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ever, the inherit statistic uncertainty associated with MCS some-
times causes an unstable RBDO solution. To avoid this unstable
solution, this study transforms a multi-variable constraint into a
single variable constraint using an exponential function with a
polynomial coefficient (EPM). The adaptive Gauss-Kronrod quad-
rature is used to compute the constraint reliability. The calculated
reliability and its derivative are incorporated with an optimizer
such as sequential quadratic programming (SQP) or most proba-
ble point particle swarm optimization (MPP-based PSO) to con-
duct the RBDO task. To ensure the design accuracy, the stability
of the RBDO algorithm with respect to the initial point is investi-
gated through several numerical examples.
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1 INTRODUCTION

A deterministic optimization uses a single value to represent a physical quantity in a calculation.
It is known that uncertainties in an engineering design problem are often inevitable. One can
utilize the concept of a safety factor to take uncertainties into consideration. The safety factor
approach, however, does not identify the more critical design parameters because all uncertainties
are represented by one factor throughout the design. Another approach such as the Load and
Resistance Factor Design (LRFD), which is used for designing steel structures, also has a similar
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drawback. In LRFD, different factors are multiplied with each load type and resistance, such as
the yielding stress. For example, for the load types of dead and live loads, the factors could be 1.2
and 1.6, respectively. For a structure design using LRFD, the factored resistance of that structure
should be larger than the demand calculated from the factored loads. LRFD considers each design
parameter inequitably through the assigned factors. However, a LRFD structure does not distri-
bute the material in an optimal way because the same type of loads applied at different locations
are still considered as identical in importance in LRFD, which is not true in most cases. A reliabi-
lity-based design optimization (RBDOQO) takes an important step beyond a deterministic design
optimization by not only characterizing the probabilistic aspects of the engineering problem but
also identifying the relative importance of each design parameter. An RBDO can deliver an opti-
mal design that satisfies the probabilistic constraints. For example, Beck and Verzenhassi (2008)
used reliability-based risk optimization to find the optimum balance between safety and economy
in the presence of uncertainty. Traditionally, an RBDO is conducted through a double-loop ap-
proach (known also as a two-level approach) in which the inner loop computes the constraint
reliability and the outer loop conducts the optimization. The drawback of this approach is that
its computational cost is usually expensive (Liao and Ha 2008; Ramu et al. 2004). Many algo-
rithms have been proposed to lessen this computational burden. Aoues and Chateauneuf (2010),
Li et al. (2010) and Liang et al. (2007) have categorized these algorithms into two groups: the
single-loop approach (known also as the mono-level approach) and the decoupled approach
(known also as the decomposed approach).

The decoupled approach assumes that the reliability levels of different designs can be approx-
imately estimated by a constant number or evaluated in a deterministic approach. That is, an
equivalent deterministic constraint is built to replace a probability constraint. In this case, the
evaluation of the constraint reliability in the inner loop is eliminated, and an RBDO problem
becomes an equivalent deterministic optimization problem. However, the reliability levels of dif-
ferent designs are not identical, and the decoupled approach often suggests to find another equiv-
alent deterministic constraint determined by a design closer to the optimal point. After updating
the reliability estimation to be more accurate, the equivalent deterministic optimization is refor-
mulated and used to find the optimal solution of the next iteration. These processes are repeated
until the optimal solutions are converged.

Examples of using the decoupled approach are briefly introduced as follows. Tu et al. (2001)
and Zou and Mahadevan (2006) decoupled an RBDO problem through revising the constraints. In
their approaches, the constraints were approximated by using Taylor expansion, which was per-
formed repeatedly to increase the accuracy of the reliability approximation. Li et al. (2010) and
Liao and Lu (2012) modified the right hand side (RHS) values of the constraint functions to find
the equivalent-deterministic constraint functions. Similarly, the RHS values must be updated
sequentially to capture the reliability performance near the optimal design point. Du and Chen
(2003) proposed the Sequential Optimization and Reliability Assessment (SORA) method, in
which the inverse most probable point (IMPP) was used to replace the random variables and to
decouple the reliability analysis and optimization. The IMPP was re-evaluated at the optimal
solution from a deterministic optimization to provide a more accurate reliability approximation

for the use in the next deterministic optimization. Liao and Lu (2012) used a set of deterministic
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variables, called auxiliary design points, to replace the random variables to form a deterministic
optimization that is equivalent to the RBDO problem. Similarly, the deterministic optimization
and the calculation of finding the auxiliary design points were conducted iteratively until the
solutions converged.

Another common strategy to lessen the computational burden of the double-loop approach is
the single-loop approach. Chen et al. (1997) proposed a single-loop-single-vector (SLSV) to reduce
the computational cost. The SLSV evaluated the reliability level at each design point during op-
timization. The reliability level at each design point was computed by using an approximated
MPP. If a limit state function is highly nonlinear, the SLSV may not be able to deliver an opti-
mized solution. Liang et al. (2007) extended the single-loop approach for an RBDO problem with
series system reliability. Kaymaz and Marti (2007) proposed a mono-level RBDO approach, which
was formulated by means of the necessary optimality conditions of the MPP. This approach,
however, increases the number of design variables and increases the computational cost (Liang et
al. 2007). Shan and Wang (2008) proposed another single-loop approach in which a reliable design
space (RDS) was built, and an RBDO problem became a deterministic optimization problem con-
strained by RDS rather than the deterministic feasible space.

The current study uses the exponential function with the polynomial coefficient method (EPM)
to represent the probability density function (PDF) of a limit state function. That is, a multi-
variable constraint is converted into a function with only one variable (Er 1998). In this way, the
constraint reliability can be estimated by any existing numerical integration methods or simula-
tion techniques such as Markov-Chain Monte-Carlo (MCMC) simulation. The calculated reliabili-
ty or its derivative is incorporated with the sequential quadratic programming (SQP) or the most
probable point particle swarm optimization (MPP-based PSO) algorithm to conduct an RBDO
task. Because the reliability evaluation is conducted at each design point during optimization,
similar to the single-loop approach, only one optimization task is needed for the proposed algo-
rithm. To ensure the accuracies of the proposed RBDO approaches, the sensitivity of the propo-
sed RBDO approaches with respect to the initial point is investigated. Several numerical exam-
ples are used to demonstrate the stability and accuracy of the proposed RBDO algorithm.

2 FORMULATION OF AN RBDO PROBLEM

A general formulation of an RBDO model is described by Equation (1), where fis the design ob-
jective, D is the vector of design variable, P is the vector of the random design variable to repre-
sent the uncertainty in the design variable, X is the vector of the random design parameter, Prob.
stands for the probability, G;is the ™ constraint function, ¢; is the reliability requirement for the
" constraint and m denotes the number of constraints:

Min: f(D,P,X)

st: Prob{G(D.P.X) < 0} o, i=1,2,..m (1)

In deterministic optimization, uncertainties in the design variables/parameters are ignored.

Random design variables/parameters remain constant during optimization, and the constraint
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function is defined as G;=(D, P, X)<0. In this case, the reliability of the optimal design is often
low because the process fails to capture uncertainties in the design variables/parameters. As
shown in Equation (1), a typical RBDO is a nested double-loop approach, where the outer loop
conducts the optimization and the inner loop considers the probabilistic analysis.

3 DESCRIPTION OF THE PROPOSED RBDO ALGORITHM

This study uses the EPM to convert a multiple-variable constraint into a single-variable cons-
traint. After obtaining the single-variable constraint, this study uses an existing numerical inte-
gration technique called adaptive Gauss-Kronrod quadrature (GKQ) to evaluate the reliability of
a given design. Results of EPM are incorporated with two optimizers, which are SQP and MPP-
based PSO, to perform an RBDO task. If the SQP, rather than a MPP-based PSO, is used as the
optimizer, the reliability gradient is computed by the finite difference method. A detailed descrip-
tion of the proposed algorithm is provided below.

3.1 Reliability analysis

For time-independent reliability analysis, the failure probability of a given design can be written as
Equation (2).

=[] feou (2)

where fx() is the PDF in X, the vector of basic variables in n-space. The "failure domain" D is
defined by one or more constraint functions Gy(X) < 0, i=1,2,...,m. The integral in Equation (2)
above is in general very complicated to calculate. Approximate methods for estimating the failure
probability have been proposed, such as first order reliability analysis (FORM) and Monte-Carlo
Simulation (MCS). FORM computes the failure probability through an optimization procedure.
The objective is to minimize the distance between the origin and the MPP in the reduced space,
and the constraint is that the MPP must be on the limit state function. The obtained distance is
called reliability index (f), and, the failure probability can be easily calculated from . MCS is
considered as a simulation approach in which the basic variables are generated based on their
PDFs and the limit state function is repeatedly evaluated using the generated variables. If the
failure probability is very small, a large sample size is often required for the MCS approach.

If the integral in Equation (2) can be reduced to a one-dimensional problem, the evaluation of
the reliability will not be a burden. Thus, this study adopted the EPM approach (Er 1998) to
convert the integral, described in Equation (2), from a multiple space into a single space. EPM
assumes that the PDF of a random variable X can be approximated by an exponential function
with a polynomial function. That is, the coefficient of the exponential function is a polynomial
function. The coefficients in the polynomial function can be solved through a set of simultaneous
linear algebraic equations using the moments of the random variables, which can be solved with a
little computational effort. EPM is briefly described below.
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Suppose that the exact PDF of random variable X is denoted as py (x) and can be approxi-

mated as gy (x), as described in Equation (3).
4 (¥) = gq(x) = cx e (3)
where ¢ is normalizing constant and is determined by Equation (4).

1

T 2 gy (4)

CcC=

where Q(z) is a polynomial function that is defined in Equation (5).

O(x) = Z’alx’ xeR (5)

—oo X — too

in which a;, ¢ = 1, 2,--- are the coefficients of the polynomial function to be determined. In practi-
ce, the truncated form of the polynomial @,(z) and ¢,(z) may be used as described in Equation

(6).

q,(x)=cxe%™

Yax  xelof) (122) (6)

i=1

where Q (x) =

—oc0 otherwize

where oand Bare two constants. By setting the residual error, §(z), as described in Equation (7),
equal to zero, one can obtain Equation (8) to solve the coefficients (a;) in Q,(z).

1
bt~
8(x)=[p(x)—q(x)le (7)
where r is a large positive integer.

Y imia == jm) ", j=0,1,2,.,n-1, (122) (8)
i=1
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where the variable m;( (i = 1, 2,--+) is defined as E[Xl] = Jp(x)xi dx . Equation (8) can be writ-

ten in the following matrix form, which is a set of n simultaneous algebraic equations.

mS,  2my, .. mmy' |[q 0
my  2my .. ommyo |4y -1 o)
M M O M M M
mm'y' 2my ... onm 7V ||a, —(n—Dnm{™>

As mentioned earlier, once the limit state function is converted into a function with a single

random variable using EPM, GKQ is used to calculate the failure probability.

3.2 Optimization: SQP and MPP-based PSO

Optimization methods using mathematical programming such as SQP are very efficient. However,
the stability of applying SQP in an RBDO problem has not been thoroughly investigated. To
verify the stability, this study uses SQP to repeatedly solve an identical RBDO problem by using
different initial points. The results indicate that there is room to improve the stability of using
SQP. For this reason, this study adopts another population-based optimization method (PSO) to
perform an RBDO problem. The proposed MPP-based PSO is briefly described below.

PSO mimics a natural movement of organisms in a bird flock or fish school and is a stochastic
global optimization method (Parsopoulos and Vrahatis 2002). PSO, unlike the gradient-based
optimization algorithm, finds the optimal point from multiple starting points or particles. Each
starting point/particle has its own search path during optimization. That is, a sequence of points
is generated for each starting particle, and the collection of these points is called a population.
Many variations have been proposed for the PSO; the following describes the detailed PSO used
in current study.

A new particle is generated by using Equation (10), as shown below.
X(t+D)=v.(t+1)+X (1) (10)

where ;l_(t +1) denotes the position of the A8 particle in the next iteration, )fl_(t) denotes the posi-

£,

tion of the i particle in the current iteration and 151_ (¢ +1) denotes the velocity of the A0 particle

in the current iteration. The position of a particle represents the design values of that particle.
The velocity of the i particle is determined by Equation (11), as shown below.

V.(t+1) = k[wxV (1) +rc, ()?pBeSr —X (1) +rc, ()_c'ggest —X.()+re (X, —X.(1))] (11)

where k is the constriction factor that is used to prevent oscillation of the design variable, w is the
inertia factor, y (z) is the velocity of at previous iteration, 7; (i = 1-3) are random numbers bet-

ween 0 and 1, and ¢, ¢ and c¢3 are the cognition factor, the social factor and the acceleration
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h

factor, respectively. X , is the particle position with the minimum objective value in the i

pBes

population, )?gB is the particle position with the minimum objective value among all populations,

est

and X,,, is the MPP of the current position (;‘c’i(t) ). Ideally, the optimal solution should stay on

the reliability constraints. However, the standard PSO does not make any effort to make this
occur. Thus, (;MPP —§[(1)) is added to the standard PSO algorithm to drive the search movement

to the vicinity of the reliability constraints. Meanwhile, to prevent a particle from staying in the
infeasible domain for a long time, this study places a particle at the probabilistic boundary when
that particle is directed to the infeasible domain. A reliability analysis is needed to identify the
location of a probabilistic boundary, which certainly affects the computational cost. To reduce the

—

number of reliability analyses, a balance strategy is used, which is only to maintain X in the

gBest

feasible domain. That is, ¥, ~does not necessarily satisfy the reliability constraints. Conversely,

.

X 5y always meets the reliability requirement.

), the global best (¥

Four major factors--the previous velocity, the local best (X oBest

) and

pBest

the MPP (X, )--affect the current particle velocity. These four factors are controlled by the iner-

tial weight (w), the cognition factor (c;), the social factor (¢2) and the acceleration factor (c3).
Apparently, the larger the cognition factor, the greater tendency that the particle will move to-

wards the local best (preS,). A similar conclusion can be applied to the social factor and the acce-

leration factor. There are many existing algorithms proposed to determine the ¢; factors. In this
study, ¢; are determined by a grid search, and they were 1.5, 1.7 and 1.0 for ¢, ¢; and c¢3, respec-
tively. The inertia weight used in PSO provides a mechanism to control the exploration and ex-
ploitation abilities of the swarm. The inertia weight is calculated using Equation (12) as follows.

W(1) = = (- w) (12)

where t is the current iteration number, T is the total number of iterations, and w (=1) and W

(=0) are the upper and lower bounds of the inertia weight, respectively. Equation (12) indicates
that the inertia weight decreases as the iteration number increases. This technique moves a parti-
cle more smoothly and more gradually (exploration) at the beginning stage. In addition, Equation
(12) allows a particle to settle into the optima (exploitation) at the ending stage.

In addition to the factors above, other issues that affect PSO are the number of parti-
cles/populations, the number of iterations, the position of the initial particles and the initial velo-
city of each particle. The numbers of particles/populations and iterations used in the current
study are 30 and 80, respectively. The initial positions are often randomly determined. In this
research, Latin Hypercube Sampling (LHS) is adopted to generate initial design values that are
more scattered in the design domain.
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4 NUMERICAL EXAMPLES
4.1 A cantilevered beam problem

The literature study from Liao and Ha (2008), Wu et al. (2001), Ramu et al. (2006) and Qu and
Haftka (2004) is adopted as the first example to demonstrate the proposed RBDO algorithm. The
objective of this example is to find the minimum weight or the minimum cross sectional area of a
cantilevered beam as described in Equation (13) and Figure 1.

Min. W =bh (13)

100 inches

A
A

NN N

Figure 1 Schematic of a cantilevered beam used to illustrate the proposed RBDO algorithm

The width (b) and height (k) of the beam are the design variables with lower and upper
bounds of 0 and 10, respectively. The two loads (z, y) at the free end, the modulus of elasticity (E)
and the yield strength () are the random parameters, and their statistics are provided in Table 1.
The length of the cantilevered beam is 254 cm (100 inches). Two limit state functions are consi-
dered separately. In Case 1, the stress at the fixed end has to be less than the yield strength (7),
and, in Case 2, the tip displacement has to be smaller than the allowable displacement (d, =
7.724 cm or 2.2535 inches). The target reliability is set to 99.865% (i.e., B= 3) for both cases. For
Case 1, the limit state function (Gys) is described by Equation (14):

600 600
GS=(r,x,y,b,h)=(Wy+ﬁx)—r (14)

while, for Case 2, the limit state function (Gp) is expressed by Equation (15):

ar |y x
G,=(E,x,y,b,h)= Eoh (F)2 +(E)2 —d, (15)

Table 1 The statistics of the random variables used in Example 1

Random variable  z(lb) y(Ib) E(psi)  r(psi)
distribution type normal normal normal normal
I 500 1,000 29E6 40,000
o 100 100 1.45E6 2,000
Muis the mean value and ois the standard deviation
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4.1.1 Case 1

Four different RBDO algorithms were used to solve this case: the double-loop approach using
SQP as the optimizer and using FORM for reliability analysis (D-SQP-FORM), the double-loop
approach using SQP as the optimizer and using MCS for reliability analysis (D-SQP-MCS), the
single-loop approach using SQP as the optimizer and using EPM for reliability analysis (S—-SQP-
EPM) and the single-loop approach using PSO as the optimizer and using EPM for reliability
analysis (S-PSO-EPM). Because the current problem does not have a local optimal point and the
constraint is linear, the D-SQP-FORM should deliver an accurate and identical solution given
different initial points. Thus, the solution of D-SQP-FORM was used as the benchmark design.
To demonstrate this idea, 9 different values of 1, 2, 3.,..., 9 for each design variable were chosen,
resulting in 81 initial points that were used in the D-SQP-FORM approach. These 81 optimal
values, as expected, are identical, and they are 9.520246 with b= 2.44599 and h = 3.892185.
These results are similar to the results from Liao and Ha (2008), Wu et al. (2001), Ramu et al.
(2006) and Qu and Haftka (2004), which are shown in Table 2.

Although MCS with sufficient sample size is often considered a suitable tool for reliability
analysis, it is not an easy task to completely eliminate the effect of the inherit statistic uncertain-
ties of MCS on an RBDO solution (Liao and Lu 2012). To investigate this effect, D-SQP-MCS
was used to solve the current RBDO problem. The same 81 initial points were used for the D—
SQP-MCS approach. For each initial point, the D-SQP-MCS method was performed twice. That
is, this problem was analyzed 162 times. Ideally, the goal of an optimization algorithm is to deli-
ver an identical and accurate solution given different initial points. However, an RBDO problem
either has a local minimum or has a nonlinear constraint. In this case, it is very difficult to
achieve this goal. Instead, if the difference between a solution and the "target solution" is less
than 2% of the optimal solution, that solution is considered as a "reasonable solution" in current
study. The "target solution" for the current problem is the solution from D-SQP-FORM in
which the objective value is 9.5202. Based on this definition, Tables 3 and 4 shows that D-SQP-
MCS only delivered 19 and 17 reasonable solutions (the number of green blocks), respectively.
The sample size used in these analyses is 10°. With this sample size, the effect of statistical uncer-
tainty on an RBDO solution cannot be removed. To further investigate the influence of the sta-
tistical uncertainty, other sample sizes such as 103, 10" and 10° are used for MCS. The results are
displayed in Table 5. The number of reasonable solutions did not significantly increase when a
greater sample size was used.

Unlike the MCS, there is no statistic uncertainty in the reliability evaluation by using EPM
incorporated with GKQ. It is of interest to investigate the sensitivity of the S-SQP-EMP solu-
tion with respect to the initial point. The results of S-SQP-EMP approach are displayed in Table
6. There were 36 reasonable solutions. Compared to the approach of D-SQP-MCS, the S-SQP—
EMP approach is apparently less sensitive to the initial point. Thus, S-SQP-EMP is a more sta-
ble RBDO approach.

Another way to examine the effect of statistic uncertainty on the RBDO solution is to conduct
an RBDO problem using the identical initial point (7, 9) several times. Table 7 displays the 20
solutions of the Case 1 problem using the D-SQP-MCS and S-SQP-EMP approaches. For the
D-SQP-MCS, increasing sample size can effectively reduce the variation in solutions. The coeffi-
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cient of variation (cov) in solutions decreased from 0.038 to 0.013. In addition, the RBDO solu-
tion is not significantly affected by statistic uncertainty when the sample size is greater than 10°%,
However, greater sample size does not always produce more reasonable solutions, as shown in
Table 5. Thus, the capability of delivering a reasonable solution for D—-SQP-MCS depends on
both the sample size and location of initial point. As results shown in Tables 5 and 7, one can
conclude that the impact of initial point is significantly. No deviation among the 20 S-SQP-EMP
solutions is found. Thus, it is confirmed that S-SQP-EMP is a more stable RBDO algorithm
than D-SQP-MCS.

Table 2 Comparison of optimal designs among several studies (Example 1 — case 1)

method width (b) depth (h)  area

FORM (RIA) (Ramu et al. 2006) 2.446 3.8922 9.5202

FORM (PMA) (Ramu et al. 2006) 2.446 3.8920 9.5202
Probabilistic sufficiency factor (Qu and Haftka 2004) 2.4526 3.8884 9.5367
ESORA (Liao and Ha 2008) 2.3900 3.9820 9.5170

Exact optimum (Wu et al. 2001) 2.4484 3.8884 9.5204
D-SQP-FORM (Current study) 2.44599 3.892185  9.5202

Table 3 Solutions from 81 different initial points using D-SQP-MCS (Example 1 — case 1, the 1 trial)

Sample size = 10°

hU(l)
b, 1 2 3 4 5 6 7 8 9

1.00%  1.00® 1.00 200 1.00 3.00 050 360 060 484 060 3.87 050 0.50 060 050 050 6.89

1 1.00% 2.00 3.00 1.80 2.91 2.32 0.25 0.30 3.44
2.00 1.00 2.00 200 050 3.17 050 200 050 3.00 175 569 168 6.01 148 720 139 7.88

2 2.00 4.00 1.58 1.00 1.50 9.98 10.11 10.64 10.96
3.00 1.00 1.00 0.50 0.50 0.50  2.66 3.59 221 432 205 471 179 554 1.64 625 145 739

3 3.00 0.50 0.25 9.54 9.55 9.64 9.92 10.22 10.73
4.00 1.00 2.00 050 3.66 274 3.1 3.2 274 349 256 3.72 184 536 1.80 549 1.64 622

4 4.00 1.00 10.05 9.71 9.56 9.52 9.85 9.90 10.20
5.00 1.00 3.00 050 434 243 327 3.00 280 343 273 350 239 398 202 477 176 565

5 5.00 1.50 10.54 9.81 9.58 9.56 9.52 9.66 9.96
6.00 1.00 621 050 500 221 451 237 346 287 3.15 3.09 [ 283 339 228 419 216 444

6 6.00 3.10 11.05 10.67 9.92 9.73 9.59 9.53 9.57
7.00 1.00 7.15 178 577 202 502 220 414 251 347 286 295 326 3.01 322 250 381

7 7.00 12.71 11.65 11.06 10.39 9.92 9.64 9.66 9.52
8.00 1.00 758 172 655 1.87 574 203 403 256 371 272 348 285 [3.12 312 285 337

8 8.00 13.02 12.25 11.63 10.31 10.09 9.93 9.71 9.60
800 050 851 161 753 172 641 190 553 207 469 230 403 256 340 291 | 235 4.06

9 4.00 13.69 12.99 12.15 11.46 10.81 10.31 9.88 9.52

bgand hy are the initial width (inch) and depth (inch), respectively
@ the obtained optimal width (inch) for the corresponding initial point
@ the obtained optimal depth (inch) for the corresponding initial point
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©@the obtained optimal area (inch?) for the corresponding initial point

Although S—-SQP-EMP is more stable than D-SQP-MCS, the stability of S—-SQP-EMP still
needs to be improved. As shown in Table 6, there are still 45 unreasonable solutions when using
the S-SQP-EMP approach. To investigate further, three arbitrary points, (2.45, 3.90), (2.0, 3.0)
and (1.0, 2.0), are selected to perform the reliability analysis using FORM, MCS and EPM. Table
8 shows that, for the point (2.45, 3.90), EPM generally delivered more promising solutions com-
pared to MCS. To be specific, EPM with three moments has a better reliability evaluation than
MCS with a sample size of 10". MCS with a sample size that is less than 10° is more efficient than
EPM. However, their evaluations were relatively inaccurate.

In the case of point (2.0, 3.0), only the D-SQP-MCS failed to deliver a reasonable solution
(Tables 3, 4 and 6). Table 9 displays the failure probability and the gradient with respect to the
horizontal force (z) for the approaches of FORM, MCS and EPM. For the failure probability, all
three approaches were very close. Because a gradient-based optimizer (SQP) is used at this stage,
it is worth examining the gradients of the three approaches at this point. The MCS gradient was
apparently different than the gradients of the other two approaches. Thus, for this particular
point, the inaccurate gradient information calculated by MCS may result in an unreasonable solu-
tion for the D-SQP-MCS approach.

Table 4 Solutions from 81 different initial points using D-SQP-MCS (Example 1 — case 1, the ond trial)

Sample size = 10°

1)
h(J(

b 1 2 3 4 5 6 7 8 9

1.002  1.00® 100 200 100 300 110 300 050 474 050 394 050 050 050 050 050 050

2.00 1.00  2.00 200 050 100 050 200 060 377 173 580 1.58 6.2 147 723 135 820

2 2.00 4.00 0.50 1.00 2.26 10.02 10.33 10.66 11.11

3.00 1.00  1.00 205 050 225 | 2.66 359 230 414 221 432 1.81 548 1.59 648 151 7.01

3 3.00 2.05 1.13 9.54 9.53 9.56 9.89 10.31 10.55

4.00 1.00 200 050 372 271 3.11 313 279 344 234 406 207 466 185 531 175 5.69

4 4.00 1.00 10.09 9.71 9.57 9.52 9.62 9.83 9.98

5.00 1.00 510 050 437 242 358 279 327 300 | 275 348 232 411 210 458 186 5.28

5 5.00 2.55 10.57 9.99 9.80 9.56 9.52 9.61 9.81

7 7.00 12.40 12.04 11.02 10.26 9.92 9.72 9.53 9.51

8.00 1.00  7.72 170 656 187 549 208 476 228 413 251 345 287 312 313 | 293 329

8 8.00 13.13 12.26 11.44 10.86 10.38 9.91 9.77 9.63

8.00 0.50  8.47 1.61 7.51 1.73 644 189 566 204 470 230 397 259 339 291 348 286

9 4.00 13.67 12.98 12.17 11.57 10.82 10.27 9.88 9.95
Whyand hy are the initial width (inch) and depth (inch), respectively
@ the obtained optimal width (inch) for the corresponding initial point

® the obtained optimal depth (inch) for the corresponding initial point
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@ the obtained optimal area (inchz) for the corresponding initial point

Table 5 Number of reasonable solutions for D-SQP-MCS and S-SQP-EMP (Example 1 — case 1)

No. of reasonable solution
RBDO approach Ea nd L.
17 trial 2" trial
S-SQP-EMP 36 -
D-SQP-MCS (sample size = 10%) 19 17
D-SQP-MCS (sample size = 10°) 19 19
D-SQP-MCS (sample size = 10") 17 17
D-SQP-MCS (sample size = 103) 21 19

Table 6 Solutions from 81 different initial points using S-SQP-EMP (Example 1 — case 1)

h(J(”

b, 1 2 3 4 5 6 7 8 9
285®  085% 05 05 05 231 062 323 244 389 245 389 245 389 245 389 245 3.89
1 24.290878"" 0.25 1.1549705 20.178862 9.5201752 9.5202322 9.5202255 9.5202314 9.5202316
27.6 0.87 17 111 & 245 389 245 389 245 389 197 492 169 598 164 621 167 606
2 23.912211 18.882945 9.5202321 9.5202336 9.5202324 9.7076255 10.103898 10.200239 10.135524
25.8 09 05 05 245 389 246 386 243 391 231 413 215 446 193 505 176 568
3 23.142121 0.25 9.5202325 9.5204446 9.5203374 9.5331569 9.5866411 9.7481336 9.9780858
5242 -5242 | 245 389 297 325 274 349 253 377 245 389 226 423 197 493 197 494
4 27479771 9.5202326 9.6519785 9.5661515 9.5243996 9.5202331 9.5447335 9.7105611 9.7131948
27.6 087 | 1.99 48 339 291 316 308 28 343 251 379 245 389 229 417 2 484
5 23.911785 9.5373867 9.8799479 9.7472787 9.5841421 9.5227105 9.5202336 9.537709 9.6821565
0.58 38 | 245 389 42 249 314 31 298 325 268 357 252 378 245 389 236 4.04
6 21.892073 9.5202321 10.44294 9.7336702 9.6547432 9.5493556 9.5236181 9.520236 9.5253702
0.57 384 512 218 392 261 38 265 324 302 317 307 265 3.6 254 375 245 389
7 22.001673 11.148736 10.235147 10.181786 9.7905378 9.7532225 9.5440655 9.5256626 9.520234
0.58 38 621 193 486 225 449 238 442 24 329 298 | 307 3.6 277 345 259 3.68
8 21.895591 11.999532 10.950446 10.660787 10.605421 9.8193913 9.6995157 9.5763772 9.5324767
0.5 05 722 177 617 194 503 22 445 239 445 239 319 306 296 326 267 3.57
9 0.25 12.766534 11.96754 11.084398 10.6318 10.631106 9.7622834 9.6480388 9.5486302

Whyand hy are the initial width (inch) and depth (inch), respectively, ®) the obtained optimal width (inch) for the correspon-
ding initial point, ® the obtained optimal depth (inch) for the corresponding initial point, Dthe obtained optimal area (inchz)
for the corresponding initial point

Another point, (1.0, 2.0), was selected for a similar investigation. For this point, only the D—

SQP-FORM can deliver a reasonable solution (Tables 3, 4 and 6). The failure probabilities ob-
tained using FORM, MCS and EPM are displayed in Table 10. Although both MCS and EPM
did not provide an accurate reliability, there was only slight difference compared to the reliability
of FORM. The gradients calculated by FORM, MCS and EPM are also shown in Table 10. At
this particular point, EPM provided accurate gradient information but incorrect reliability. MCS

Latin American Journal of Solids and Structures 11 (2014) 826-847




838 K. W. Liao et al. / A single loop reliability-based design optimization using EPM and MPP-based PSO

provided an approximated reliability but incorrect gradient information. Thus, both D-SQP-
MCS and S-SQP-EPM failed to deliver an accurate RBDO solution.

Based on results found in Tables 8, 9 and 10, if the point is located near the "target solution"
or in the feasible domain, the chance to deliver a reasonable solution is higher for the D-SQP-
MCS and S—-SQP-EPM approaches. However, if the point is located in the infeasible domain, the
above two approaches often fail to deliver a reasonable solution due to an inaccurate evaluation
of the reliability and the gradient. In addition, the statistic uncertainty has a significant impact
on the stability of an RBDO solution, and thus D-SQP-MCS delivers a less reasonable solution
than S-SQP-EPM.

EPM is generally a more efficient method for reliability evaluation compared to MCS.
However, if the design point is located in the infeasible region, EPM combined with SQP often
fails to find a good RBDO solution. In this case, this study suggests the use of another optimizer
(PSO) to conduct the optimization to consistently deliver an optimal solution.

To prevent the particle from being trapped in a local minimum, a space-filling experiment de-
sign (i.e., the Latin hypercube) is used to generate the first generation of the particles in PSO.
Because PSO is a population-based algorithm, S-PSO-EPM was performed 10 times to display
the variation among solutions. Thirty particles and 80 iterations were used in PSO for the current
study. The statistics of the S-PSO-EPM solutions are displayed in Table 11. The history of the
objective value for 10 runs is shown in Figure 2. As shown in Figure 2, for most analysis repeti-
tions, the alteration of the global best after the 40™ iteration is very small. Compared with the
"target solution" (9.520246), all of the results of the S-PSO-EPM analysis were within a range of
less than 1% deviation. That is, all solutions can be considered as a reasonable solution, indica-
ting that the PSO algorithm is perfectly integrated with the EPM. S-PSO-EPM was thus shown
to be able to consistently deliver an optimal solution and thus is a stable RBDO algorithm.

Table 7 20 solutions using identical initial point (7, 9) from D-SQP-MCS & S-SQP-EMP (Example 1 — case 1)

RBDO approach
S-SQP-EMP D-SQP-MCS (10°) D-SQP-MCS (10°) D-SQP-MCS (10% D-SQP-MCS (10°)
b* h* area™ b* h* area™ b* h* area™ b* h* area™ b* h* area™

2.447709 3.889448 9.520234
2.447709 3.889448 9.520234
2.447709 3.889448 9.520234
2.447709 3.889448 9.520234
2.447709 3.889448 9.520234
2.447709 3.889448 9.520234
2.447709 3.889448 9.520234
2.447709 3.889448 9.520234
2.447709 3.889448 9.520234
2.447709 3.889448 9.520234
2.447709 3.889448 9.520234
2.447709 3.889448 9.520234
2.447709 3.889448 9.520234
2.447709 3.889448 9.520234
2.447709 3.889448 9.520234
2.447709 3.889448 9.520234
2.447709 3.889448 9.520234
2.447709 3.889448 9.520234
2.447709 3.889448 9.520234
2.447709 3.889448 9.520234

2.361673 4.031124 9.520195
2.498594 3.808725 9.516459
2.496701 3.811046 9.515043
2.184329 4.378272 9.513586
2.364271 4.026206 9.51904
2.222493 4.296924 9.549885
3.000803  3.22029 9.513455
2.320576 4.101009 9.516703
2.500708 3.805394 9.516179
2.194762 4.355943 9.560259
2.226313 4.289244 9.549198
2.173038 4.400817 9.513142
2.602252 3.660598 9.525799
2.477232 3.840393 9.513544
2.498566 3.80884 9.51664
2.50555 13.796805 9.513085
2.497742 3.809579 9.515346
2.862407 3.354286 9.51329
2.607043 3.654697 9.527951
2.512528 3.787228 9.515519

2.495304  3.80554 9.495981
2.497854 3.803892 9.501568
2.495057 3.805131 9.494018
2.219945 4.292923 9.53005
2.493657 3.811126 9.50364
2.496244 3.807154 9.503584
2.503269 3.797061 9.505068
2.496803 3.805059 9.500481
2.494164 3.805774 9.492227
2.495514 3.805887 9.497644
2.497202 3.807937 9.509189
2.501351 3.801078 9.507831
2.493466 3.812654 9.506724
2.496584 3.80766 9.506142
2.497592 3.805335 9.504175
2.495606 3.807043 9.500882
2.495483 3.807549 9.501674
2.150708 4.444745 9.55935
2.417197 3.924565 9.486448
2.495592 3.806018 9.498268

2.130716 4.449607 9.48085
2.40394 3.924101 9.433304
2.488769 3.794714 9.444169
2.491829 3.799936 9.468791
2.488769 3.794714 9.444169
2.566162 3.708995 9.517881
2.484565 3.799638 9.440449
2.489392 3.795746 9.4491

2.48423 3.787194 9.408263
2.242185 4.230442 9.485435
2.240126 4.240555 9.499379
2231581 4.256226 9.498111
2.495606 3.806041 9.49838
2.481618 3.808404 9.451004
2.408622 3.931487 9.469464
2.489756 3.796349 9.451983
2.496369 3.792303 9.46699
2.536688 3.705006 9.398445
2.487762 3.798818 9.450554
2.433954 3.887103 9.461029

2.327945 3.985763 9.278639
2.454992 3.738756 9.178617
2.468269 3.760753 9.282551
2.465509 3.75618 9.260894
2.468174 3.760595 9.281801
2.470603 3.764619 9.300882
2.475686 3.773039 9.340859
2.472281 3.767399 9.31407
2.468064 3.760412 9.280938
2.46858 3.761268 9.284991
2.351163 3.966343 9.325518
2.462545 3.751269 9.237668
2.256705 4.138078 9.33842
2.459296 3.808459 9.366128
2.469051 3.762048 9.28869
2.46723 3.75903 9.274392
2.467781 3.759959 9.278753
2.468029 3.760354 9.280663
2.455436 3.787298 9.299466
2.501106 3.711553 9.282987

covHH* 0

0.013

cov¥**

0.015

cov¥**

0.029

cov¥**

covHH* 0.038

No. of RS** 20

No. of RS** 20

No. of RS** 20

No. of RS** 20

No. of RS** 3

indicating the optimal width, depth and area, v indicating the number of reasonable solution, mindicating the variation of 20

solutions
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Table 8 15 reliability evaluations using FORM, MCS & EMP for the point of (2.45, 3.90)

MCS EPM
No. FORM 3 " 5 6 7 Moment Moment Moment Moment
10 10 10 10 10
=3 =4 =5 =6
1 0.999 0.99920 0.99905 0.998908 | 0.9988688
2 1.000 0.99860 0.99904 0.998866 0.998876
3 0.999 0.99960 0.99902 0.998881 | 0.9988893
4 1.000 0.99910 0.99894 0.998823 0.998891
5 0.999 0.99900 0.99884 0.998889 | 0.9988696
6 0.997 0.99860 0.99881 0.998858 | 0.9988962
7 0.999 0.99920 0.99868 0.998865 | 0.9988952
8 1.000 0.99900 0.99892 0.998877 0.998869
9 0.9988752 L.000 0.99950 0.99894 0.098874 | 0.9988811 0.9988752 | 0.9988752 | 0.9988752 | 0.9988752
10 0.998 0.99890 0.99879 0.998855 | 0.9988817
11 1.000 0.99840 0.99903 0.998875 | 0.9988708
12 1.000 0.99880 0.99899 0.998885 | 0.9988783
13 1.000 0.99880 0.99884 0.998846 | 0.9988565
14 0.999 0.99830 0.99905 0.99888 0.9988658
15 0.998 0.99880 0.99893 0.998864 | 0.9988733
mean 0.9992 0.99892 0.99892 0.998870 | 0.9988775
standard X 1.994E- 1.155E-
doviation - 0.000941 | 0.0003687 | 0.0001118 05 05 - - - -
(q(:I(il(:Eilq) - 0.000480 0.001553 0.013889 0.077984 0.741181 0.036613 0.041205 0.060109 0.065282
Table 9 Ten reliability and gradient evaluations using FORM, MCS & EMP for the point of (2.0, 3.0)
7 abs(FORM - abs(FORM -
No. FORM MCS (10 EPM MCS)/FORM | EPM)/FORM
1 0.038292000000000 0.001738
2 0.037997000000000 0.009428
3 0.038125999999999 0.006065
4 0.038047999999999 0.008099
gradient > 0.038358663537357 0.038210000000001 0.038358663612451 0.003876 1.95768E-09
6 0.038665999999999 0.008012
7 0.038138000000000 0.005753
8 0.038062000000000 0.007734
9 0.038546000000000 0.004884
10 0.038345000000000 0.000356
failure probability | 0.998102617416204 | 0.998114000000000 | 0.998102618399013 - -

Table 10 Reliability and gradient evaluations using FORM, MCS & EMP for the point of (1.0, 2.0)

No. FORM MCS (107) EPM
gradient 1.953992523340276E-013 |  0.00* 1.953992523340276E-013
failure probability 0.999999999999995 1.00% 1.000000000986563

*mean value of 10 runs
Table 11 Statistics of using S-PSO-EMP to solve Example 1 — case 1 problem
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Mean Standard Dev. | Min. Value | Max. Value
9.55249 0.035535 9.5203 9.6067

4.1.2 Case 2

In contrast to the stress limit state problem considered in the first case, the second case is a non-
linear problem. In this situation, no analytical reliability analysis is available. To examine the
stability of an RBDO algorithm, the optimal point (2.721, 3.392) from Liao and Ha (2008) is used
as the target solution instead of using the D-SQP-FORM solution. Both S—-SQP-EPM and D—
SQP-MCS (with sample sizes of 10%, 10%, 10° and 106) were used to solve the current RBDO task
using 81 identical initial points, as explained in the previous section. Similarly, D-SQP-MCS was
conducted twice for each initial point. The summary of the number of reasonable solutions is dis-
played in Table 12. When the limit state function is nonlinear, S-SQP-EPM still delivers more
reasonable solutions than D-SQP-MCS. The number of reasonable solutions is moderately affec-
ted by the sample size. The results of using S-PSO-EPM are provided in Table 13 and Figure 3.
The solutions converged at approximately 30 iterations. In addition, all optimal points were a
reasonable solution. For the case of the nonlinear limit state function, S-PSO-EPM was able to
deliver a consistent RBDO so117ution among the different trials.

0 10 20 30 40 50 60 70 80

Figure 2 RBDO results using S-PSO-EMP (1* problem 1% case)
17 T T T T T T ;

|
“I

141

9 r : r r : r ;

0 10 20 30 40 50 60 70 80

Figure 3 RBDO results using S-PSO-EMP (1% problem 2™ case)
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Table 12 Number of reasonable solutions for D-SQP-MCS and S-SQP-EMP (Example 1 — case 2)

No. of reasonable solution

RBDO approach 1™ trial 2™ trial
S-SQP-EMP 32 -
D-SQP-MCS (sample size = 106) 12 11
D-SQP-MCS (sample size = 10°) 11 12
D-SQP-MCS (sample size = 10") 9 7
D-SQP-MCS (sample size = 10°%) 8 9

Table 13 Statistics of using S—-PSO-EMP to solve Example 1 — case 2 problem

Mean

Standard Dev.

Min. Value

Max. Value

9.23735

0.0356

9.2216

9.3376

4.2 A three bar truss problem

The second example is a three bar truss problem, that is adopted from Thanedar and Kodiyalam
(1992), displayed in Figure 4. The statistics of the random parameters are displayed in Table 14.

The optimization formulation is shown below.

minimize I = (2v24,+ 4,)

\2pi

st Gy Prob(——=

G,: Prob(——=——

P
3|f 4, (A+\/7A)

G,:|

(4 +\/5A2)

\/_(A+\/_AZ) 4

0.1<4,i=1,2,3

(A]+x/_AZ)E

|<20000

~8.<0)20.9772

-5, <0)20.9772

11< 5000

F <5000

where W is the total weight of the structure, A; is the cross-sectional area for members 1 and 3

(inch?), Ay is the cross-sectional area for member 2 (inch?), P

(100002 1bs) and P, (20000~/2 1bs)

are the forces acted on the point 4 in the x and y directions, respectively, [ is 10 inches, F is the
elastic modulus (N(1.0X107, 0.12) with units of psi, and &, is the allowable displacement (N(0.005,
0.12)) with units of inches. The optimization goal is to minimize the total weight of the structure

subjected to two deterministic forces. Two probabilistic displacement constraints (G;, Gz) are

formulated to ensure that the resulting displacements at point 4 in x and y directions meet the

predefined reliability (= 2). Another three deterministic stress constraints are formulated to
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ensure that the resulting compressive/tensile stresses for members 1, 2 and 3 are less than 5000
psi, 20,000 psi and 5000 psi, respectively.

>

v P,

Figure 4 A three bar truss used in the second example

Similar to the first example, this example was analyzed 81 times using different initial points
for both the D-SQP-MCS and S-SQP-EPM approaches. The initial point is a pair (A;, A;), whe-
re A; and A; are values of 1, 2, 3,..., 9, resulting in 81 different points. Because the probability
density function (PDF) is not provided in the literature study of Thanedar and Kodiyalam (1992),
this study assumes that all random parameters follow a normal distribution, as shown in Table 14.
The "target solution" is defined as the "best solution" among the 81 S-SQP-EPM solutions, and
it is 21.112 with a design point of 6.31 and 3.265, as indicated in Table 15. The reliability analysis
at the "target solution" was conducted, and the result is displayed in Table 15. It is clear that
the "target solution" satisfied the reliability requirement. The number of reasonable solutions for
D-SQP-MCS and S-SQP-EPM are provided in Table 16. The statistical uncertainty produced
by the MCS results in a very unstable solution for the D-SQP-MCS approach. Although increa-
sing the sample size can effectively reduce the variation in the number of reasonable solutions, it
does not promise to have a greater number of reasonable solutions. S-SQP-EPM certainly domi-
nated over D-SQP-MCS in terms of solution stability for any sample size.

The results of using S-PSO-EPM for the second problem are provided in Table 17 and Figure
5. The range for the 10 solutions was from 21.112 to 21.201. None of these solutions has a devia-
tion that is larger than 2% from the "target solution" (21.112), indicating that S-PSO-EPM is a
suitable and stable optimization algorithm.
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Figure 5 RBDO results using S-PSO-EMP (2™ problem)

Table 14 The statistics of the random variables used in Example 2

Random variable  E(psi) 8, (inch)

distribution type normal normal
e LOET 0.005
cov 0.1 0.1

1) .
M is the mean value

@) is the allowable displacement in both z and y direction

Table 15 Optimal point and its reliability analysis for the 2 problem

Optimal design (6.31,

3.265)

Reliability value for the z direction 0.9977
Reliability value for the y direction 0.9772

Table 16 Number of reasonable solutions for D-SQP-MCS and S-SQP-EMP (Example 2)

No. of reasonable solution
RBDO approach — .
17 trial 2" trial
S-SQP-EMP 74 -
D-SQP-MCS (sample size = 10°) 49 45
D-SQP-MCS (sample size = 10°) 44 42
D-SQP-MCS (sample size = 10" 49 38
D-SQP-MCS (sample size = 10°%) 42 33

Table 17  Statistics of using S-PSO-EMP to solve Example 2

Mean | Standard Dev. | Min. Value | Max. Value
21.128 0.027 21.112 21.201
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4.3 A mathematical problem with multiple limit states

The mathematical formulation of this problem, adopted from Youn and Choi (2004), is provided
in Equation (17).

Min. f(D)=(D,+D,)
st prob(G,(P)20)297.72%, j=1~3
10<D, <10, i=1~2
where G, (P)=1-P’P,/20 (17)
G,(P)=1—(P+P,~5)" /30
—(P-P,—12)/120
G,(P)=1-80/(P*+8P,+5)

where D are the design variables, which are the mean values of the random design variables (P),
in which P = N (D, 0.62). G; is the i constraint. The target reliability is 97.72% (B= 2) for all
three constraints. In contrast to the first two problems, a system reliability problem is involved in
this RBDO task. Similar to the second example, the "target solution" is defined as the "best solu-
tion" among the 81 S-SQP-EPM solutions, and it is 7.265 with 3.653 and 3.612 for D; and Do,
respectively. A comparison between the target solution and the solutions from Youn and Choi
(2004) is provided in Table 18. The suitability of the target solution used here is thus confirmed.

Similar to the first two examples, both S-SQP-MCS and S—SQP-EPM were performed 81 ti-
mes. The number of reasonable solutions for each approach is displayed in Table 19. With respect
to the stability, S-SQP-EPM is a better RBDO approach, which is confirmed in this example. S—
PSO-EPM was conducted to further improve the stability of the calculated solutions. The results
of S-PSO-EPM are provided in Table 20 and Figure 6. The 10 solutions from S-PSO-EPM were
all 7.2652. This solution only deviated 0.000275% from the target solution, indicating that S—
PSO—-EPM is able to consistently provide an accurate RBDO solution.

115

—2 |
—3

—7

—9
104

0 10 20 30 40 50 60 70 80

Figure 6 RBDO results using S-PSO-EMP (3" problem)
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Table 18 Comparison of optimal design between current study and literature study

Method d; ds objective
RIA (Youn and Choi 2004) | 3.609 | 3.661 7.27
PMA (Youn and Choi 2004) | 3.609 | 3.660 7.269
S-SQP-EMP 3.653 | 3.612 7.265

Table 19 Number of reasonable solutions for D-SQP-MCS and S-SQP-EMP (Example 3)

No. of reasonable solution
RBDO approaCh st 1 nd .
17 trial ond ial
S-SQP-EMP 7 -
D-SQP-MCS (sample size = 10%) 9 ;
D-SQP-MCS (sample size = 10°) 3 p
D-SQP-MCS (sample size = 10") p p
D-SQP-MCS (sample size = 10%) p ;

Table 20 Statistics of using S-PSO-EMP to solve Example 3

Mean | Standard Dev. | Min. Value | Max. Value
7.2652 0.00 7.2652 7.2652

5 CONCLUSIONS

This study integrates EPM with SQP or PSO to formulate an RBDO algorithm and emphasizes
its ability of solving a nonlinear RBDO problem accurately and consistently. MCS with a suffi-
cient sample size is often used for reliability evaluation in nonlinear cases. This study shows that
EPM is a better approach than MCS in terms of accuracy and efficiency. Integrating MCS with
SQP often fails to deliver a consistent RBDO solution due to the inherit statistical uncertainty in
MCS. Both of the proposed approaches, S—-SQP-EPM and S—PSO-EPM, possess a better stabili-
ty performance than D-SQP-MCS. By performing an RBDO using the proposed method, the
reliability analysis at each design point was evaluated through EPM, where only a single iteration
is needed and therefore the proposed algorithm can be considered as a single loop RBDO ap-
proach.

Three RBDO problems, including linear, nonlinear and system reliability problems, were
analyzed to demonstrate the accuracy and the stability of the proposed algorithms. In general, S—
SQP-EPM possesses a better stability than D-SQP-MCS. However, SQP is likely to be trapped
in an infeasible point if that point has a very large or small reliability value. Thus, SQP often
fails to deliver a reasonable solution. To further improve the stability of RBDO solutions, this
study proposes another RBDO approach, called S-PSO-EPM. In PSO, the location of next point
depends on the points of the global best, the particle best and the MPP that are derived from a
group of points. By utilizing the solutions from a group of points, PSO possesses a better stability
performance than SQP. To further avoid the trapping of the optimal point in the infeasible do-
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main, LHS was implemented in PSO. Some conclusions are drawn below according to the results

obtained.

1. Compared to MCS with a sample size of 107, EPM is able to compute the reliability more effi-
ciently with the same accuracy.

2. The effect of the statistical uncertainty on an RBDO solution is significantly, which was de-
monstrated by the stability performance of D—SQP-MCS.

3. S-PSO-EPM is able to consistently deliver a promising result in which the deviation from the

target solution is often less than 2%. Thus, S-PSO-EPM is the most stable RBDO algorithm

among all of the approaches examined in this study.

In this study, the stability, accuracy and efficiency of S-PSO-EPM are examined by three
RBDO problem that only have two design variables. Because S-PSO-EPM is a population-based
algorithm, its efficiency decreases as the problem size increases. For example, a larger problem
usually requires a larger population size so as to delay the solution convergence. On the other
hand, similar to the standard PSO, the stability and accuracy of S-PSO-EPM is not largely af-
fected by the problem size. Since this study focuses more on locating the global optimum consis-
tently than obtaining a fast solution, certain compensation in efficiency is needed. However, if the
efficiency is a major concern, the proposed S—-PSO-EPM is suitable for parallel computing and
thus, the computational cost can be alleviated.
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