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Abstract 
A reliability-based design optimization (RBDO) incorporates a 
probabilistic analysis with an optimization technique to find a best 
design within a reliable design space. However, the computational 
cost of an RBDO task is often expensive compared to a determin-
istic optimization, which is mainly due to the reliability analysis 
performed inside the optimization loop. Theoretically, the reliabil-
ity of a given design point can be obtained through a multidimen-
sional integration. Integration with multiple variables over the 
safety domain is, unfortunately, formidable in most cases. Monte-
Carlo simulation (MCS) is often used to solve this difficulty. How-
ever, the inherit statistic uncertainty associated with MCS some-
times causes an unstable RBDO solution. To avoid this unstable 
solution, this study transforms a multi-variable constraint into a 
single variable constraint using an exponential function with a 
polynomial coefficient (EPM). The adaptive Gauss-Kronrod quad-
rature is used to compute the constraint reliability. The calculated 
reliability and its derivative are incorporated with an optimizer 
such as sequential quadratic programming (SQP) or most proba-
ble point particle swarm optimization (MPP-based PSO) to con-
duct the RBDO task. To ensure the design accuracy, the stability 
of the RBDO algorithm with respect to the initial point is investi-
gated through several numerical examples. 
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1 INTRODUCTION 

A deterministic optimization uses a single value to represent a physical quantity in a calculation. 
It is known that uncertainties in an engineering design problem are often inevitable. One can 
utilize the concept of a safety factor to take uncertainties into consideration. The safety factor 
approach, however, does not identify the more critical design parameters because all uncertainties 
are represented by one factor throughout the design. Another approach such as the Load and 
Resistance Factor Design (LRFD), which is used for designing steel structures, also has a similar 
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drawback. In LRFD, different factors are multiplied with each load type and resistance, such as 
the yielding stress. For example, for the load types of dead and live loads, the factors could be 1.2 
and 1.6, respectively. For a structure design using LRFD, the factored resistance of that structure 
should be larger than the demand calculated from the factored loads. LRFD considers each design 
parameter inequitably through the assigned factors. However, a LRFD structure does not distri-
bute the material in an optimal way because the same type of loads applied at different locations 
are still considered as identical in importance in LRFD, which is not true in most cases. A reliabi-
lity-based design optimization (RBDO) takes an important step beyond a deterministic design 
optimization by not only characterizing the probabilistic aspects of the engineering problem but 
also identifying the relative importance of each design parameter. An RBDO can deliver an opti-
mal design that satisfies the probabilistic constraints. For example, Beck and Verzenhassi (2008) 
used reliability-based risk optimization to find the optimum balance between safety and economy 
in the presence of uncertainty. Traditionally, an RBDO is conducted through a double-loop ap-
proach (known also as a two-level approach) in which the inner loop computes the constraint 
reliability and the outer loop conducts the optimization. The drawback of this approach is that 
its computational cost is usually expensive (Liao and Ha 2008; Ramu et al. 2004). Many algo-
rithms have been proposed to lessen this computational burden. Aoues and Chateauneuf (2010), 
Li et al. (2010) and Liang et al. (2007) have categorized these algorithms into two groups: the 
single-loop approach (known also as the mono-level approach) and the decoupled approach 
(known also as the decomposed approach). 

The decoupled approach assumes that the reliability levels of different designs can be approx-
imately estimated by a constant number or evaluated in a deterministic approach. That is, an 
equivalent deterministic constraint is built to replace a probability constraint. In this case, the 
evaluation of the constraint reliability in the inner loop is eliminated, and an RBDO problem 
becomes an equivalent deterministic optimization problem. However, the reliability levels of dif-
ferent designs are not identical, and the decoupled approach often suggests to find another equiv-
alent deterministic constraint determined by a design closer to the optimal point. After updating 
the reliability estimation to be more accurate, the equivalent deterministic optimization is refor-
mulated and used to find the optimal solution of the next iteration. These processes are repeated 
until the optimal solutions are converged.  

Examples of using the decoupled approach are briefly introduced as follows. Tu et al. (2001) 
and Zou and Mahadevan (2006) decoupled an RBDO problem through revising the constraints. In 
their approaches, the constraints were approximated by using Taylor expansion, which was per-
formed repeatedly to increase the accuracy of the reliability approximation. Li et al. (2010) and 
Liao and Lu (2012) modified the right hand side (RHS) values of the constraint functions to find 
the equivalent-deterministic constraint functions. Similarly, the RHS values must be updated 
sequentially to capture the reliability performance near the optimal design point. Du and Chen 
(2003) proposed the Sequential Optimization and Reliability Assessment (SORA) method, in 
which the inverse most probable point (IMPP) was used to replace the random variables and to 
decouple the reliability analysis and optimization. The IMPP was re-evaluated at the optimal 
solution from a deterministic optimization to provide a more accurate reliability approximation 
for the use in the next deterministic optimization. Liao and Lu (2012) used a set of deterministic 
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variables, called auxiliary design points, to replace the random variables to form a deterministic 
optimization that is equivalent to the RBDO problem. Similarly, the deterministic optimization 
and the calculation of finding the auxiliary design points were conducted iteratively until the 
solutions converged. 

Another common strategy to lessen the computational burden of the double-loop approach is 
the single-loop approach. Chen et al. (1997) proposed a single-loop-single-vector (SLSV) to reduce 
the computational cost. The SLSV evaluated the reliability level at each design point during op-
timization. The reliability level at each design point was computed by using an approximated 
MPP. If a limit state function is highly nonlinear, the SLSV may not be able to deliver an opti-
mized solution. Liang et al. (2007) extended the single-loop approach for an RBDO problem with 
series system reliability. Kaymaz and Marti (2007) proposed a mono-level RBDO approach, which 
was formulated by means of the necessary optimality conditions of the MPP. This approach, 
however, increases the number of design variables and increases the computational cost (Liang et 
al. 2007). Shan and Wang (2008) proposed another single-loop approach in which a reliable design 
space (RDS) was built, and an RBDO problem became a deterministic optimization problem con-
strained by RDS rather than the deterministic feasible space. 

The current study uses the exponential function with the polynomial coefficient method (EPM) 
to represent the probability density function (PDF) of a limit state function. That is, a multi-
variable constraint is converted into a function with only one variable (Er 1998). In this way, the 
constraint reliability can be estimated by any existing numerical integration methods or simula-
tion techniques such as Markov-Chain Monte-Carlo (MCMC) simulation. The calculated reliabili-
ty or its derivative is incorporated with the sequential quadratic programming (SQP) or the most 
probable point particle swarm optimization (MPP-based PSO) algorithm to conduct an RBDO 
task. Because the reliability evaluation is conducted at each design point during optimization, 
similar to the single-loop approach, only one optimization task is needed for the proposed algo-
rithm. To ensure the accuracies of the proposed RBDO approaches, the sensitivity of the propo-
sed RBDO approaches with respect to the initial point is investigated. Several numerical exam-
ples are used to demonstrate the stability and accuracy of the proposed RBDO algorithm. 

 
2 FORMULATION OF AN RBDO PROBLEM  

A general formulation of an RBDO model is described by Equation (1), where f is the design ob-
jective, D is the vector of design variable, P is the vector of the random design variable to repre-
sent the uncertainty in the design variable, X is the vector of the random design parameter, Prob. 
stands for the probability, Gi is the ith constraint function, αi is the reliability requirement for the 
ith constraint and m denotes the number of constraints: 
 

   

Min: f (D,P , X )
s.t.: Prob.{Gi(D,P , X ) ≤  0} α i ,  i = 1, 2,..., m

 (1) 

 
In deterministic optimization, uncertainties in the design variables/parameters are ignored. 

Random design variables/parameters remain constant during optimization, and the constraint 
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function is defined as Gi=(D, P, X)≤0. In this case, the reliability of the optimal design is often 
low because the process fails to capture uncertainties in the design variables/parameters. As 
shown in Equation (1), a typical RBDO is a nested double-loop approach, where the outer loop 
conducts the optimization and the inner loop considers the probabilistic analysis. 
 
3 DESCRIPTION OF THE PROPOSED RBDO ALGORITHM 

This study uses the EPM to convert a multiple-variable constraint into a single-variable cons-
traint. After obtaining the single-variable constraint, this study uses an existing numerical inte-
gration technique called adaptive Gauss-Kronrod quadrature (GKQ) to evaluate the reliability of 
a given design. Results of EPM are incorporated with two optimizers, which are SQP and MPP-
based PSO, to perform an RBDO task. If the SQP, rather than a MPP-based PSO, is used as the 
optimizer, the reliability gradient is computed by the finite difference method. A detailed descrip-
tion of the proposed algorithm is provided below. 
 
3.1 Reliabil ity analysis 

For time-independent reliability analysis, the failure probability of a given design can be written as 
Equation (2). 
 

    
p f = D∫ fX (x)∫ dx  (2) 

 
where fX() is the PDF in X, the vector of basic variables in n-space. The "failure domain" D is 
defined by one or more constraint functions Gi(X) ≤ 0, i=1,2,…,m. The integral in Equation (2) 
above is in general very complicated to calculate. Approximate methods for estimating the failure 
probability have been proposed, such as first order reliability analysis (FORM) and Monte-Carlo 
Simulation (MCS). FORM computes the failure probability through an optimization procedure. 
The objective is to minimize the distance between the origin and the MPP in the reduced space, 
and the constraint is that the MPP must be on the limit state function. The obtained distance is 
called reliability index (β), and, the failure probability can be easily calculated from β. MCS is 
considered as a simulation approach in which the basic variables are generated based on their 
PDFs and the limit state function is repeatedly evaluated using the generated variables. If the 
failure probability is very small, a large sample size is often required for the MCS approach. 

If the integral in Equation (2) can be reduced to a one-dimensional problem, the evaluation of 
the reliability will not be a burden. Thus, this study adopted the EPM approach (Er 1998) to 
convert the integral, described in Equation (2), from a multiple space into a single space. EPM 
assumes that the PDF of a random variable X can be approximated by an exponential function 
with a polynomial function. That is, the coefficient of the exponential function is a polynomial 
function. The coefficients in the polynomial function can be solved through a set of simultaneous 
linear algebraic equations using the moments of the random variables, which can be solved with a 
little computational effort. EPM is briefly described below.  
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Suppose that the exact PDF of random variable X is denoted as ( )p xX  and can be approxi-

mated as ( )q xX , as described in Equation (3). 
 

   qX (x) = q(x) = c × eQ( x )  (3) 
 

where c is normalizing constant and is determined by Equation (4). 

 

  

c = 1

eQ( x ) dx
−∞

∞

∫

 

(4) 

 
where Q(x) is a polynomial function that is defined in Equation (5). 
 

  

Q(x) = aix
i

i=1

∞

∑       x ∈R

−∞         x → ±∞

⎧

⎨
⎪

⎩
⎪

 
(5) 

 
in which ai, i = 1, 2,⋯ are the coefficients of the polynomial function to be determined. In practi-
ce, the truncated form of the polynomial Qn(x) and qn(x) may be used as described in Equation 
(6). 
 

  

qn(x) = c × eQn ( x )

where Qn(x) = aix
i

i=1

n

∑       x ∈[α ,β]

−∞         otherwize

⎧

⎨
⎪

⎩
⎪

 (n ≥ 2) 

 
(6) 

 
where α and β are two constants. By setting the residual error, δ(x), as described in Equation (7), 
equal to zero, one can obtain Equation (8) to solve the coefficients (ai) in Qn(x). 
 

  δ (x) = [ p(x)− q(x)]e
|x|1

r  (7) 

 
where r is a large positive integer. 
 

  
imX

i+ j−1ai = − jmZ
j−1, j = 0,  1, 2,..., n−1,  (n ≥ 2)

i=1

n

∑  (8) 
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where the variable i
Xm  (i = 1, 2,⋯) is defined as   E[ X i ] = p(x)xi dx∫ . Equation (8) can be writ-

ten in the following matrix form, which is a set of n simultaneous algebraic equations. 
 

0 1 1
1

1 2
2

( 2)1 2( 1)

02 ...
12 ...

=                                  (9)

( 1)2 ...

n
X X X
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M MM M O M

 

 
As mentioned earlier, once the limit state function is converted into a function with a single 

random variable using EPM, GKQ is used to calculate the failure probability. 
 
3.2 Optimization: SQP and MPP-based PSO 

Optimization methods using mathematical programming such as SQP are very efficient. However, 
the stability of applying SQP in an RBDO problem has not been thoroughly investigated. To 
verify the stability, this study uses SQP to repeatedly solve an identical RBDO problem by using 
different initial points. The results indicate that there is room to improve the stability of using 
SQP. For this reason, this study adopts another population-based optimization method (PSO) to 
perform an RBDO problem. The proposed MPP-based PSO is briefly described below. 

PSO mimics a natural movement of organisms in a bird flock or fish school and is a stochastic 
global optimization method (Parsopoulos and Vrahatis 2002). PSO, unlike the gradient-based 
optimization algorithm, finds the optimal point from multiple starting points or particles. Each 
starting point/particle has its own search path during optimization. That is, a sequence of points 
is generated for each starting particle, and the collection of these points is called a population. 
Many variations have been proposed for the PSO; the following describes the detailed PSO used 
in current study. 

A new particle is generated by using Equation (10), as shown below. 
 

   

xi(t +1) =


vi(t +1)+


xi(t)  (10) 

 
where ( 1)i tx +

r  denotes the position of the ith particle in the next iteration, ( )i tx
r  denotes the posi-

tion of the ith particle in the current iteration and ( 1)iv t +
r  denotes the velocity of the ith particle 

in the current iteration. The position of a particle represents the design values of that particle. 
The velocity of the ith particle is determined by Equation (11), as shown below. 
 

   

vi(t +1) = k[w×


vi(t)+ r1c1(


xpBest −


xi(t))+ r2c2(


xgBest −


xi(t))+ r3c3(


xMPP −


xi(t))] (11) 

 
where k is the constriction factor that is used to prevent oscillation of the design variable, w is the 
inertia factor,    


vi (t)  is the velocity of at previous iteration, ri (i = 1–3) are random numbers bet-

ween 0 and 1, and c1, c2 and c3 are the cognition factor, the social factor and the acceleration 
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factor, respectively.   

xpBest  is the particle position with the minimum objective value in the ith 

population,   

xgBest  is the particle position with the minimum objective value among all populations, 

and   

xMPP  is the MPP of the current position (   


xi (t) ). Ideally, the optimal solution should stay on 

the reliability constraints. However, the standard PSO does not make any effort to make this 
occur. Thus, ( ( ))MPP ix x t−

r r  is added to the standard PSO algorithm to drive the search movement 
to the vicinity of the reliability constraints. Meanwhile, to prevent a particle from staying in the 
infeasible domain for a long time, this study places a particle at the probabilistic boundary when 
that particle is directed to the infeasible domain. A reliability analysis is needed to identify the 
location of a probabilistic boundary, which certainly affects the computational cost. To reduce the 

number of reliability analyses, a balance strategy is used, which is only to maintain   

xgBest  in the 

feasible domain. That is, 
  

xpBest  does not necessarily satisfy the reliability constraints. Conversely, 

  

xgBest  always meets the reliability requirement. 

Four major factors--the previous velocity, the local best (  

xpBest ), the global best (  


xgBest ) and 

the MPP (  

xMPP )--affect the current particle velocity. These four factors are controlled by the iner-

tial weight (w), the cognition factor (c1), the social factor (c2) and the acceleration factor (c3). 
Apparently, the larger the cognition factor, the greater tendency that the particle will move to-

wards the local best (  

xpBest ). A similar conclusion can be applied to the social factor and the acce-

leration factor. There are many existing algorithms proposed to determine the ci factors. In this 
study, ci are determined by a grid search, and they were 1.5, 1.7 and 1.0 for c1, c2 and c3, respec-
tively. The inertia weight used in PSO provides a mechanism to control the exploration and ex-
ploitation abilities of the swarm. The inertia weight is calculated using Equation (12) as follows. 
 

  
w(t) = w− t

T
(w− w)  (12) 

 
where t is the current iteration number, T is the total number of iterations, and  w  (=1) and  w  
(=0) are the upper and lower bounds of the inertia weight, respectively. Equation (12) indicates 
that the inertia weight decreases as the iteration number increases. This technique moves a parti-
cle more smoothly and more gradually (exploration) at the beginning stage. In addition, Equation 
(12) allows a particle to settle into the optima (exploitation) at the ending stage. 

In addition to the factors above, other issues that affect PSO are the number of parti-
cles/populations, the number of iterations, the position of the initial particles and the initial velo-
city of each particle. The numbers of particles/populations and iterations used in the current 
study are 30 and 80, respectively. The initial positions are often randomly determined. In this 
research, Latin Hypercube Sampling (LHS) is adopted to generate initial design values that are 
more scattered in the design domain. 
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4 NUMERICAL EXAMPLES 

4.1 A cantilevered beam problem 

The literature study from Liao and Ha (2008), Wu et al. (2001), Ramu et al. (2006) and Qu and 
Haftka (2004) is adopted as the first example to demonstrate the proposed RBDO algorithm. The 
objective of this example is to find the minimum weight or the minimum cross sectional area of a 
cantilevered beam as described in Equation (13) and Figure 1.  
 

  Min.   W = bh  (13) 
 

 

 
 

Figure 1   Schematic of a cantilevered beam used to illustrate the proposed RBDO algorithm 
 

The width (b) and height (h) of the beam are the design variables with lower and upper 
bounds of 0 and 10, respectively. The two loads (x, y) at the free end, the modulus of elasticity (E) 
and the yield strength (r) are the random parameters, and their statistics are provided in Table 1. 
The length of the cantilevered beam is 254 cm (100 inches). Two limit state functions are consi-
dered separately. In Case 1, the stress at the fixed end has to be less than the yield strength (r), 
and, in Case 2, the tip displacement has to be smaller than the allowable displacement (do = 
7.724 cm or 2.2535 inches). The target reliability is set to 99.865% (i.e., β = 3) for both cases. For 
Case 1, the limit state function (GS) is described by Equation (14): 

 

  
GS = (r,x, y,b,h) = (600

bh2 y + 600
b2h

x)− r  (14) 

 
while, for Case 2, the limit state function (GD) is expressed by Equation (15): 
 

  
GD = (E,x, y,b,h) = 4L3

Ebh
( y
h2 )2 + ( x

b2 )2 − d0
 (15) 

 
Table 1   The statistics of the random variables used in Example 1 

Random variable x(lb) y(lb) E(psi) r(psi) 
distribution type normal normal normal normal 
µ(1) 500 1,000 29E6 40,000 
σ(1) 100 100 1.45E6 2,000 

(1)µ is the mean value and σ is the standard deviation 

x 
y 

b 
h 

100 inches  
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4.1.1 Case 1 

Four different RBDO algorithms were used to solve this case: the double-loop approach using 
SQP as the optimizer and using FORM for reliability analysis (D–SQP–FORM), the double-loop 
approach using SQP as the optimizer and using MCS for reliability analysis (D–SQP–MCS), the 
single-loop approach using SQP as the optimizer and using EPM for reliability analysis (S–SQP–
EPM) and the single-loop approach using PSO as the optimizer and using EPM for reliability 
analysis (S–PSO–EPM). Because the current problem does not have a local optimal point and the 
constraint is linear, the D–SQP–FORM should deliver an accurate and identical solution given 
different initial points. Thus, the solution of D–SQP–FORM was used as the benchmark design. 
To demonstrate this idea, 9 different values of 1, 2, 3,…, 9 for each design variable were chosen, 
resulting in 81 initial points that were used in the D–SQP–FORM approach. These 81 optimal 
values, as expected, are identical, and they are 9.520246 with b= 2.44599 and h = 3.892185. 
These results are similar to the results from Liao and Ha (2008), Wu et al. (2001), Ramu et al. 
(2006) and Qu and Haftka (2004), which are shown in Table 2. 

Although MCS with sufficient sample size is often considered a suitable tool for reliability 
analysis, it is not an easy task to completely eliminate the effect of the inherit statistic uncertain-
ties of MCS on an RBDO solution (Liao and Lu 2012). To investigate this effect, D–SQP–MCS 
was used to solve the current RBDO problem. The same 81 initial points were used for the D–
SQP–MCS approach. For each initial point, the D–SQP–MCS method was performed twice. That 
is, this problem was analyzed 162 times. Ideally, the goal of an optimization algorithm is to deli-
ver an identical and accurate solution given different initial points. However, an RBDO problem 
either has a local minimum or has a nonlinear constraint. In this case, it is very difficult to 
achieve this goal. Instead, if the difference between a solution and the "target solution" is less 
than 2% of the optimal solution, that solution is considered as a "reasonable solution" in current 
study. The "target solution" for the current problem is the solution from D–SQP–FORM in 
which the objective value is 9.5202. Based on this definition, Tables 3 and 4 shows that D–SQP–
MCS only delivered 19 and 17 reasonable solutions (the number of green blocks), respectively. 
The sample size used in these analyses is 106. With this sample size, the effect of statistical uncer-
tainty on an RBDO solution cannot be removed. To further investigate the influence of the sta-
tistical uncertainty, other sample sizes such as 103, 104 and 105 are used for MCS. The results are 
displayed in Table 5. The number of reasonable solutions did not significantly increase when a 
greater sample size was used. 

Unlike the MCS, there is no statistic uncertainty in the reliability evaluation by using EPM 
incorporated with GKQ. It is of interest to investigate the sensitivity of the S–SQP–EMP solu-
tion with respect to the initial point. The results of S–SQP–EMP approach are displayed in Table 
6. There were 36 reasonable solutions. Compared to the approach of D–SQP–MCS, the S–SQP–
EMP approach is apparently less sensitive to the initial point. Thus, S–SQP–EMP is a more sta-
ble RBDO approach. 

Another way to examine the effect of statistic uncertainty on the RBDO solution is to conduct 
an RBDO problem using the identical initial point (7, 9) several times. Table 7 displays the 20 
solutions of the Case 1 problem using the D–SQP–MCS and S–SQP–EMP approaches. For the 
D–SQP–MCS, increasing sample size can effectively reduce the variation in solutions. The coeffi-
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cient of variation (cov) in solutions decreased from 0.038 to 0.013. In addition, the RBDO solu-
tion is not significantly affected by statistic uncertainty when the sample size is greater than 103. 
However, greater sample size does not always produce more reasonable solutions, as shown in 
Table 5. Thus, the capability of delivering a reasonable solution for D–SQP–MCS depends on 
both the sample size and location of initial point. As results shown in Tables 5 and 7, one can 
conclude that the impact of initial point is significantly. No deviation among the 20 S–SQP–EMP 
solutions is found. Thus, it is confirmed that S–SQP–EMP is a more stable RBDO algorithm 
than D–SQP–MCS. 

 
Table 2   Comparison of optimal designs among several studies (Example 1 – case 1) 

 
method width (b) depth (h) area 

FORM (RIA) (Ramu et al. 2006)  2.446 3.8922 9.5202 
FORM (PMA) (Ramu et al. 2006)  2.446 3.8920 9.5202 

Probabilistic sufficiency factor (Qu and Haftka 2004) 2.4526 3.8884 9.5367 
ESORA (Liao and Ha 2008) 2.3900 3.9820 9.5170 

Exact optimum (Wu et al. 2001) 2.4484 3.8884 9.5204 
D–SQP–FORM (Current study) 2.44599 3.892185 9.5202 

 
 

Table 3   Solutions from 81 different initial points using D–SQP–MCS (Example 1 – case 1, the 1st trial) 
 

Sample size = 106 

b0
(1) 

h0
(1) 

1 2 3 4 5 6 7 8 9 

1 

1.00(2) 1.00(3) 1.00 2.00 1.00 3.00 0.50 3.60 0.60 4.84 0.60 3.87 0.50 0.50 0.60 0.50 0.50 6.89 

1.00(4) 2.00 3.00 1.80 2.91 2.32 0.25 0.30 3.44 

2 

2.00 1.00 2.00 2.00 0.50 3.17 0.50 2.00 0.50 3.00 1.75 5.69 1.68 6.01 1.48 7.20 1.39 7.88 

2.00 4.00 1.58 1.00 1.50 9.98 10.11 10.64 10.96 

3 

3.00 1.00 1.00 0.50 0.50 0.50 2.66 3.59 2.21 4.32 2.05 4.71 1.79 5.54 1.64 6.25 1.45 7.39 

3.00 0.50 0.25 9.54 9.55 9.64 9.92 10.22 10.73 

4 

4.00 1.00 2.00 0.50 3.66 2.74 3.11 3.12 2.74 3.49 2.56 3.72 1.84 5.36 1.80 5.49 1.64 6.22 

4.00 1.00 10.05 9.71 9.56 9.52 9.85 9.90 10.20 

5 

5.00 1.00 3.00 0.50 4.34 2.43 3.27 3.00 2.80 3.43 2.73 3.50 2.39 3.98 2.02 4.77 1.76 5.65 

5.00 1.50 10.54 9.81 9.58 9.56 9.52 9.66 9.96 

6 

6.00 1.00 6.21 0.50 5.00 2.21 4.51 2.37 3.46 2.87 3.15 3.09 2.83 3.39 2.28 4.19 2.16 4.44 

6.00 3.10 11.05 10.67 9.92 9.73 9.59 9.53 9.57 

7 

7.00 1.00 7.15 1.78 5.77 2.02 5.02 2.20 4.14 2.51 3.47 2.86 2.95 3.26 3.01 3.22 2.50 3.81 

7.00 12.71 11.65 11.06 10.39 9.92 9.64 9.66 9.52 

8 

8.00 1.00 7.58 1.72 6.55 1.87 5.74 2.03 4.03 2.56 3.71 2.72 3.48 2.85 3.12 3.12 2.85 3.37 

8.00 13.02 12.25 11.63 10.31 10.09 9.93 9.71 9.60 

9 

8.00 0.50 8.51 1.61 7.53 1.72 6.41 1.90 5.53 2.07 4.69 2.30 4.03 2.56 3.40 2.91 2.35 4.06 

4.00 13.69 12.99 12.15 11.46 10.81 10.31 9.88 9.52 
(1)b0

 and h0
  are the initial width (inch) and depth (inch), respectively 

(2) the obtained optimal width (inch) for the corresponding initial point 
(3) the obtained optimal depth (inch) for the corresponding initial point 
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(4)the obtained optimal area (inch2) for the corresponding initial point 

Although S–SQP–EMP is more stable than D–SQP–MCS, the stability of S–SQP–EMP still 
needs to be improved. As shown in Table 6, there are still 45 unreasonable solutions when using 
the S–SQP–EMP approach. To investigate further, three arbitrary points, (2.45, 3.90), (2.0, 3.0) 
and (1.0, 2.0), are selected to perform the reliability analysis using FORM, MCS and EPM. Table 
8 shows that, for the point (2.45, 3.90), EPM generally delivered more promising solutions com-
pared to MCS. To be specific, EPM with three moments has a better reliability evaluation than 
MCS with a sample size of 107. MCS with a sample size that is less than 105 is more efficient than 
EPM. However, their evaluations were relatively inaccurate. 

In the case of point (2.0, 3.0), only the D–SQP–MCS failed to deliver a reasonable solution 
(Tables 3, 4 and 6). Table 9 displays the failure probability and the gradient with respect to the 
horizontal force (x) for the approaches of FORM, MCS and EPM. For the failure probability, all 
three approaches were very close. Because a gradient-based optimizer (SQP) is used at this stage, 
it is worth examining the gradients of the three approaches at this point. The MCS gradient was 
apparently different than the gradients of the other two approaches. Thus, for this particular 
point, the inaccurate gradient information calculated by MCS may result in an unreasonable solu-
tion for the D–SQP–MCS approach. 

 
Table 4   Solutions from 81 different initial points using D–SQP–MCS (Example 1 – case 1, the 2nd trial) 

 
Sample size = 106 

b0
(1) 

h0
(1) 

1 2 3 4 5 6 7 8 9 

1 

1.00(2) 1.00(3) 1.00 2.00 1.00 3.00 1.10 3.00 0.50 4.74 0.50 3.94 0.50 0.50 0.50 0.50 0.50 0.50 

1.00(4) 2.00 3.00 3.30 2.37 1.97 0.25 0.25 0.25 

2 

2.00 1.00 2.00 2.00 0.50 1.00 0.50 2.00 0.60 3.77 1.73 5.80 1.58 6.52 1.47 7.23 1.35 8.20 

2.00 4.00 0.50 1.00 2.26 10.02 10.33 10.66 11.11 

3 

3.00 1.00 1.00 2.05 0.50 2.25 2.66 3.59 2.30 4.14 2.21 4.32 1.81 5.48 1.59 6.48 1.51 7.01 

3.00 2.05 1.13 9.54 9.53 9.56 9.89 10.31 10.55 

4 

4.00 1.00 2.00 0.50 3.72 2.71 3.11 3.13 2.79 3.44 2.34 4.06 2.07 4.66 1.85 5.31 1.75 5.69 

4.00 1.00 10.09 9.71 9.57 9.52 9.62 9.83 9.98 

5 

5.00 1.00 5.10 0.50 4.37 2.42 3.58 2.79 3.27 3.00 2.75 3.48 2.32 4.11 2.10 4.58 1.86 5.28 

5.00 2.55 10.57 9.99 9.80 9.56 9.52 9.61 9.81 

6 

6.00 1.00 8.17 0.50 4.17 2.49 3.69 2.73 3.47 2.86 3.07 3.16 2.80 3.42 2.64 3.61 2.02 4.77 

6.00 4.09 10.42 10.07 9.92 9.70 9.58 9.54 9.66 

7 

7.00 1.00 6.74 1.84 6.26 1.92 4.96 2.22 3.97 2.59 3.47 2.86 3.12 3.12 2.59 3.67 2.50 3.81 

7.00 12.40 12.04 11.02 10.26 9.92 9.72 9.53 9.51 

8 

8.00 1.00 7.72 1.70 6.56 1.87 5.49 2.08 4.76 2.28 4.13 2.51 3.45 2.87 3.12 3.13 2.93 3.29 

8.00 13.13 12.26 11.44 10.86 10.38 9.91 9.77 9.63 

9 

8.00 0.50 8.47 1.61 7.51 1.73 6.44 1.89 5.66 2.04 4.70 2.30 3.97 2.59 3.39 2.91 3.48 2.86 

4.00 13.67 12.98 12.17 11.57 10.82 10.27 9.88 9.95 
(1) b0

 and h0
  are the initial width (inch) and depth (inch), respectively 

(2) the obtained optimal width (inch) for the corresponding initial point 
(3) the obtained optimal depth (inch) for the corresponding initial point 
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(4) the obtained optimal area (inch2) for the corresponding initial point 
 

Table 5   Number of reasonable solutions for D–SQP–MCS and S–SQP–EMP (Example 1 – case 1) 
 

RBDO approach 
No. of reasonable solution 

1st trial 2nd trial 
S–SQP–EMP 36 - 

D–SQP–MCS (sample size = 106) 19 17 
D–SQP–MCS (sample size = 105) 19 19 
D–SQP–MCS (sample size = 104) 17 17 
D–SQP–MCS (sample size = 103) 21 19 

 

Table 6   Solutions from 81 different initial points using S–SQP–EMP (Example 1 – case 1) 
 

b0
(1) 

h0
(1) 

1 2 3 4 5 6 7 8 9 

1 

28.5(2) 0.85(3) 0.5 0.5 0.5 2.31 0.62 32.3 2.44 3.89 2.45 3.89 2.45 3.89 2.45 3.89 2.45 3.89 

24.290878(4) 0.25 1.1549705 20.178862 9.5201752 9.5202322 9.5202255 9.5202314 9.5202316 

2 

27.6 0.87 17 1.11 2.45 3.89 2.45 3.89 2.45 3.89 1.97 4.92 1.69 5.98 1.64 6.21 1.67 6.06 

23.912211 18.882945 9.5202321 9.5202336 9.5202324 9.7076255 10.103898 10.200239 10.135524 

3 

25.8 0.9 0.5 0.5 2.45 3.89 2.46 3.86 2.43 3.91 2.31 4.13 2.15 4.46 1.93 5.05 1.76 5.68 

23.142121 0.25 9.5202325 9.5204446 9.5203374 9.5331569 9.5866411 9.7481336 9.9780858 

4 

-5242 -5242 2.45 3.89 2.97 3.25 2.74 3.49 2.53 3.77 2.45 3.89 2.26 4.23 1.97 4.93 1.97 4.94 

27479771 9.5202326 9.6519785 9.5661515 9.5243996 9.5202331 9.5447335 9.7105611 9.7131948 

5 

27.6 0.87 1.99 4.8 3.39 2.91 3.16 3.08 2.8 3.43 2.51 3.79 2.45 3.89 2.29 4.17 2 4.84 

23.911785 9.5373867 9.8799479 9.7472787 9.5841421 9.5227105 9.5202336 9.537709 9.6821565 

6 

0.58 38 2.45 3.89 4.2 2.49 3.14 3.1 2.98 3.25 2.68 3.57 2.52 3.78 2.45 3.89 2.36 4.04 

21.892073 9.5202321 10.44294 9.7336702 9.6547432 9.5493556 9.5236181 9.520236 9.5253702 

7 

0.57 38.4 5.12 2.18 3.92 2.61 3.84 2.65 3.24 3.02 3.17 3.07 2.65 3.6 2.54 3.75 2.45 3.89 

22.001673 11.148736 10.235147 10.181786 9.7905378 9.7532225 9.5440655 9.5256626 9.520234 

8 

0.58 38 6.21 1.93 4.86 2.25 4.49 2.38 4.42 2.4 3.29 2.98 3.07 3.16 2.77 3.45 2.59 3.68 

21.895591 11.999532 10.950446 10.660787 10.605421 9.8193913 9.6995157 9.5763772 9.5324767 

9 

0.5 0.5 7.22 1.77 6.17 1.94 5.03 2.2 4.45 2.39 4.45 2.39 3.19 3.06 2.96 3.26 2.67 3.57 

0.25 12.766534 11.96754 11.084398 10.6318 10.631106 9.7622834 9.6480388 9.5486302 
(1) b0

 and h0
  are the initial width (inch) and depth (inch), respectively, (2) the obtained optimal width (inch) for the correspon-

ding initial point, (3) the obtained optimal depth (inch) for the corresponding initial point, (4)the obtained optimal area (inch2) 
for the corresponding initial point 
 

Another point, (1.0, 2.0), was selected for a similar investigation. For this point, only the D–
SQP–FORM can deliver a reasonable solution (Tables 3, 4 and 6). The failure probabilities ob-
tained using FORM, MCS and EPM are displayed in Table 10. Although both MCS and EPM 
did not provide an accurate reliability, there was only slight difference compared to the reliability 
of FORM. The gradients calculated by FORM, MCS and EPM are also shown in Table 10. At 
this particular point, EPM provided accurate gradient information but incorrect reliability. MCS 
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provided an approximated reliability but incorrect gradient information. Thus, both D–SQP–
MCS and S–SQP–EPM failed to deliver an accurate RBDO solution. 

Based on results found in Tables 8, 9 and 10, if the point is located near the "target solution" 
or in the feasible domain, the chance to deliver a reasonable solution is higher for the D–SQP–
MCS and S–SQP–EPM approaches. However, if the point is located in the infeasible domain, the 
above two approaches often fail to deliver a reasonable solution due to an inaccurate evaluation 
of the reliability and the gradient. In addition, the statistic uncertainty has a significant impact 
on the stability of an RBDO solution, and thus D–SQP–MCS delivers a less reasonable solution 
than S–SQP–EPM. 

EPM is generally a more efficient method for reliability evaluation compared to MCS. 
However, if the design point is located in the infeasible region, EPM combined with SQP often 
fails to find a good RBDO solution. In this case, this study suggests the use of another optimizer 
(PSO) to conduct the optimization to consistently deliver an optimal solution.  

To prevent the particle from being trapped in a local minimum, a space-filling experiment de-
sign (i.e., the Latin hypercube) is used to generate the first generation of the particles in PSO. 
Because PSO is a population-based algorithm, S–PSO–EPM was performed 10 times to display 
the variation among solutions. Thirty particles and 80 iterations were used in PSO for the current 
study. The statistics of the S–PSO–EPM solutions are displayed in Table 11. The history of the 
objective value for 10 runs is shown in Figure 2. As shown in Figure 2, for most analysis repeti-
tions, the alteration of the global best after the 40th iteration is very small. Compared with the 
"target solution" (9.520246), all of the results of the S–PSO–EPM analysis were within a range of 
less than 1% deviation. That is, all solutions can be considered as a reasonable solution, indica-
ting that the PSO algorithm is perfectly integrated with the EPM. S–PSO–EPM was thus shown 
to be able to consistently deliver an optimal solution and thus is a stable RBDO algorithm. 
 

Table 7   20 solutions using identical initial point (7, 9) from D–SQP–MCS & S–SQP–EMP (Example 1 – case 1) 
RBDO approach 

S–SQP–EMP D–SQP–MCS (106) D–SQP–MCS (105) D–SQP–MCS (104) D–SQP–MCS (103) 
b* h* area*  b* h* area*  b* h* area*  b* h* area*  b* h* area*  

2.447709 3.889448 9.520234  2.361673 4.031124 9.520195  2.495304 3.80554 9.495981  2.130716 4.449607 9.48085  2.327945 3.985763 9.278639  2.447709 3.889448 9.520234  2.498594 3.808725 9.516459  2.497854 3.803892 9.501568  2.40394 3.924101 9.433304  2.454992 3.738756 9.178617  
2.447709 3.889448 9.520234  2.496701 3.811046 9.515043  2.495057 3.805131 9.494018  2.488769 3.794714 9.444169  2.468269 3.760753 9.282551  
2.447709 3.889448 9.520234  2.184329 4.378272 9.513586  2.219945 4.292923 9.53005  2.491829 3.799936 9.468791  2.465509 3.75618 9.260894  
2.447709 3.889448 9.520234  2.364271 4.026206 9.51904  2.493657 3.811126 9.50364  2.488769 3.794714 9.444169  2.468174 3.760595 9.281801  
2.447709 3.889448 9.520234  2.222493 4.296924 9.549885  2.496244 3.807154 9.503584  2.566162 3.708995 9.517881  2.470603 3.764619 9.300882  
2.447709 3.889448 9.520234  3.000803 3.22029 9.513455  2.503269 3.797061 9.505068  2.484565 3.799638 9.440449  2.475686 3.773039 9.340859  
2.447709 3.889448 9.520234  2.320576 4.101009 9.516703  2.496803 3.805059 9.500481  2.489392 3.795746 9.4491  2.472281 3.767399 9.31407  
2.447709 3.889448 9.520234  2.500708 3.805394 9.516179  2.494164 3.805774 9.492227  2.48423 3.787194 9.408263  2.468064 3.760412 9.280938  
2.447709 3.889448 9.520234  2.194762 4.355943 9.560259  2.495514 3.805887 9.497644  2.242185 4.230442 9.485435  2.46858 3.761268 9.284991  
2.447709 3.889448 9.520234  2.226313 4.289244 9.549198  2.497202 3.807937 9.509189  2.240126 4.240555 9.499379  2.351163 3.966343 9.325518  
2.447709 3.889448 9.520234  2.173038 4.400817 9.513142  2.501351 3.801078 9.507831  2.231581 4.256226 9.498111  2.462545 3.751269 9.237668  
2.447709 3.889448 9.520234  2.602252 3.660598 9.525799  2.493466 3.812654 9.506724  2.495606 3.806041 9.49838  2.256705 4.138078 9.33842  
2.447709 3.889448 9.520234  2.477232 3.840393 9.513544  2.496584 3.80766 9.506142  2.481618 3.808404 9.451004  2.459296 3.808459 9.366128  
2.447709 3.889448 9.520234  2.498566 3.80884 9.51664  2.497592 3.805335 9.504175  2.408622 3.931487 9.469464  2.469051 3.762048 9.28869  
2.447709 3.889448 9.520234  2.50555 3.796805 9.513085  2.495606 3.807043 9.500882  2.489756 3.796349 9.451983  2.46723 3.75903 9.274392  
2.447709 3.889448 9.520234  2.497742 3.809579 9.515346  2.495483 3.807549 9.501674  2.496369 3.792303 9.46699  2.467781 3.759959 9.278753  
2.447709 3.889448 9.520234  2.862407 3.354286 9.51329  2.150708 4.444745 9.55935  2.536688 3.705006 9.398445  2.468029 3.760354 9.280663  
2.447709 3.889448 9.520234  2.607043 3.654697 9.527951  2.417197 3.924565 9.486448  2.487762 3.798818 9.450554  2.455436 3.787298 9.299466  
2.447709 3.889448 9.520234  2.512528 3.787228 9.515519  2.495592 3.806018 9.498268  2.433954 3.887103 9.461029  2.501106 3.711553 9.282987  

cov*** 0  cov*** 0.013  cov*** 0.015  cov*** 0.029  cov*** 0.038  
No. of RS** 20  No. of RS** 20  No. of RS** 20  No. of RS** 20  No. of RS** 3  * indicating the optimal width, depth and area, ** indicating the number of reasonable solution, ***indicating the variation of 20 

solutions 
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Table 8   15 reliability evaluations using FORM, MCS & EMP for the point of (2.45, 3.90) 
 

 
 
 

Table 9   Ten reliability and gradient evaluations using FORM, MCS & EMP for the point of (2.0, 3.0) 
 

 
Table 10   Reliability and gradient evaluations using FORM, MCS & EMP for the point of (1.0, 2.0) 

 
 
 
 
 

 
*mean value of 10 runs 

Table 11 Statistics of using S–PSO–EMP to solve Example 1 – case 1 problem 

No. FORM 
MCS EPM 

103 104 105 106 107 Moment 
= 3 

Moment 
 = 4 

Moment 
= 5 

Moment 
= 6 

1 

0.9988752 

0.999 0.99920 0.99905 0.998908 0.9988688 

0.9988752 0.9988752 0.9988752 0.9988752 

2 1.000 0.99860 0.99904 0.998866 0.998876 
3 0.999 0.99960 0.99902 0.998881 0.9988893 
4 1.000 0.99910 0.99894 0.998823 0.998891 
5 0.999 0.99900 0.99884 0.998889 0.9988696 
6 0.997 0.99860 0.99881 0.998858 0.9988962 
7 0.999 0.99920 0.99868 0.998865 0.9988952 
8 1.000 0.99900 0.99892 0.998877 0.998869 
9 1.000 0.99950 0.99894 0.998874 0.9988811 
10 0.998 0.99890 0.99879 0.998855 0.9988817 
11 1.000 0.99840 0.99903 0.998875 0.9988708 
12 1.000 0.99880 0.99899 0.998885 0.9988783 
13 1.000 0.99880 0.99884 0.998846 0.9988565 
14 0.999 0.99830 0.99905 0.99888 0.9988658 
15 0.998 0.99880 0.99893 0.998864 0.9988733 

mean 0.9992 0.99892 0.99892 0.998870 0.9988775 
standard 
deviation – 0.000941 0.0003687 0.0001118 

1.994E-
05 

1.155E-
05 – – – – 

Time 
(seconds) – 0.000480 0.001553 0.013889 0.077984 0.741181 0.036613 0.041205 0.060109 0.065282 

 No. FORM MCS (107) EPM abs(FORM - 
MCS)/FORM  

abs(FORM - 
EPM)/FORM 

gradient 

1 

0.038358663537357 

0.038292000000000 

0.038358663612451 

0.001738 

1.95768E-09 

2 0.037997000000000 0.009428 
3 0.038125999999999 0.006065 
4 0.038047999999999 0.008099 
5 0.038210000000001 0.003876 
6 0.038665999999999 0.008012 
7 0.038138000000000 0.005753 
8 0.038062000000000 0.007734 
9 0.038546000000000 0.004884 
10 0.038345000000000 0.000356 

failure probability 0.998102617416204 0.998114000000000 0.998102618399013 – – 

No. FORM MCS (107) EPM 

gradient 1.953992523340276E-013 0.00* 1.953992523340276E-013 
failure probability 0.999999999999995 1.00* 1.000000000986563 
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Mean Standard Dev. Min. Value Max. Value 
9.55249 0.035535 9.5203 9.6067 

4.1.2 Case 2 

In contrast to the stress limit state problem considered in the first case, the second case is a non-
linear problem. In this situation, no analytical reliability analysis is available. To examine the 
stability of an RBDO algorithm, the optimal point (2.721, 3.392) from Liao and Ha (2008) is used 
as the target solution instead of using the D–SQP–FORM solution. Both S–SQP–EPM and D–
SQP–MCS (with sample sizes of 103, 104, 105 and 106) were used to solve the current RBDO task 
using 81 identical initial points, as explained in the previous section. Similarly, D–SQP–MCS was 
conducted twice for each initial point. The summary of the number of reasonable solutions is dis-
played in Table 12. When the limit state function is nonlinear, S–SQP–EPM still delivers more 
reasonable solutions than D–SQP–MCS. The number of reasonable solutions is moderately affec-
ted by the sample size. The results of using S–PSO–EPM are provided in Table 13 and Figure 3. 
The solutions converged at approximately 30 iterations. In addition, all optimal points were a 
reasonable solution. For the case of the nonlinear limit state function, S–PSO–EPM was able to 
deliver a consistent RBDO solution among the different trials. 

 
 

Figure 2   RBDO results using S–PSO–EMP (1st problem 1st case) 

 
 

Figure 3   RBDO results using S–PSO–EMP (1st problem 2nd case) 
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Table 12   Number of reasonable solutions for D–SQP–MCS and S–SQP–EMP (Example 1 – case 2) 
 

RBDO approach 
No. of reasonable solution 

1st trial 2nd trial 
S–SQP–EMP 32 - 

D–SQP–MCS (sample size = 106) 12 11 
D–SQP–MCS (sample size = 105) 11 12 
D–SQP–MCS (sample size = 104) 9 7 
D–SQP–MCS (sample size = 103) 8 9 

 
Table 13   Statistics of using S–PSO–EMP to solve Example 1 – case 2 problem 

Mean Standard Dev. Min. Value Max. Value 
9.23735 0.0356 9.2216 9.3376 

 
4.2 A three bar truss problem 

The second example is a three bar truss problem, that is adopted from Thanedar and Kodiyalam 
(1992), displayed in Figure 4. The statistics of the random parameters are displayed in Table 14. 
The optimization formulation is shown below. 
 

  

minimize W = (2 2A1 + A2 )

s.t.         G1: Prob.(
2Pxl
A1E

−δ a ≤ 0) ≥ 0.9772

             G2: Prob.(
2Pyl

( A1 + 2A2 )E
−δ a ≤ 0) ≥ 0.9772

             G3: |
1
2

[
Px

A1

+
Py

( A1 + 2A2 )
]|≤ 5000

             G4: |
2Py

( A1 + 2A2 )
|≤ 20000

             G5: |
1
2

[
Py

( A1 + 2A2 )
−

Px

A1

]|≤ 5000

             0.1≤ Ai ,  i = 1,  2,  3

 

(16) 

 
where W is the total weight of the structure, A1 is the cross-sectional area for members 1 and 3 
(inch2), A2 is the cross-sectional area for member 2 (inch2), Px ( 10000 2 lbs) and Py ( 20000 2 lbs) 
are the forces acted on the point 4 in the x and y directions, respectively, l is 10 inches, E is the 
elastic modulus (N(1.0x107, 0.12) with units of psi, and δa is the allowable displacement (N(0.005, 
0.12)) with units of inches. The optimization goal is to minimize the total weight of the structure 
subjected to two deterministic forces. Two probabilistic displacement constraints (G1, G2) are 
formulated to ensure that the resulting displacements at point 4 in x and y directions meet the 
predefined reliability (β = 2). Another three deterministic stress constraints are formulated to 
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ensure that the resulting compressive/tensile stresses for members 1, 2 and 3 are less than 5000 
psi, 20,000 psi and 5000 psi, respectively. 
 

 

 

 

 

 

 
 
 
 

Figure 4   A three bar truss used in the second example 
 

Similar to the first example, this example was analyzed 81 times using different initial points 
for both the D–SQP–MCS and S–SQP–EPM approaches. The initial point is a pair (Ai, Aj), whe-
re Ai and Aj are values of 1, 2, 3,…, 9, resulting in 81 different points. Because the probability 
density function (PDF) is not provided in the literature study of Thanedar and Kodiyalam (1992), 
this study assumes that all random parameters follow a normal distribution, as shown in Table 14. 
The "target solution" is defined as the "best solution" among the 81 S–SQP–EPM solutions, and 
it is 21.112 with a design point of 6.31 and 3.265, as indicated in Table 15. The reliability analysis 
at the "target solution" was conducted, and the result is displayed in Table 15. It is clear that 
the "target solution" satisfied the reliability requirement. The number of reasonable solutions for 
D–SQP–MCS and S–SQP–EPM are provided in Table 16. The statistical uncertainty produced 
by the MCS results in a very unstable solution for the D–SQP–MCS approach. Although increa-
sing the sample size can effectively reduce the variation in the number of reasonable solutions, it 
does not promise to have a greater number of reasonable solutions. S–SQP–EPM certainly domi-
nated over D–SQP–MCS in terms of solution stability for any sample size. 

The results of using S–PSO–EPM for the second problem are provided in Table 17 and Figure 
5. The range for the 10 solutions was from 21.112 to 21.201. None of these solutions has a devia-
tion that is larger than 2% from the "target solution" (21.112), indicating that S–PSO–EPM is a 
suitable and stable optimization algorithm. 
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Figure 5   RBDO results using S–PSO–EMP (2nd problem) 

 
Table 14 The statistics of the random variables used in Example 2 

 
Random variable E(psi) δα

(2)(inch) 
distribution type normal normal 

µ(1) 1.0E7 0.005 
cov 0.1 0.1 

(1) is the mean value 
(2) is the allowable displacement in both x and y direction 

 
Table 15   Optimal point and its reliability analysis for the 2nd problem 

 
Optimal design (6.31, 

3.265) 
Reliability value for the x direction 0.9977 
Reliability value for the y direction 0.9772 

 
Table 16   Number of reasonable solutions for D–SQP–MCS and S–SQP–EMP (Example 2) 

 

RBDO approach 
No. of reasonable solution 

1st trial 2nd trial 
S–SQP–EMP 74 - 

D–SQP–MCS (sample size = 106) 49 45 
D–SQP–MCS (sample size = 105) 44 42 
D–SQP–MCS (sample size = 104) 49 38 
D–SQP–MCS (sample size = 103) 42 33 

 
Table 17   Statistics of using S–PSO–EMP to solve Example 2 

 

Mean Standard Dev. Min. Value Max. Value 
21.128 0.027 21.112 21.201 
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4.3 A mathematical problem with multiple l imit states 

The mathematical formulation of this problem, adopted from Youn and Choi (2004), is provided 
in Equation (17). 
 

   

Min.    f (D) = (D1 + D2 )
s.t.      prob(Gj (P ) ≥ 0) ≥ 97.72%,   j = 1~ 3

           -10 ≤ Di ≤10,    i = 1~ 2

where   G1(P )=1-P1
2P2 / 20

             G2(P ) = 1− (P1+P2 −5)2 / 30

                            − (P1-P2 −12)2 / 120

             G3(P ) = 1−80 / (P1
2 +8P2 +5)

 
(17) 

 
where D are the design variables, which are the mean values of the random design variables (P), 
in which P ~ N (D, 0.62). Gi is the ith constraint. The target reliability is 97.72% (β = 2) for all 
three constraints. In contrast to the first two problems, a system reliability problem is involved in 
this RBDO task. Similar to the second example, the "target solution" is defined as the "best solu-
tion" among the 81 S–SQP–EPM solutions, and it is 7.265 with 3.653 and 3.612 for D1 and D2, 
respectively. A comparison between the target solution and the solutions from Youn and Choi 
(2004) is provided in Table 18. The suitability of the target solution used here is thus confirmed.  

Similar to the first two examples, both S–SQP–MCS and S–SQP–EPM were performed 81 ti-
mes. The number of reasonable solutions for each approach is displayed in Table 19. With respect 
to the stability, S–SQP–EPM is a better RBDO approach, which is confirmed in this example. S–
PSO–EPM was conducted to further improve the stability of the calculated solutions. The results 
of S–PSO–EPM are provided in Table 20 and Figure 6. The 10 solutions from S–PSO–EPM were 
all 7.2652. This solution only deviated 0.000275% from the target solution, indicating that S–
PSO–EPM is able to consistently provide an accurate RBDO solution. 
 

 
 

Figure 6   RBDO results using S–PSO–EMP (3rd problem) 
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Table 18   Comparison of optimal design between current study and literature study 

 
Method d1 d2 objective 

RIA (Youn and Choi 2004) 3.609 3.661 7.27 
PMA (Youn and Choi 2004) 3.609 3.660 7.269 

S–SQP–EMP 3.653 3.612 7.265 
 
 
 
 
 

Table 19   Number of reasonable solutions for D–SQP–MCS and S–SQP–EMP (Example 3) 
 

RBDO approach 
No. of reasonable solution 

1st trial 2nd trial 
S–SQP–EMP 47 - 

D–SQP–MCS (sample size = 106) 9 5 
D–SQP–MCS (sample size = 105) 8 5 
D–SQP–MCS (sample size = 104) 6 4 
D–SQP–MCS (sample size = 103) 5 5 

 
Table 20   Statistics of using S–PSO–EMP to solve Example 3 

 

Mean Standard Dev. Min. Value Max. Value 
7.2652 0.00 7.2652 7.2652 

 
5 CONCLUSIONS 

This study integrates EPM with SQP or PSO to formulate an RBDO algorithm and emphasizes 
its ability of solving a nonlinear RBDO problem accurately and consistently. MCS with a suffi-
cient sample size is often used for reliability evaluation in nonlinear cases. This study shows that 
EPM is a better approach than MCS in terms of accuracy and efficiency. Integrating MCS with 
SQP often fails to deliver a consistent RBDO solution due to the inherit statistical uncertainty in 
MCS. Both of the proposed approaches, S–SQP–EPM and S–PSO–EPM, possess a better stabili-
ty performance than D–SQP–MCS. By performing an RBDO using the proposed method, the 
reliability analysis at each design point was evaluated through EPM, where only a single iteration 
is needed and therefore the proposed algorithm can be considered as a single loop RBDO ap-
proach.  

Three RBDO problems, including linear, nonlinear and system reliability problems, were 
analyzed to demonstrate the accuracy and the stability of the proposed algorithms. In general, S–
SQP–EPM possesses a better stability than D–SQP–MCS. However, SQP is likely to be trapped 
in an infeasible point if that point has a very large or small reliability value. Thus, SQP often 
fails to deliver a reasonable solution. To further improve the stability of RBDO solutions, this 
study proposes another RBDO approach, called S–PSO–EPM. In PSO, the location of next point 
depends on the points of the global best, the particle best and the MPP that are derived from a 
group of points. By utilizing the solutions from a group of points, PSO possesses a better stability 
performance than SQP. To further avoid the trapping of the optimal point in the infeasible do-
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main, LHS was implemented in PSO. Some conclusions are drawn below according to the results 
obtained. 
1. Compared to MCS with a sample size of 107, EPM is able to compute the reliability more effi-

ciently with the same accuracy. 
2. The effect of the statistical uncertainty on an RBDO solution is significantly, which was de-

monstrated by the stability performance of D–SQP–MCS. 
3. S–PSO–EPM is able to consistently deliver a promising result in which the deviation from the 
target solution is often less than 2%. Thus, S–PSO–EPM is the most stable RBDO algorithm 
among all of the approaches examined in this study. 

In this study, the stability, accuracy and efficiency of S–PSO–EPM are examined by three 
RBDO problem that only have two design variables. Because S–PSO–EPM is a population-based 
algorithm, its efficiency decreases as the problem size increases. For example, a larger problem 
usually requires a larger population size so as to delay the solution convergence. On the other 
hand, similar to the standard PSO, the stability and accuracy of S–PSO–EPM is not largely af-
fected by the problem size. Since this study focuses more on locating the global optimum consis-
tently than obtaining a fast solution, certain compensation in efficiency is needed. However, if the 
efficiency is a major concern, the proposed S–PSO–EPM is suitable for parallel computing and 
thus, the computational cost can be alleviated. 
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