Figure 7). The 
three layers, modeled with neo-Hookean material, have 𝐸𝐸 = 10.5 ∙ 106 and 𝑣𝑣 = 0.3125. In Figure 7 the deflection at 
point A versus pulling force graph is presented along with the final deformed configuration. It is worth to remark the 
slight snap-through behaviour of the solution when 𝑃𝑃 ≈ 2.0 ∙ 104. We refer to Campello, Pimenta and Wriggers (2003) 
for results comparison. 

 
Figure 7 – Vertical Displacement / Undeformed and deformed configurations of pull out of open cylinder 

5.6 Pinched cylinder 

This is another classic in the literature, referring to Sanchez, Pimenta and Ibrahimbegovic (2023) for results 
comparison. The cylinder has a radius of 𝑅𝑅 = 100, length of 𝐿𝐿 = 200 and thickness ℎ = 1. Additionally, the cylinder has 
a rigid diaphragm on both sides, in a similar fashion to a metal can. The material used is neo-Hookean for all the 3 layers, 
with Young’s modulus 𝐸𝐸 = 3 ∙ 104 and Poisson’s coefficient 𝑣𝑣 = 0.3. The pinch force applied symmetrically at top and 
bottom is 𝑃𝑃 = 20000.The mesh and results for vertical and lateral displacement of points A and B, respectively, are 
presented in Figure 8. 
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Figure 8 – Pinched cylinder 

5.7 Anisotropic cantilever beam 

The current example was developed to demonstrate the multilayer capabilities of the multilayer theory. The 
geometry, load and base material properties for the isotropic part of the material are the same as the out-of-plane 
configuration in the first example, presented in section 5.1, with 5 equally sized layers composing the shell thickness. The 
difference in relation to the previous example lies in the additional anisotropic material contribution. Regarding the 
anisotropic parameters throughout the section, we always assume that 𝛼𝛼1 = 5 ∙ 106 and 𝛼𝛼2 = 2.3 are associated with 
orthotropic direction vector 𝑚𝑚1 and that 𝛼𝛼1 = 1 ∙ 105 and 𝛼𝛼2 = 2.3 are associated with orthotropic direction vector 𝑚𝑚2. 

We assume initially that there are two possible configurations for the orthotropic directions, the first being 𝑚𝑚1 =
(1,0,0) and 𝑚𝑚2 = (0,1,0) and the second being 𝑚𝑚1 = (0,1,0) and 𝑚𝑚2 = (1,0,0). With these directions, four possible 
plies configurations, presented in Figure 9 and named from ANISO1 up to ANISO4, are tested. The first and forth 
configurations are chosen as they represent the extremes of anisotropic behavior. The intermediate configurations are 
adopted as to verify the increasingly lower value of stiffness due to the assumed directions of anisotropy. 

 
Figure 9 – Plies configurations along the thickness – ANISO1 up to ANISO4 

The results for the relation between vertical deflection and the current beam X axis position for all plies 
configurations and for the purely neo-Hookean material are presented in Figure 10. As expected, all the anisotropic cases 
rendered more stiff final configurations when compared with the neo-Hookean case. As also expected, configurations 
ANISO1 and ANISO4 respectively resulted in the most and least stiff behaviors when compared with the other anisotropic 
cases. 

It is worth mentioning that, although the vertical deflection for ANISO1 and ANISO2 were close, with tip vertical 
displacement respectively of 0.743629 and 0.746318, they were not identical. The number of layer configuration 1 along 
the thickness of ANISO2 greatly influenced the general behavior of the displacement when compared with ANISO3. 
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Figure 10 – Vertical deflection x Current beam axis position – ANISO1 up to ANISO4 

Additionally to verifying the influence of different configurations of plies when applying the anisotropy in the 
direction of the axis, we also verified the influence of rotating the vectors 𝑚𝑚1 and 𝑚𝑚2. As such, two new configurations 

are used for the orthotropic directions, the first being 𝑚𝑚1 = �√2
2

, √2
2

, 0� and 𝑚𝑚2 = �√2
2

,−√2
2

, 0� and the second being 

𝑚𝑚1 = �√2
2

,−√2
2

, 0� and 𝑚𝑚2 = �√2
2

, √2
2

, 0�. The previous directions are numbered as 3 and 4 for compatibility with the 
previous model. With these directions, three possible plies configurations, presented in Figure 11 and named ANISO5 up 
to ANISO7, are tested.  

 
Figure 11 – Plies configurations along the thickness – ANISO5 up to ANISO7 

The first and third configurations in Figure 11 are chosen as they represent the extremes of anisotropic directions 
for such case. The intermediate configuration is adopted as to verify the effect in the stiffness due to the assumed 
direction of anisotropy. 

The results for the relation between vertical deflection and the current beam axis position for plies configurations 
ANISO5 up to ANISO 7 and for the purely neo-Hookean material are presented in Figure 12. 

As expected, due to boundary conditions directions and the assumed angle of anisotropy, the results for ANISO5 
and ANISO7 are identical. Also, due to the same factors, one can see that for ANISO6 there is an increase in stiffness in 
relation to ANISO5 and ANISO7. This is due to the preferential stiffness direction associated with direction 𝑚𝑚1. As ANISO5 
and ANISO7 assume a specific 45° angle, they generate a smaller stiffness in relation to the loading and displacement 
directions when compared with the case in which we have a variation of such 45° angle, such as ANISO6. 
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Figure 12 – Vertical deflection x Current beam axis position – ANISO5 up to ANISO7 

5.8 Wrinkling of membrane 

This is another example used to verify the anisotropic capability of the shell multi-layered element. This example is 
divided in two cases. The first analysed case, presented in Viebahn, Pimenta and Schröder (2017), focus on verifying the 
capabilities of the element to represent the stretching phenomena with multiple layers, with the same material. This is 
used to verify the stability of the theory when dividing the thickness in multiple smaller domains. For the second case, 
we use the proposal presented by Sanchez, Pimenta and Ibrahimbegovic (2023) as two of the plies configurations and 
expand the analyzes to other possibilities that arise due to the multilayer approach. It is also worth to mention that 
different mesh configurations and methods to generate the instability needed to initiate the wrinkling process are used 
for each case. 

As general information for both cases, the square membrane has side equal to 1 and beveled corners to avoid stress 
concentration. The vertical corners are clamped, and the horizontal corners are stretched by a distributed force 𝑞𝑞 = 0.1. 
The isotropic parameters for the neo-Hookean part are 𝐸𝐸 = 200 and 𝐸𝐸 = 0.3. For a visual reference of geometry and 
general informations, see Figure 13. 

With the general information given, let us focus on the first case. To ensure the wrinkling behaviour, some of the 
points in the mesh are moved, in order to remove symmetry and allow the beginning of wrinkling. The material used is 
the anisotropic model presented in a previous section, with orthotropic direction 𝑚𝑚1 = [0,1,0]T and 𝑚𝑚2 = [1,0,0]T. The 
anisotropic parameters are 𝛼𝛼1 = 4 and 𝛼𝛼2 = 2.3 for the warp direction and 𝛼𝛼1 = 1 and 𝛼𝛼2 = 2.3 for the weft direction. 
For comparison, we refer to Viebahn, Pimenta and Schröder (2017). The example was modeled with one to nine layers 
and the results for deformation of one and nine layers are presented in Figure 13, along with the mesh adopted. It is 
perceptible that the displacements are identical for both configurations. 

With the first case complete, we shift to the second. To ensure the wrinkling behaviour, only at the first step of the analysis, 
alternating positive and negative displacements of 0.00003 are applied normal to the shell plane, in some points along the middle 
line of the mesh (see Figure 14). Regarding the anisotropic parameters, we assume that 𝛼𝛼1 = 40 and 𝛼𝛼2 = 2.3 are associated 
with orthotropic direction vector 𝑚𝑚1 and that 𝛼𝛼1 = 1 and 𝛼𝛼2 = 2.3 are associated with orthotropic direction vector 𝑚𝑚2. We 
assume initially that there are two possible configurations for the orthotropic directions, the first being 𝑚𝑚1 = (0,1,0) and 𝑚𝑚2 =
(1,0,0) and the second being 𝑚𝑚1 = (1,0,0) and 𝑚𝑚2 = (0,1,0). With these directions, three possible plies configurations, 
presented in Figure 14 and named from ANISO1 up to ANISO3, are tested with five layers. The first and third configurations are 
chosen as they represent the extremes of anisotropic behavior. The intermediate configuration is adopted as to verify the 
increasingly lower value of stiffness due to the assumed directions of anisotropy. 

The results of displacement for points along the middle line of the mesh are presented in Figure 15. As expected, the plies 
configurations equivalent to the ones presented by Sanchez, Pimenta and Ibrahimbegovic (2023), these being ANISO1 and 
ANISO3, rendered the same result as theirs. As also expected, configurations ANISO1 and ANISO3 respectively resulted in the 
most and least stiff behaviors when compared with the intermediate value ANISO2. The location of ANISO2, between both and 
closer to ANISO1 is logical, as there are more layers from the first than the second direction (see Figure 14). 
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Figure 13 – Wrinkling of a membrane 

 

Figure 14 – Wrinkling of a membrane: a) Mesh and boundary conditions b) Plies configurations along the thickness – ANISO1 up to ANISO3 

 

Figure 15 – Vertical displacement of middle line in wrinkling membrane 
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6 CONCLUSION 

As seen in the current work, the context of a thin shell with Kirchhoff-Love theory and consequent assumption of a 
constant direction of the shell director connected with a multi-layer approach and incremental DoFs, create an extremely 
simple multi-layer finite element. The fact that there is no need of penalty parameters and any numeric tool in the 
element formulation is also remarkable and desirable. The results from the numerical implementation indicate that, 
although simple, the element performed exceedingly well with a singular or multiple layers in various non-linear 
situations including large bending in and out-of-plane movement, buckling phenomena, complex load-displacement 
curves (with snaps involved) and anisotropic membrane. The authors highlight that the current work is a step toward the 
most appropriate formulation in dynamics, with the incremental aspect of the formulation being extremely 
advantageous for such endeavor. 
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