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Abstract

Interfacial convective heat transfer coefficient is calculated for turbulent flow in a porous
medium formed by square rods. Such information is needed for turbulent heat transport
modeling in porous media when local thermal non-equilibrium is considered. The model
considers fluid flowing through a packed bed with arbitrary bed temperature. This adjust-
ment is obtained by solving the microscopic flow governing equations, using high Reynolds
formulation and periodic boundary conditions. The numerical methodology employed is
based on the control-volume approach with a boundary-fitted non-orthogonal coordinate
system. This work intends to obtain functional relationships for the interfacial convective
heat transfer coefficient for turbulent low in packed beds.

Keywords: porous media, heat transfer coefficient, thermal non-equilibrium, turbulence
model.

1 Introduction

The problem of local thermal non-equilibrium has received considerable attention due to its
relevance in a wide variety of engineering applications such as building thermal insulation,
nuclear reactor, electronic cooling, multiphase catalytic reactors, etc. The use of two equation
model or two energy model is required for these types of problems, which is employed to obtain
the temperature difference between the fluid and solid phases. Its use this model has increased
in theoretical and numerical research for convection heat transfer processes in porous media.

Kuwahara et. al [8] proposed a numerical procedure to determine macroscopic transport
coefficients from a theoretical basis without any empiricism. They used a single unit cell and
determined the interfacial heat transfer coefficient for the asymptotic case of infinite conductivity
of the solid phase. Nakayama et. al [10] extended the conduction model of Hsu [7] for treating
also convection in porous media. Having established the macroscopic energy equations for
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Notation

Ai Interface total area between the fluid and solid
cF Forchheimer coefficient
cp Fluid specific heat
D Square rods of lateral size
hi Interfacial convective heat transfer coefficient
H Periodic cell height
K Permeability
k Turbulence kinetic energy per unit mass
kf Fluid thermal conductivity
ks Solid thermal conductivity
k Turbulence kinetic energy per unit mass
P Pressure
P ∗ P ∗ = P−Pmin

Pmax−Pmin
, Nondimensional Pressure

ReD Reynolds number based on D and the macroscopically uniform velocity
µ Fluid dynamic viscosity
µt Eddy viscosity
µtφ Macroscopic eddy viscosity
ν Fluid kinematic viscosity
ρ Fluid density
θ Dimensionless temperature
φ φ = ∆Vf/∆V, Porosity
ϕ General variable
〈ϕ〉i Intrinsic average
〈ϕ〉v Volume average
iϕ Spatial deviation

both phases, useful exact solutions were obtained for two fundamental heat transfer processes
associated with porous media, namely, steady conduction in a porous slab with internal heat
generation within the solid, and also, thermally developing flow through a semi-infinite porous
medium.

Saito and de Lemos [18] considered local thermal non-equilibrium and obtained the interfacial
heat transfer coefficient for laminar flow using a single unit cell with local instantaneous transport
equations.

In all of the above, only laminar flow has been considered. When treating turbulent flow in
porous media, however, difficulties arise due to the fact that the flow fluctuates with time and
a volumetric average is applied [6]. For handling such situations, a new concept called double
decomposition has been proposed for developing a macroscopic model for turbulent transport in
porous media [12–16]. This methodology has been extended to non-buoyant heat transfer [17],
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buoyant flows by [1] and mass transfer by [2]. Based on this same concept, [4] have developed a
macroscopic turbulent energy equation for a homogeneous, rigid and saturated porous medium,
considering local thermal equilibrium between the fluid and solid matrix. A general classification
of all methodologies for treating turbulent flow and heat transfer in porous media has been
recently published [3].

This study focuses an turbulent flow through a packed bed where represents an important
configuration for efficient heat and mass transfer and suggests the use of equations governing
thermal non-equilibrium involving distinct energy balances for both the solid and fluid phases.
Accordingly, the use of such two-energy equation model requires an extra parameter to be
determined, namely the heat transfer coefficient between the fluid and the solid material [9].

The interfacial heat transfer coefficient for turbulent flow was calculated by [19] using a single
unit cell and low Reynolds model. This work proposes a macroscopic heat transfer analysis using
a two-energy equation model for conduction and convection mechanisms in porous media. The
contribution herein consists in extending the numerical model used in [19] calculating the heat
transfer coefficient for turbulent flow considering array high Reynolds.

2 Microscopic transport equations

Microscopic or local time-averaged transport equations for incompressible fluid flow in a rigid
homogeneous porous medium have been already presented in the literature and for that they
are here just presented (e.g. reference [4]). Furthermore, for turbulent flows the time averaged
transport equations can be written as:

Continuity: ∇ · ū = 0 (1)

Momentum: ρf [∇ · (ūū)] = −∇ p̄ + ∇.
{

µ[∇ ū + (∇ ū)T ]− ρu′u′
}

(2)

where the high Reynolds k − ε model is used to obtain the eddy viscosity, µt, whose equations
for the turbulent kinetic energy per unit mass and for its dissipation rate read:

Turbulent kinetic energy per unit mass:

ρf [∇ · (ūk)] = ∇ ·
[(

µ +
µt

σk

)
∇k

]
− ρu′u′ : ∇ū − ρ ε (3)

Turbulent kinetic energy per unit mass dissipation rate:

ρf [∇ · (ūε)] = ∇ ·
[(

µ +
µt

σε

)
∇ε

]
+

[
c1

(− ρu′u′ : ∇ū
) − c2ρ ε

] ε

k
(4)

Reynolds stresses and the Eddy viscosity is given by, respectively:

−ρu′u′ = µt

[
∇ū + (∇ū)T

]
− 2

3
ρkI (5)
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µt = ρ cµ
k2

ε
(6)

where, ρ is the fluid density, p is the pressure, µ represents the fluid viscosity.
In the above equation setσk, σε, c1, c2, and cµ are dimensionless constants given as follows,

cµ = 0.09, c1 = 1.44, c2 = 1.92, σk = 1.0, σε = 1.3.

Also, the time averaged energy equations become:

Energy - Fluid Phase: (ρcp)f

{∇ · ( ūT̄f

)}
= ∇ · ( kf∇T̄f

)− (ρcp)f ∇ ·
(
u′ T ′f

)
+ Sf (7)

Energy - Solid Phase (Porous Matrix): ∇ · (
ks∇T̄s

)
+ Ss = 0 (8)

where the subscripts f and s refer to fluid and solid phases, respectively. Here, T is the temper-
ature, kf is the fluid thermal conductivity, ks is the solid thermal conductivity, cp is the specific
heat and S is the heat generation term. If there is no heat generation either in the solid or in
the fluid, one has furtherSf = Ss = 0.

3 Decomposition of flow variables in space and time

Macroscopic transport equations for turbulent flow in a porous medium are obtained through
the simultaneous application of time and volume average operators over a generic fluid property
ϕ [6]. Such concepts are mathematically defined as,

ϕ̄ =
1

∆t

∫ t+∆t

t
ϕ dt, with ϕ = ϕ̄ + ϕ′ (9)

〈ϕ〉i =
1

∆Vf

∫

∆Vf

ϕdV ; 〈ϕ〉v = φ〈ϕ〉i; φ =
∆Vf

∆V
, with ϕ = 〈ϕ〉i + iϕ (10)

where ∆Vf is the volume of the fluid contained in a Representative Elementary Volume (REV)
∆V , intrinsic average and volume average are represented, respectively, by 〈 〉i and 〈 〉v. Also,
the left superscript i represents spatial deviation.

The double decomposition idea introduced and fully described in [12–16], combines Eqs.
(9)-(10) and can be summarized as:

〈ϕ〉i = 〈ϕ̄〉i; iϕ̄ = iϕ; 〈ϕ′〉i = 〈ϕ〉i′ (11)

and,

ϕ′ = 〈ϕ′〉i + iϕ′
iϕ = iϕ + iϕ′

}
where iϕ′ = ϕ′ − 〈ϕ′〉i = iϕ − iϕ (12)
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Therefore, the quantity ϕ can be expressed by either,

ϕ = 〈ϕ〉i + 〈ϕ〉i′ + iϕ + iϕ′, (13)

or
ϕ = 〈ϕ̄〉i + iϕ̄ + 〈ϕ′〉i + iϕ′. (14)

The term iϕ′ can be viewed as either the temporal fluctuation of the spatial deviation or the
spatial deviation of the temporal fluctuation of the quantityϕ.

4 Macroscopic flow and energy equations

When the average operators (9)-(10) are simultaneously applied over Eqs. (1)-(2), macroscopic
equations for turbulent flow are obtained. Volume integration is performed over a Representative
Elementary Volume (REV) [6], [20], resulting in,

Continuity: ∇ · ūD = 0 (15)

where, ūD = φ〈ū〉i and 〈ū〉i identifies the intrinsic (liquid) average of the time-averaged velocity
vector ū.

Momentum:

ρ
[

∂ūD
∂t +∇ ·

(
ūD ūD

φ

)]
= −∇(φ〈p̄〉i) + µ∇2ūD −∇ · (ρφ〈u′u′〉i)

−
[

µφ
K ūD + cF φρ | ūD|ūD√

K

] , (16)

where the last two terms in Eq. (16) represent the Darcy and Forchheimer contributions by [5].
The symbol K is the porous medium permeability, cF is the form drag or Forchheimer coefficient,
〈p̄〉i is the intrinsic average pressure of the fluid and φ is the porosity of the porous medium.

The macroscopic Reynolds stress, −ρφ〈u′u′〉i, appearing in Eq. (16) is given as,

−ρφ〈u′u′〉i = µtφ2〈D̄〉v − 2
3
φρ〈k〉iI, (17)

where,

〈D̄〉v =
1
2

[
∇(φ〈ū〉i) + [∇(φ〈ū〉i)]T

]
, (18)

is the macroscopic deformation tensor, 〈k〉i = 〈u′ · u′〉i/2 is the intrinsic turbulent kinetic energy,
and µtφ , is the turbulent viscosity, which is modeled in [3] similarly to the case of clear flow, in
the form,

µtφ = ρcµ
〈k〉i2
〈ε〉i , (19)
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The intrinsic turbulent kinetic energy per unit mass and its dissipation rate are governed by the
following equations,

ρ
[

∂
∂t

(
φ〈k〉i) +∇ · (ūD〈k〉i

)]
= ∇ ·

[(
µ +

µtφ

σk

)
∇ (

φ〈k〉i)
]
− ρ〈u′u′〉i : ∇ūD

+ckρ
φ〈 k〉i | ūD|√

K
− ρφ〈ε〉i

. (20)

ρ
[

∂
∂t

(
φ〈ε〉i) +∇ · (ūD〈ε〉i

)]
= ∇ ·

[(
µ +

µtφ

σε

)
∇ (

φ〈ε〉i)
]

+ c1

(−ρ〈u′u′〉i : ∇ūD

) 〈ε〉i
〈k〉i

+c2 ckρ
φ 〈ε〉i | ūD|√

K
− c2ρφ 〈ε〉

i2

〈k〉i
. (21)

where, ck, c1, c2 and cµ are nondimensional constants.
Similarly, macroscopic energy equations are obtained for both fluid and solid phases by

applying time and volume average operators to Eqs. (7) and (8). As in the flow case, volume
integration is performed over a Representative Elementary Volume (REV), resulting in,

(ρ cp)f

[
∂ φ〈Tf 〉i

∂ t +∇ ·
{

φ
(
〈ū〉i〈Tf 〉i + 〈iūiTf 〉i + 〈u′ T ′f 〉i

)}]
= ∇ · [

kf∇
(
φ 〈Tf 〉i

) ]

+∇ ·
[

1
∆V

∫
Ai

ni kfTf dA

]

+ 1
∆V

∫
Ai

ni · kf∇Tf dA

,

(22)

(ρ cp)s

{
∂ (1−φ) 〈Ts〉i

∂ t

}
= ∇ · {

ks∇
[
(1− φ) 〈Ts〉i

] } − ∇ ·
[

1
∆V

∫
Ai

ni ksTs dA

]

− 1
∆V

∫
Ai

ni · ks∇Ts dA
, (23)

where 〈Ts〉i and 〈Tf 〉i denote the intrinsic average temperature of solid and fluid phases, re-
spectively, Ai is the interfacial area within the REV and ni is the unit vector normal to the
fluid-solid interface, pointing from the fluid towards the solid phase. Eqs. (22) and (23) are the
macroscopic energy equations for the fluid and the porous matrix (solid), respectively.

Further, using the double decomposition concept given by Eq. (11)-(14), Rocamora and de
Lemos [17] have shown that the fourth term on the left hand side of Eq. (22) can be expressed
as:

〈u′T ′f 〉i = 〈(〈u′〉i + iu′) (〈T ′f 〉i + iT ′)〉i = 〈u′〉i〈T ′f 〉i + 〈 iu′ iT ′f 〉i. (24)

Therefore, in view of Eq. (24), Eq. (22) can be rewritten as:

(ρ cp)f

[
∂ φ〈Tf 〉i

∂ t +∇ ·
{

φ
(
〈ū〉i〈Tf 〉i + 〈iūiTf 〉i + 〈u′〉i〈T ′f 〉i + 〈iu′ iT ′f 〉i

) }]
=

∇ · [
kf∇

(
φ 〈Tf 〉i

) ]
+∇ ·

[
1

∆V

∫
Ai

ni kfTf dA

]
+ 1

∆V

∫
Ai

ni · kf∇Tf dA
. (25)

Latin American Journal of Solids and Structures 2 (2005)



Convective heat transfer coefficient in a porous formed by an array of square rods 297

5 Interfacial heat transfer coefficient

In Eqs. (23) and (25) the heat transferred between the two phases can be modeled by means of
a film coefficient hi such that,

hiai

(〈Ts〉i − 〈Tf 〉i
)

=
1

∆V

∫

Ai

ni · kf∇Tf dA =
1

∆V

∫

Ai

ni · ks∇Ts dA. (26)

where, hi is known as the interfacial convective heat transfer coefficient and ai = Ai/∆V is the
surface area per unit volume.

For determininghi, Kuwahara et. al [8] modeled a porous medium by considering an infinite
number of solid square rods of size D, arranged in a regular triangular pattern (see Fig. 1). They
numerically solved the governing equations in the void region, exploiting to advantage the fact
that for an infinite and geometrically ordered medium a repetitive cell can be identified. Periodic
boundary conditions were then applied for obtaining the temperature distribution under fully
developed flow conditions. A numerical correlation for the interfacial convective heat transfer
coefficient was proposed by Kuwahara et. al [8] for laminar flow as,

hiD

kf
=

(
1 +

4(1− φ)
φ

)
+

1
2
(1− φ)1/2ReD

1/3

Pr, valid for 0.2 < φ < 0.9 (27)

Eq. (27) is based on porosity dependency and is valid for packed beds of particle diameterD.
Saito and de Lemos [18] obtained the interfacial heat transfer coefficient for laminar flows

though an infinite square rod; this same physical model will be used here for obtaining the
interfacial heat transfer coefficient hi for turbulent flows.

6 Periodic cell and boundary conditions

In order to evaluate the numerical tool to be used in the determination of the film coefficient
given by Eq. (26), a test case was run for obtaining the flow field in a periodic cell, which is here
assumed to represent the porous medium. Consider a macroscopically uniform flow through
an infinite number of square rods of lateral size D, placed in a staggered arrangement and
maintained at constant temperature Tw. The periodic cell or representative elementary volume,
∆V , is schematically showed in Fig. 1 and has dimensions 2H × H. Computations within
this cell were carried out using a non-uniform grid, as shown in Fig. 2, to ensure that the results
were grid independent. The Reynolds number ReD = ρ ūDD/µ was varied from 104 to 106 and
the porosity,φ = 1− (D/H)2.

The numerical method utilized to discretize the flow and energy equations in the unit cell is
the Control Volume approach. The SIMPLE method of Patankar [11] was used for handling Eq.
(1)-(8) the velocity-pressure coupling. Convergence was monitored in terms of the normalized
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residue for each variable. The maximum residue allowed for convergence check was set to 10−9,
being the variables normalized by appropriate reference values.

 
 

 

 
 

H 

2H 

y 
x 

D 

D/2 

Figure 1: Physical model and coordinate system.

 

 

 
 Figure 2: Non uniform computational grid.

For fully developed flow in the cell of Fig. 1, the velocity at exit (x/H = 2) must be identical
to that at the inlet (x/H = 0). Temperature profiles, however, are only identical at both cell
exit and inlet if presented in terms of an appropriate non-dimensional variable. The situation
is analogous to the case of forced convection in a channel with isothermal walls; see [19]. Thus,
boundary conditions and periodic constraints are given by:

On the solid walls:

ū

uτ
=

1
κ

ln
(
n+E

)
, k =

u2
τ

c
1/2
µ

, ε =
c
3/4
µ k

3/2
w

κ nw
, qw =

(ρ cp)f C
1/4
µ k

1/2
w

(
T̄ − Tw

)
(

Prt
κ ln

(
n+

w

)
+ CQ (Pr)

) (28)

where, uτ =
(

τw
ρ

)1/2
, n+

w = nw uτ
ν , CQ = 12.5 Pr2/3 + 2.12 ln (Pr) − 5.3 for Pr > 0.5

where, Pr and Prt are Prandtl and turbulent Prandtl number, respectively, qw is wall heat flux,

Latin American Journal of Solids and Structures 2 (2005)



Convective heat transfer coefficient in a porous formed by an array of square rods 299

uτ is wall-friction velocity, nw is the coordinate normal to wall, κ is constant for turbulent flow
past smooth impermeable walls or von Kármán’s constant and E is an integration constant that
depends on the roughness of the wall. For smooth walls with constant shear stress E = 9.

On the symmetry planes:
∂ ū

∂ y
=

∂ v̄

∂ y
=

∂ k

∂ y
=

∂ ε

∂ y
= 0, (29)

where ū and v̄ are components of ū.
On the periodic boundaries:

ū|inlet = ū|outlet , v̄|inlet = v̄|outlet , k|inlet = k|outlet , ε|inlet = ε|outlet , (30)

θ |inlet = θ |outlet ⇔ T̄ − T̄w

T̄B (x)− T̄w

∣∣∣∣
inlet

=
T̄ − T̄w

T̄B (x)− T̄w

∣∣∣∣
outlet

, (31)

The bulk mean temperature of the fluid is given by:

T̄B (x) =
∫

ūT̄ dy∫
ūdy

(32)

Computations are based on the Darcy velocity, the length of structural unit H and the temper-
ature difference

(
T̄B (x)− T̄w

)
, as references scales.

6.1 Film coefficient hi

Determination of hi is here obtained by calculating, for the unit cell of Fig. 1, an expression
given as,

hi =
Qtotal

Ai ∆Tml
(33)

where Ai = 8D × 1. The overall heat transferred in the cell, Qtotal, is giving by,

Qtotal = (H −D)ρ ūB cp

(
T̄B

∣∣
outlet

− T̄B

∣∣
inlet

)
, (34)

The bulk mean velocity of the fluid is given by:

ūB (x) =
∫

ūdy∫
dy

(35)

and the logarithm mean temperature difference, ∆Tml is,

∆Tml =

(
T̄w − T̄B

∣∣
outlet

)− (
T̄w − T̄B

∣∣
inlet

)

ln [(T̄w − T̄B

∣∣
outlet

)(T̄w − T̄B

∣∣
inlet

)]
(36)

Eq. 34 represents an overall heat balance on the entire cell and associates the heat transferred
to the fluid to a suitable temperature difference∆Tml. As mentioned earlier, Eqs. 1-8 were
numerically solved in the unit cell until conditions Eqs. 30-31 were satisfied.
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7 Results and discussion

7.1 Periodic flow

Results for velocity and temperature fields were obtained for different Reynolds numbers. In
order to assure that the flow is hydrodynamically and thermally developed in the periodic cell
of Fig. 1, the governing equations were solved repetitively in the cell, taking the outlet profiles
for ū and θ at exit and plugging them back at inlet. In the first run, uniform velocity and
temperature profiles were set at the cell entrance for Pr = 1 and ReD = 105, giving θ=1 at
x/H=0. Then, after convergence of the flow and temperature fields, ū and θ at x/H=2 were
used as inlet profiles for a second run, corresponding to solving again the flow for a similar cell
beginning in x/H=2. Similarly, a third run was carried out and again outlet results, this time
corresponding to an axial position x/H=4, were recorded. This procedure was repeated several
times until ū and θ did not differ substantially at both inlet and outlet positions. Resulting
non-dimensional velocity and temperature profiles are shown in Fig. 3 and Fig. 4, respectively,
showing that the periodicity constraints imposed by Eqs. 30-31 was satisfied for x/H > 4.
For the entrance region (0 < x/H < 4), θ profiles change with length x/H being essentially
invariable after this distance. Under this condition of constant θ profile, the flow was considered
to be macroscopically developed for ReD up to 106. 

 

5

10

15

20

25

30

0.0 0.2 0.4 0.6 0.8 1.0

y/H

u/u ττττ

x/H = 4

x/H = 6

 
 

Figure 3: Dimensionless velocity profile for Pr = 1 and ReD = 105.

7.2 Developed flow and temperature fields

Macroscopically developed flow field for Pr = 1 and ReD = 105 is presented in Fig. 5, cor-
responding to x/D=6 at the cell inlet. The flow accelerates when forced in between the gap
formed by two rods, separating past the rod edges and impinging against the rod left faces. The
expression “macroscopically developed” is used herein to account for the fact that periodic flow
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Figure 4: Dimensionless temperature profile for Pr = 1 and ReD = 105.

has been achieved at that axial position. Fig. 6 presents levels of turbulence kinetic energy,
which are higher around the rod corners where a strong shear layer is formed. Further down-
stream the rods in the weak region, steep velocity gradients appear due to flow deceleration,
also increasing there the local level of k. Temperature distribution is shown in Fig. 7, also for
ReD=105. Colder fluid impinges on the rod left side yielding strong temperature gradients on
that face. Downstream the obstacles, fluid recirculation smoothes temperature gradients and
deforms isotherms within the mixing region. When the Reynolds number is sufficiently high
(not shown here), thermal boundary layers cover the rod surfaces indicating that convective
heat transfer overwhelms thermal diffusion.

 

 
 

Figure 5: Velocity field for ReD = 105, φ = 0.65 and 6 < x/H < 8

Once fully developed flow and temperature fields are achieved, for the fully developed condi-
tion (x > 6H), bulk temperatures were calculated according to Eq. 32, at both inlet and outlet
positions. They were then used to calculate hi using Eqs. 33-36. Results for hi are plotted in
Fig. 8 for ReD up to 106. Also plotted in this figure are results computed with correlation (27)
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 Figure 6: Turbulence kinetic energy for ReD = 105 and φ=0.65.
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Figure 7: Isotherms for Pr = 1, ReD = 105 and φ = 0.65

using φ = 0.65. The figure seems to indicate that both computations show a reasonable agree-
ment for laminar results. The numerical correlation for the interfacial convective heat transfer
coefficient was proposed by Kuwahara et. al [8] is used only for laminar flows while for turbulent
results a correlation is needed that is the long term objective of the present research endeavour
and results herein represent the first step towards such goal.

8 Concluding remarks

A computational procedure for determining the convective coefficient of heat exchange between
the porous substrate and the working fluid for a porous medium was detailed. As a preliminary
result, a macroscopically uniform laminar and turbulent flow through a periodic cell of isothermal
square rods was computed, considering periodical velocity and temperature fields. Quantitative
agreement was obtained when comparing the preliminary laminar results herein with simulations
by Kuwahara et. al [8]. Saito and de Lemos [19] and this work obtained the heat transfer
coefficient for turbulent flow using low and high Reynolds, respectively, by mean a single unit
cell formed by an array of square rods. Moreover, the numerical correlation for the interfacial
convective heat transfer coefficient for turbulent flow is needed. Further work will be carried
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Figure 8: Effect of ReD on hi for Pr = 1 with correlation of Kuwahara et. al [8].

out in order to simulate fully turbulent flow and heat transfer in a porous medium formed by
an array of elliptic, cylindrical and transverse elliptic rods. Ultimately, it is expected that a
correlation for the heat transfer coefficient be obtained so that the exchange energy between the
solid and the fluid can be accounted for.
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