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Abstract 
In the classical literature devoted to the study of orthotropic materials under large strains, a lot of emphasis 
is given to strain invariants, obscuring the association of finite strain constitutive relations with well-
established small strains constitutive relations. In this work, this association is established through the 
comparison of 8 orthotropic models (3 classical and 5 new) for hyperelastic orthotropic materials using the 
Flory’s decomposition. This is done transforming the initial formalism of different models into complete 
quadratic polynomials written in terms of the Right-Cauchy-Green stretch and a volumetric control that 
guaranties the growth condition. A tailoring fiber-reinforced solid model - in which discrete fibers are 
immersed into continuous matrix - is also presented and used to establish numerical tests, generating basic 
elastic constants for comparisons. The 5 proposed models are implemented in an in-house FEM code and 
comparisons among their mechanical behavior are presented. From these comparisons one of the proposed 
models is selected to successfully simulate a biological tissue, opening the possibilities for future studies. 
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1 INTRODUCTION 

In order to associate finite strain and small strain constitutive relations and establishes a simple framework to 
assemble these modes, one should understand the mathematical basis of consistent models. Without intending to do an 
extensive review, some important studies in literature that discuss hyperelastic models for isotropic, transversally 
isotropic and orthotropic materials should be mentioned. One can cite theoretical studies (Rubin, 2016; Shariff, 2013; 
Spencer, 1984; Aguiar and Lopes da Rocha, 2018) concerned with establishing a minimum number of invariants and, 
therefore, a minimum number of elastic constants to be determined experimentally in order to model transversally 
isotropic and orthotropic materials. 

 Other reference studies are interested in establishing strain energy density functions that consider a larger 
number of elastic constants and strain invariants or their powers, seeking a better representation of complex materials 
such as elastomers and living tissues (Ehret and Itskov, 2007; Itskov and Khiêm, 2016; Shariff, 2022; Balzani et al., 2006). 
A good review on the subject can be seen, for example, in the works (Itskov and Khiêm, 2016; Shariff, 2022; Holzapfel 
and Ogden, 2010). 

 To understand the mathematical basis of consistent models one must cite the classical study (Spencer, 1984) 
that was concerned with the minimum number of invariants for both infinitesimal and finite strains, adopting different 
strain measures for each case. For infinitesimal strains, the invariants were assembled from traces of powers of the 
infinitesimal strain and its product with dyadics of the orthotropy directions, tabulated by Spencer (1971). For finite 
strains, Spencer (1984) replaced the infinitesimal strains by the Right-Cauchy-Green stretch, keeping a Lagrangian 
referential concluding that the minimum number of elastic constants for orthotropic materials at finite strains is 7 and 
for infinitesimal strains is 9. The infinitesimal result of Spencer (1984) corroborates to the consistency of linear elasticity 
solutions given, for example, by Lekhnitskii (1963). Related to the definition of constitutive models with a larger number 
of elastic constants, one can mention the study of Shariff (2022) in which the eigenvalues of strains are used to assemble 
strain energy densities of transversely isotropic and orthotropic materials resembling other references (Ogden, 1972; 
Lubarda and Chen, 2018; Schröder and Neff, 2003). In Shariff (2022) the number of elastic constants adopted for 
orthotropic materials in infinitesimal strains is ten, being nine called ground constants and the tenth is the bulk modulus. 
For finite strains Shariff (2022) proposes a strain energy density containing ten ground constants, the bulk modulus and 
a high-order polynomial dependent on the stretch eigenvalues. 

In order to exemplify the extension of theoretical and applied studies regarding medical and engineering 
hyperelastic reinforced materials one may mention, among others the following authors: Jadidi et al. (2021) study the 
behavior of a constitutive model regarding collagen dispersion in femoral artery, Hadjicharalambous et al. (2015) 
compares existent orthotropic laws to define a balance among fidelity and calibration from magnetic resonance tests, 
Amores et al. (2021) created a non-parametric strategy to model orthotropic compressive materials based on 
complementary energy incrementally retrofitting results from experimental incremental steps, Sussman and Bathe 
(2009) and Latorre and Montáns (2014) uses logarithmic strains and splines to interpolate the elastic behavior of specific 
isotropic and orthotropic materials, Holzapfel and Ogden (2009) model the passive myocardium tissue proposing an 
important constitutive model based on strain invariants, Gao et al (2020) analyzed specific and important material in the 
construction industry, Yang et al (2018) analyzed the properties of fiber fabric rubber through hyper-viscoelastic 
constitutive model, Zhang et al (2019) applied asymptotic homogenization to describe finitely deformed heterogeneous 
elastomers and  Sharabi et al (2016) studied the flexure behavior of bio-inspired collagen-reinforced thin composites. 

 In addition to the applications described above, fiber-reinforced materials that develop large strains are widely 
explored in the literature due to their great practical importance. Interesting research can be cited, such as the study of 
Zhao et al (2023) dealing with the dependence of strain rates on the rupture of fiber-reinforced polymers; the work of 
Gao et al (2022) which seeks to apply a specific constitutive model to the behavior of bar structures, the research of Lv 
et al (2024) concerned with the sliding of reinforced polymer reinforcements in relation to concrete beams. Other 
interesting studies are Fallahi and Taheri-Behrooz (2022) concerned with modeling the cyclic behavior of reinforced 
polymers and Gupta et al (2022) that uses homogenized models to simulate reinforced polymer materials manufactured 
by 3D printing. In order to verify the extent of this kind of application one may consult reviews as the one of Ma et al 
(2021) among others. 

 To propose and compare different hyperelastic models one starts following the hyperelastic framework of 
Spencer (1984), Holzapfel and Ogden (2010), Ogden (1997) and Bonet and Burton (1998) including the application of 
Flory's multiplicative decomposition (Flory, 1961). Fundamental aspects to capture understandings and propose 
evolutions are revisited. The proposed models are based on the adaptation of the isotropic strain energy densities 
proposed by Mooney (1940) - rewritten using isotropic strain invariants by Rivlin and Saunders (1951) - plus the 
volumetric part proposed by Hartmann and Neff (2003). Applying the Flory’s decomposition it is possible to separate the 
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isochoric and volumetric parts of the Right-Cauchy-Green stretch and, as a consequence, strain energy potentials can be 
additively divided in volumetric and isochoric parts.  

 The rewritten fundamental literature models using the Flory’s decomposition are: (a) Minimum parameters 
strain energy function, (b) Nine parameters strain energy based on orthotropic invariants and (c) Hyperelastic extension 
of the linear constitutive model written by Spencer (1984). These models, as well as the majority of consulted 
hyperelastic models for orthotropic materials, are based on the so called orthotropic invariants. 

 Doing a toilsome algebraic work,one analyzesthe original consistent models (a), (b) and (c) and identifies that 
there is a unique algebraic (polynomial) representation for these models. Thusit is concluded that the only difference 
among these three models the way elastic constants are grouped, which interferes in the material characterization. 

 At this point it is interesting to quote an affirmation of Amores et al. (2021) that there is not a phenomenological 
extension of the linear theory capable of effectively modeling the existing large scope of orthotropic materials at large 
strains. Thus, it is very important to localize our work in the effort of finding a way to extend the linear understanding of 
orthotropic materials to the finite strain range, at least using small strain results to assemble basic elastic constants. From 
this comment and the observation that models based on orthotropic invariants may be written as a simple sum of 
components of the Right-Cauchy-Green stretch tensor, 5 models (also making algebraic comparisons) are proposed: (d) 
Saint-Venant-Kirchhoff-like (SVK) orthotropic isochoric strain energy part, (e) Saint-Venant-Kirchhoff-like non-isochoric 
orthotropic strain energy part, (f) Mixed model (d) and (e), (g) Homogenized model with SVK-like fibers, and (h) 
Homogenized model with Almansi fibers. 

 Organizing the proposed models in the above mentioned unique algebraic (polynomial) representation one 
shows that the elastic constants of the proposed models are easily related to usual linear elastic experimental tests. Is 
opens the possibility of using well established linear experimental tests to find initial ground constants of large 
deformable materials. A tailoring fiber-reinforced solid model - in which discrete fibers are immersed into continuous 
matrix – is also presented and used to generate ground elastic constants for numerical tests. The proposed models are 
implemented in an in-house FEM code and comparisons among their mechanical behavior give clues to their behavior 
and opens possibilities for future implementations. Finally, model (g) is selected to successfully simulate the pig 
myocardium tissue experimentally tested by Dokos et al. (2002) and numerically modeled by Holzapfel and Ogden 
(2009). In appendix A a list of symbols and abbreviations is provided to simplify the reading. 

2 GENERAL STRAIN ENERGY FUNCTION AND FLORY’ DECOMPOSITION 

In this section the adopted notation, as well as basic information necessary to the proposed developments are 
provided. As described by Holzapfel (2000), one assumes that the specific strain energy ( )W C  is a function of the Right-
Cauchy-Green stretch tensor T= ⋅C A A  (in which A  is the deformation gradient) and respects the growth condition 
given by: 

lim
J

W
→+∞

= +∞
 

and 

0
lim
J

W
+→

= +∞  (1) 

in which 2 ( )J Det= C .  

The normalization condition - when the strain energy function has a minimum value - is also adopted, i.e.: 

( ) ( ) 0W W= = =C = I E 0  (2) 

in which ( ) / 2= −E C I  is the Green-Lagrange strain and I  is the identity tensor of second order. Finally the proposed 
strain energy functions increase with strain, i.e., according to Eq. (2) 0W ≥ . 

Following Flory (1961), one writes the isochoric part of A  as 



Comprehensive discussion on hyperelastic orthotropic constitutive models for finite strains Eduardo Yuiti Hayashi et al. 

Latin American Journal of Solids and Structures, 2024, 21(10), e565 4/34 

1/3J −=A A  

With 

( ) ( )( )31/3 1Det Det J −= =A A  (3) 

and the volumetric part of A  as 

1/3ˆ J=A I   

( ) ( )( )31/3ˆDet Det J J= =A I  (4) 

Thus, one recovers the deformation gradient by the product 

ˆ ˆ= ⋅ = ⋅A A A A A  (5) 

Applying this definition to the Cauchy-Green stretch one writes 

2/3T J −= ⋅ =C A A C  (6) 

2/3ˆ ˆ ˆT J= ⋅ =C A A I  (7) 

ˆ ˆ= ⋅ = ⋅C C C C C  (8) 

( ) ( )32/3 2 1Det J J−= =C  

( ) ( )32/3 2ˆDet J J= =C  (9) 

Thus, C  is the isochoric part of the Cauchy-Green stretch and Ĉ  is its volumetric part. From this decomposition 
the strain energy can be written as a sum of volumetric and isochoric parts, as follows: 

ˆˆ ˆ( ) ( ) ( ) ( )W W W W J W= + = +C C C  

or 

ˆ ( ) ( )W W J W= + E  (10) 

in which the isochoric-like Green-Lagrange strain is defined as: 

2/3 2/3 2/31 1( ) ( )
2 2

J J J− − −= = − = −E E C I C I  (11) 

Without loss of generality, for all models the volumetric part of the strain energy proposed by Hartmann and Neff 
(2003) is adopted, i.e.: 
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( )2 2
2

ˆ ( ) 2
8

n nKW J J J
n

−= + −  (12) 

In which n  is an arbitrary constant that can be used to calibrate the large strain behavior of models and K  is the 
bulk modulus that can measured at the small strain as described in Eq. (16). Deriving Eq. (12) regarding the Green strain, 
one finds the volumetric part of the Second Piola-Kirchhoff stress as: 

( )2 2
ˆˆ

4
n n

ij ij
ij

W KS J J D
E n

−∂
= = −
∂

 (13) 

in which 1−=D C  and indices indicates Cartesian coordinates that will be extended to orthotropic directions in section 3. 
The second derivative of Ŵ  regarding the Green strain results the volumetric part of the tangent constitutive stiffness 
tensor Ĥ  given by: 

( ) ( )( ){ }
2

2 2 2 2
ˆˆ 2 2

4
n n n n

ijk ij k ij k ik j
ij k

W K n J J D D J J D D D D
E E n

− −∂
= = + + − −
∂ ∂   



H  (14) 

Making the limit of Eq. (14) for →E 0  one finds: 

0

0
1

ˆ ˆlimijk ijk ij kE
J

Kδ δ
→
→

= =
  

H H  (15) 

Considering the complete elastic tensor 0H  for small strains (experimentally determined) one can achieve the bulk 
modulus by the well known relation:  

( )0 / 9iijjK = H  (16) 

thus, the bulk modulus used in the Hartmann – Neff portion of large strain constitutive models can be determined at 
small strain experiments. 

The isochoric portion of the orthotropic models to be proposed is generically written as ( )W C or ( )W E . Making 
the first derivative of this strain energy portion regarding the Green-Lagrange strain, results: 

( )
*

4/3 * 4/3 * 4/34 ( )( )
3ij ij

ij ij ij

W WS J W J D W J
E E E

− − −∂ ∂ ∂
= = = − +
∂ ∂ ∂

EE  (17) 

in which, using Eq. (11), 4/3 *W J W−= , *W  is a usual strain energy function without imposing isochoric behavior and S  
is the deviatory part of the second Piola-Kirchhoff stress. The second derivative of W  regarding the Green strain results 
the isochoric part of the tangent constitutive stiffness tensor H  given by: 

( )
2 * * 2 *

4/3 *8 4 ( ) ( ) ( )2 3
9 3ijk k ij ik j ij k

ij k k ij ij k

W W W WJ D D D D W D D
E E E E E E

−
  ∂ ∂ ∂ ∂  = = + − + +   ∂ ∂ ∂ ∂ ∂ ∂    

E E EE
   

  

H   (18) 

In order to find relations of large strain elastic constants and small strains counterparts, the limit for →E 0  of Eq. 
(18) is performed after defining the specific isochoric strain energy functions. 
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3 CLASSICAL ORTHOTROPIC INVARIANTS AND SIMPLIFIED NOTATION 

Seeking to clarify the understanding of classical orthotropic invariants of the Cauchy-Green stretching tensor, one 
presents a geometric interpretation regarding the orthotropic vectors associated with the orthotropic planes. In Fig. 1 
the unit vector io  indicates a general orthotropic direction i  (fiber alignment) which means that any rotation around 
this axis does not change the elastic properties of the continuum. In Fig. 1 and along this paper the following notation 
will be used: 

i j
ijZ o o= ⋅ ⋅Ζ 

 (19) 

which means that the components of tensors are given regarding the orthotropic axes. 
 

 
Figure1 Orthotropic invariant tips for direction (i). 

In order to understand Fig. 1, one should imagine arrows as components of the Cauchy-Stretch tensor, in a similar 
way one understands the Cauchy stress representation. Making this analogy, from Fig. 1(a), one identifies the following 
9 orthotropic invariants (first set), i.e., not sensible to rotation around a general axis 1,2,3i = : 

( )i iC , 
( )

( )

j j jk

kj k k

C C
Tr

C C
 
 
 

 and 
( )

( )

j j jk

kj k k

C C
Det

C C
 
 
 

 (20) 

and from Fig. 1(b) one identifies the following 3 invariants (second set) also independent of rotation around axis 
1,2,3i = : 

2 2 2 2
( )ijk i i ij ikT C C C= + +   

with  

, ,i j k   (21) 

 in cyclic permutation observing that ij jiC C= . 

The well known 3 isotropic invariants, that are not sensible to any rotation, are written as: 

Tr C , 2Tr C  and 3Tr C  (22) 
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or, equivalently, as Spencer (1984) shows, the isotropic invariants may be written as: 

1I Tr= C , ( )2I Tr Adj= C  and 2
3I Det J= =C  (23) 

Considering that the Flory’s decomposition allows separating the volumetric and isochoric parts of the strain energy 
function, one chooses to write the 15 invariants (9 from Fig. 1(a), 3 from Fig. 1(b) and 3 isotropic) detaching the volumetric 
part as follows:  

1I Tr= C , ( )2I Tr Adj= C , 2
3 3

ˆˆJ I I Det= = = C , (24) 

( )i iC , ( )

( )

j j jk

kj k k

C C
Tr

C C
 
 
 

, ( )

( )

j j jk

kj k k

C C
Det

C C
 
 
 

, 2 2 2 2
( )ijk i i ij ikT C C C= + +  (25) 

As will be seen in next section, it is not necessary to use all these fifteen invariants (Holzapfel and Ogden, 2010) with 
a volumetric control (growth condition) (Hartmann and Neff, 2003) to assemble a complete isochoric positive polynomial. 
Moreover, the minimum parameter strain energy function (Rubin, 2016; Shariff, 2013; Spencer, 1984; Aguiar and Lopes 
da Rocha, 2018; Holzapfel and Ogden, 2010) adopted here uses the equivalent invariants defined by Eq. (24) plus 

4 11I C= , 2
5 11I C= , 6 22I C= , and 2

7 22I C=  (26) 

,i.e., 7 invariants. One should note that the four invariants of Eq. (26) are a subset of the twelve invariants of Eq (25). 

4 STUDIED STRAIN ENERGY FUNCTIONS 

The easier way to clarify the equivalence of various fundamental models (using or not the usual Right-Cauchy-Green 
stretch tensor orthotropic invariants) is to show that all energy functions studied here can be written in the following 
unified form: 

( ) [ ]{
( ) ( ) ( )

}

2 2 4/3
1 11 2 22 3 332

2
4 22 33 5 11 33 6 11 22 7 23

2 2 2 2 2
8 13 9 12 10 11 11 22 12 33

2
8

n nKW J J J a C a C a C
n

a C C a C C a C C a C

a C a C a C a C a C R

− −= + − + + + +

+ + + + +  
+ + + + + +

 (27) 

in which 1a , 2a , 3a  and R  guaranty the normality condition and zero stress at zero strain, i.e., are not proper elastic 

constants. The bulk modulus K  can be dependent of the other elastic constants (see Eq. (16)) if linear experiments are 
used to define elastic ground constants, but also can be defined as an independent constant if this relation is not 
considered for large strain models. Thus, the total number of elastic coefficients in Eq. (27) (independent or not) may be 
considered 10, (including K ) or 9, i.e., 4a through 12a . The differences among models are regarded to the computation 

of coefficients ia  and constant R , that makes easy or difficult the material characterization. 

4.1 Model (a): Minimum classical orthotropic invariants strain energy function 

The minimum parameter energy function (Rubin, 2016; Shariff, 2013; Spencer, 1984; Aguiar and Lopes da Rocha, 
2018; Holzapfel and Ogden, 2010) use invariants defined by Eqs. (24) and (26), remembering that 2 4/3 2

ij ijC J C−= . After 

some tedious algebraic manipulation (Spencer, 1984), one has: 
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( ) ( ){

( ) ( )}

22 2 4/3
3 1 11 22 33

22 23 11 13 11 12
2

32 33 31 33 21 22

2 2 2 2 2 2 2 2
4 11 5 11 12 13 6 22 7 22 12 23

2 3

1 1 1

( 1) 1 ( 1) 1

n nW m J J J m C C C

C C C C C C
m Det Det Det

C C C C C C

m C m C C C m C m C C C

− −= + − + + + − +

      
+ − + − + − +      

     

+ − + + + − + − + + + −

 (28) 

in which im  can be defined as the elastic constants - energy conjugate - to the chosen invariants. One needs to subtract 

the unity from each ( )i iC in order to guaranty the normality condition, which is similar to write the energy function using 

the Green-Lagrange strain. 

After simple algebraic manipulations, Eq. (28) is rewritten exactly as Eq. (27) with:  

( ) ( ) ( )
( ) ( ) ( )

1 1 4 2 1 6 3 1

4 2 1 5 2 1 6 2 1

7 7 2 8 5 2 9 5 7 2

10 1 4 5 11 1 6 7 12 1

1 2 4 6 5 7

(6 2 ), (6 2 ), 6 ,
2 , 2 , 2 ,

, , ,
( ), ( ),

(9 3 )

a m m a m m a m
a m m a m m a m m

a m m a m m a m m m
a m m m a m m m a m
R m m m m m m

= − + = − + = −

= + = + = +

= − = − = + −

= + + = + + =

= − + + − −

 (29) 

recalling that 1a , 2a , 3a  and R  only guarantee the normality condition and zero stress at zero strain. 

The equality 4 5 6a a a= =  means that some elements of the linear elastic constitutive tensor (when →C I ), see 

Eqs. (27) and (A12), are equal to each other, i.e., 1122 1133 2233= =H H H , limiting the independence of the orthotropic 
parameters at the small strain range. It is clear that the minimum parameters strain energy function is a theoretical 
potential not able to model general materials, even at small strain range. 

It is important to mention that in this classical and fundamental representation, references (Rubin, 2016; Shariff, 
2013; Spencer, 1984; Aguiar and Lopes da Rocha, 2018) do not consider the bulk modulus as a dependent elastic constant 
achieved at small strains (as they are not interested in small strains at all) thus the number of independent parameters 
is 7. However, if one thinks it is adequate to use Eq. (16) to define the bulk modulus for a specific material at small strains, 
the number of parameters to be experimentally achieved reduces to 6. It is interesting to mention that the 
characterization of materials using the formalism of expression (27) may be difficult, but model (d), given in section 4.4, 
indicates a simpler characterization strategy, at linear range.  

4.2 Model (b): Nine parameters strain energy based on classical orthotropic invariants 

As hyperelastic models may have more parameters in order to better reproduce material behavior, in this case all 
15 invariants defined in Eqs. (24) and (25) are used. and the resulting elastic constants at the formalism of Eq. (27) is 
investigated. Stating from the 15 invariants and adopting general elastic constants for each one, one writes the strain 
energy as: 
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( ) { ( )22 2 4/3
1 11 22 332

22 23 11 13 11 12
2

32 33 31 33 21 22

2 2 2
1 11 2 22 3 33

22 23
4 5

32 33

2 3
8

1 1 1

( 1) ( 1) ( 1)

1

n n iso

iso

KW J J J k C C C
n

C C C C C C
k Det Det Det

C C C C C C

k C k C k C

C C
k Det k D

C C

− −  = + − + + + − + 

      
+ − + − + − +      

     
+ − + − + − +

  
+ − +  

  

( ) ( ) ( )}

11 13 11 12
6

31 33 21 22

2 2
7 33 22 8 11 33 9 11 22

2 2 2 2 2 2 2 2 2
10 11 12 13 11 22 12 23 12 33 13 23

1 1

( 2) ( 2) ( 2)

1 1 1

C C C C
et k Det

C C C C

k C C k C C k C C

k C C C k C C C k C C C

      
− + − +      

     
+ + − + + − + + − +

+ + + − + + + − + + + −

 (30) 

in which superscript iso  means isotropic terms and 2
3 / (8 )isok K n= . 

After some tedious algebraicmanipulations one writes Eq. (30) exactly as Eq. (27) with the following constants 
correspondences: 

1 1 8 9 1 2 2 7 9 1 3 3 7 8 1

4 7 4 2 1 5 8 5 2 1 6 9 6 2 1

7 11 12 4 2 8 10 12 5 2 9 1

( 2 4 4 6 ), ( 2 4 4 6 ), ( 2 4 4 6 ),
(2 2 ), (2 2 ), (2 2 ),
( ), ( ), (

iso iso iso

iso iso iso iso iso iso

iso iso

a k k k k a k k k k a k k k k
a k k k k a k k k k a k k k k
a k k k k a k k k k a k

= − − − − = − − − − = − − − −

= + + + = + + + = + + +

= + − − = + − − = 0 11 6 2

10 8 9 10 1 11 7 9 11 1 12 7 8 10 1

1 2 1 2 3 7 8 9 4 5 6 10 11 12

),
( ), ( ), ( )

(9 3 4 4 4 )

iso

iso iso iso

iso iso

k k k
a k k k k a k k k k a k k k k
R k k k k k k k k k k k k k k

+ − −

= + + + = + + + = + + +

= − + + + + + + − − − − − −

 (31) 

In this case (like linear elasticity) from the starting 15 elastic constants, one has 9 independent ones 4a  trough 12a . 

The bulk modulus is then calculated from the other parameters at small strains, see Eq. (16) and recall that 1a , 2a , 3a  

and R  only guarantee the normality condition and zero stress at zero strain.  

4.3 Model (c): Hyperelastic extension of the linear constitutive model written as Spencer (1984) 

In this item, the linear constitutive model is written in the format proposed by Spencer (1984) and, knowing that 
the Green-Lagrange strain approaches the linear strain when it is small, the linear strains are replaced by the isochoric 
Green strain defined in Eq. (11). In addition, the same volumetric portion of the previous models is added in order to 
guaranty the growth condition, not guaranteed by linear elasticity. This procedure is reproduced in the following 
expression: 

( ) ( ) ( )
( )( ) ( ) ( )

}

22 2 4/3 2 2 2 2 2 2
11 22 33 11 22 33 12 13 232

2 2 2 2 2 2
1 11 2 22 11 22 33 1 11 12 13 2 22 12 23

2 2
1 11 2 22 3 11 22

2 2 2 2
8 2

2 2

1 1
2 2

n nKW J J J E E E E E E E E E
n

E E E E E E E E E E E

E E E E

λ µ

α α µ µ

β β β

− − = + − + + + + + + + + + +


+ + + + + + + + + + +

+ + +

 (32) 

in which λ , µ , 1α , 2α , 1µ , 2µ , 1β , 2β  end 3β  are Spencer’s elastic constants. 

After some algebraic manipulations one achieves the unified representation of Eq. (27), with the following elastic 
constants correspondences: 
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( )
( ) ( )

1 1 2 1 2 1 2 2 3 1 2

4 2 5 1 6 1 2 3 7 2

8 1 9 1 2 10 1 1 1

11 2 2 2 12

1 2 1

( 3 3 ), ( 3 3 ), ( 3 )
( ), ( ), ( ), (2 2 )
(2 2 ), (2 2 2 ), / 2 2 / 2

/ 2 2 / 2 , / 2

9 / 2 3 3 / 2

a a a
a a a a
a a a

a a

R

α α λ α α α λ α α α λ
α λ α λ α α λ β µ µ
µ µ µ µ µ λ µ α µ β

λ µ α µ β λ µ

λ α α β β

= − − − − = − − − − = − − −
= + = + = + + + = +

= + = + + = + + + +

= + + + + = +

+ + + − −( )2 3 2 1/ 2 2 2 3β µ µ µ− − − −

 (33) 

Again, one has 9 independent elastic constants 4a  trough 12a  considering the bulk modulus calculated from the 
other parameters at small strains as in linear elasticity.  

As a conclusion of the above developments, despite the formalism adopted to write the strain energy from classical 
orthotropic invariants, after algebraic operations, one will achieve Eq. (27) that has components (in the orthotropic 
directions) of the Green-stretch tensor as main variables. 

4.4 Model (d): Saint-Venant-Kirchhoff-like orthotropic isochoric strain energy part 

Observing that model (c) is an extension of Spencer’s linear orthotropic constitutive law with 9 elastic constants 
(being K  not a free elastic constant in this case) a direct association (not found in literature) will be made here with the 
generalized linear orthotropic Hooke’s law (Lekhnitskii, 1963) that also has 9 well defined elastic constants. From this 
Hooke’s law the Saint-Venant-Kirchhoff-like (SVK-like) orthotropic constitutive equation is written substituting linear 
strains by Green-Lagrange strains (equal to each other at small strains), see appendix B.  

From the orthotropic SVK-like expressions described in the appendix and including the Flory’s decomposition, from 
Eqs. (10), (15) and (18), one finds in a limiting process for →E 0  that the total linear elastic constitutive tensor 0

ijkH

can be written as: 

0 0 0ˆ
ijk ijk ijk= +
  

H H H  

or 

0 0
ijk ijk ij kKδ δ= −
  

H H  (34) 

in which 0ˆ
ijkH  is the volumetric part of the tangent constitutive elastic tensor at small strains, see equation (15), 0

ijkH  is 

the full linear constitutive tensor and 0
ijkH  is the isochoric part of the linear constitutive tensor.  

As 0
ijkH  is easily achieved by the inversion of the linear compliance tensor (see appendix B), the basic elastic 

constants for finite strain models can be achieved by well known experimental tests for small strain elasticity. In 
particular, the model proposed in this item is also related to the unified Eq. (27) facilitating this interpretation and making 
this procedure a simple task. Thus, the isochoric specific strain energy part of the proposed orthotropic model is simply 
written as: 

01( )
2 ij ijk kW E E E=

 

H  (35) 

see Eq. (11). After some algebraic manipulations one writes the strain energy in the unified format of Eq. (27), as: 
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{
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2

4/3
0 0 0 0 0 0 0 0 0
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n
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C C C C C C C C C
C

−

−

= + − +

 + − + + + + + + + + + 

+ + + + + + +

+ +

H H H H H H H H H

H H H H H H

H

}
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2222 22 3333 33

0 0 0 0 0 0
1111 2222 3333 1122 1133 2233

)

( 2 2 2 )

C C+ +

+ + + + + +

H H

H H H H H H

 (36) 

And the correspondence of elastic constants is simply: 

0 0 0 0 0 0 0 0 0
1 1111 1122 1133 2 2222 1122 2233 3 3333 1133 2233

0 0 0
4 2233 5 1133 6 1122

0 0 0
7 2323 8 1313 9 1212

0 0 0
10 1111 11 2222 12 3333

1 1 1( ), ( ), ( )
4 4 4

1 1 1, , ,
4 4 4
1 1 1, , ,
4 4 4
1 1 1, ,
8 8 8

1
8

a a a

a a a

a a a

a a a

R

= − + + = − + + = − + +

= = =

= = =

= = =

=

H H H H H H H H H

H H H

H H H

H H H

}0 0 0 0 0 0
1111 2222 3333 1122 1133 2233( 2 2 2 )+ + + + +H H H H H H

 (37) 

i.e., in this case the general elastic coefficients ( 4a  through 12a ) of Eq. (27) have a direct correspondence with simple 
linear elastic experiments and can be identified in the linear stiffness constitutive tensor using Eqs. (34), (15) and (18), 
written in Voigt’s notation, as:  

0 0 0
10 6 51111 1122 1133

0 0
11 42222 2233

0
110 3333

0
72323

0
81313

0
91212

0 0 00 0 0
0 0 00 0 0
0 0 00 0 0

2 0 02 0 0
2 02 0

22

a a a
a a

a
a

Sym aSym
a

   
   
   
   

= =   
   
   
   

     

H H H

H H

H
H

H

H

H

 (38) 

4.5 Model (e): Saint-Venant-Kirchhoff-like non-isochoric orthotropic strain energy part 

In order to show simple modifications that one can introduce in constitutive models, changing the material response 
at large strains, a simple model that doesn’t use the Flory’s decomposition for strains at the isochoric SVK-like part of the 
model is presented. This model applies Eq. (34) in order to keep, at small strains, the volumetric control only in the first 
part of the strain energy function (volumetric part), resulting: 
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( )

{
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1111 1122 1133 11 2222 1122 2233 22 3333 1133 2233 33

0 0 0 0 2 0 2 0 2
2233 22 33 1133 11 33 1122 11 22 2323 23 1313 13 1212 12
0 2

1111 11 222

2
8

1 2 ( ) ( ) ( )
8
2 2 2 2( )
(

n nKW J J
n

C C C

C C C C C C C C C
C

−= + − +
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+ +
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H H H H H H

H H
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0 0 0 0 0 0
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)

( 2 2 2 )

C C+ +

+ + + + + +

H

H H H H H H

 (39) 

see the absence of 4/3J −  at the second part of the model when compared with Eq. (36) meaning that E  is used instead 
of E . 

At small strain range ( 1J ≅ ), the same correspondence with Eq. (34) described by Eq. (38) is achieved, revealing 
that the difference between models (d) and (e) occurs at large strains. For isochoric situations models (d) and (e) will 
have the same behavior. 

4.6 Model (f): Mixed model (d) and (e) 

Like the proposed model (e), this model doesn’t use the Flory’s decomposition at the SVK-like part of 
the model; however, it split the volumetric control at small strains for both parts of the model, using the 
following equations, instead of Eqs. (34) and (39): 

0 0
ijk ijk ij kKβ δ δ= −
  

H H  (40) 

( )
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2
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+
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     
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1111 11 2222 22 3333 33

0 0 0 0 0 0
1111 2222 3333 1122 1133 2233
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C C C+ + +
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  

     

H H H

H H H H H H

 (41) 

in which 0 1β≤ ≤ . For 0β =  the model falls in the pure SVK-like model for orthotropic materials (violating the growth 
condition) and for 1β =  the model falls in model (e). In examples 1/ 2β = is adopted to illustrate the general behavior 
of this model. It is not necessary to show that Eq. (41) can also be written as Eq. (27). 

4.7 Model (g): Homogenized model with SVK-like fibers 

The transition from Eq. (35) to Eq. (36) in model (d) involves only the relationship (11). The transition from model 
(d) to model (e) is just the replacement, in Eq. (35), of equation (11) by the standard format of the relationship between 
the Green-Lagrange strain and the Cauchy-Green stretch ( ( ) / 2= −E C I ). Also observing that all the 6 previous models 
can be expressed by Eq. (27), one introduces the fiber’s strain energy (in a spread way), directly in the format of Eq. (27) 
allowing exponential improvements. This enables enhancing the isotropic Hartmann-Neff-Rivlin-Saunders isotropic strain 
energy, to reproduce general orthotropic materials as: 
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 (42) 

in which ˆ isocW W+  is called the Hartmann-Neff-Rivlin-Saunders isotropic constitutive model (Rivlin and Saunders, 1951; 
Hartmann and Neff, 2003; Kishino et al., 2022). When 1iα =  and 1ijγ = , the energy of elastic fibers ( fibersW ) is simply 

the one-dimensional SVK model including shear stiffness, that can also be written as Eq. (27) in its pure format. This 
procedure recovers the Tailoring technique described in section 6 with fibers following the orthotropic directions when 

( ) 0i iR =


 resulting into a unique shear modulus at small strains, corresponding to the isotropic matrix shear modulus. 

The integer parameters iα  and ijγ may also be used to calibrate the large strain behavior of the model, see example 5. 

The fiber’s elastic constants are calculated as: 

( )( ) ( )/fibers cont
i i i iR =E a a  

and 

( )( ) ( ) ( ) ( )/fibers cont
i i i i i iR G=
 

a a  (43) 

in which iE  is the elastic modulus of fiber following direction io , ( )i iG


 is the shear modulus of fibers that follow 

direction i  and give shear stiffness for plane i  and ( ) ( )/fibers cont
i ia a  is the area fraction between fibers and matrix for a 

given direction i . It is important to mention that, for example, 1(12)G  is not necessarily equal to 2(21)G introducing a 

dependence of the fiber’s cross section shapeson the shear behavior of material. The convexity of the proposed model 
is guaranteed by its isotropic part. 

4.8 Model (h) Homogenized model with Almansi-like fibers 

This model follows the same idea of model (g) (with 1iα =  and 1ijγ = ) and, in this case, the isolated fiber’s energy 

is also convex in compression. In order to write this model one substitutes the longitudinal part of the fibers’ SVK-like 
strain energy of model (g) by the one-dimensional Almansi-like strain energy, given by: 

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

1 2
11 11 22 22

3
33 33

2 2 2
1(12) 2(21) 12 1(13) 3(31) 13 2(23) 3(32) 23

2 1 ln 2 1 1 2 1 ln 2 1 1
4 4

2 1 ln 2 1 1
4

   = + − + − + + − + −   

 + + − + − + 

 + + + + + + 

fibers
AL

R RW E E E E

R E E

R R E R R E R R E

 (44) 
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in which iR  and ( )i iR


have the same meaning described by Eq. (43). This is the only case strain energy function cannot 

be writtenin the same format of Eq. (27), but opens the possibility to write new models taking advantage of exponential 
functions (Holzapfel and Ogden, 2009;Avazmohammadi et al., 2019). 

Remarks 

Models (b), (c), and (d) are equivalent; however, the use of model (d) simplifies the characterization of part of elastic 
constants by usual small strain’s experimental tests. The analysis of model (a) indicates that the minimum parameter 
choice is not the best one. It introduces more steps to find elastic constants and limits the range of covered materials. 
However, it is an important mathematical exercise that should not be forgotten. Model (e) differs from model (d) only at 
the large strain range, but not using the separation of isochoric from volumetric strains complicates developing simple 
elastoplastic models for homogeneous orthotropic materials at large strains as proposed by Coda (2021) and Coda and 
Sanches (2022) for isotropic materials. Model (f) introduces a new parameter that opens the possibility of using models 
(d) and (e) at the same time. Models (g) and (h) illustrate how to reproduce large strain tailoring strategies by continuous 
orthotropic material modeling. These models are useful when one knows the fiber/matrix volume fraction and the 
mechanical properties of isolated employed materials, or when materials are notably constituted by fiber/matrix 
arrangements and the mechanical properties can be experimentally evaluated. In this study models (g), (h) or discrete 
tailoring are also used to show how to calculate ground properties for models (d), (e) and (f) from simple linear elastic 
experiments.  

5 NUMERICAL IMPLEMENTATION - CONTINUUM 

Although the study concern is not to solve large examples, the finite element method is used as a tool to validate 
the proposed constitutive models. The operational version of the FEM presented here has already been widely tested in 
several linear and nonlinear representative structural cases by Soares et al (2021), Coda (2021), Paccola and Coda (2020) 
and Paccola et al (2015), for instance. 

Onestart the numerical modeling of nonlinear elastic mechanical problems from the weak equilibrium equation in 
its Lagrangian form as Ogden (1984) and Bonet and Wood (1997): 

0 0 0 0

0
0 0 0 0 0 0: 0

V V V
y y dV b y dV p y dS dVδ ρ δ δ δ δ

Γ
Π = ⋅ − ⋅ − ⋅ + =∫ ∫ ∫ ∫




   

 S E  (45) 

in whichΠ  is the total mechanical energy of the system 0b


 and 0p  are two point functions, i.e., mapped in the initial 

coordinates x  acting in current coordinates y , S  is the second Piola-Kirchhoff stress and y


  is the acceleration. The 
adopted Finite Element formulation uses nodal positions as degrees of freedom making simple to model geometric 
nonlinear mechanical problems and curved elements for linear and nonlinear applications, thus the deformation function 

 is written by the composition of two numerical mappings, see Fig. 2, as 

 (46) 

with 

 

and 

 (47) 

f


( ) 10f f f
−

=
  



( )0
i i if x X α

αφ ξ= =


( )1
i i if y Y α

αφ ξ= =

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in which  are usual FEM shape functions associated with node ,  are the set of dimensionless coordinates,  

are nodal initial coordinates and  are current nodal positions. The current nodal positions are actually the FEM degrees 

of freedom; therefore the adopted element has three degrees of freedom per node. 

 
Figure 2 Finite element deformation as a function of initial and current mappings. 

From Eq. (46) the deformation gradient is numerically given by: 

 (48) 

with 

 

and  

 (49) 

Writing the Green-Lagrange strain variation δE  as a function of the current nodal position variation , i.e., 

. (50) 

one is able to write the numerical weak form of equilibrium, Eq. (45), as: 

 (51) 
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∂
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in which  are surface shape functions. 

As  is arbitrary, after numerical integration, Eq. (51) results, 

 (52) 

in which  represents applied forces,  are internal forces that depends on current nodal positions and 
involves the developed constitutive models and  corresponds to inertial forces that will be not considered in this 
study. More details regarding the solution of Eq. (52) can be seen, for instance, in Coda (2021), Coda and Sanches (2022) 
and Soares et al (2021). 

6 TAILORING MODEL – IMMERSION OF FIBERS INTO CONTINUUM 

This section describes the Tailoring technique employed to couple fiber elements inside the continuum element. It 
can be used to model random immersed fibers, but here only orthotropic materials are considered. To model the matrix 
of fiber-reinforced material, the Hartmann-Neff-Rivlin-Saunders model (Rivlin and Saunders, 1951; Hartmann and Neff, 
2003; Kishino et al., 2022) - described in section 4.6 (Model (f)) - is adopted. 

Immersed fibers don’t increase the number of degrees of freedom, so without loss of generality, one models fibers’ 
segments as truss elements. The change of configuration function ( f



) of a truss (fiber) element is depicted in Fig. 3, in 
which  and  the initial (reference) and the current element lengths, respectively. The one dimensional description 
of the fiber (truss) element indicates that scalar stress and strain are sufficient for its modeling. Thus, the Jacobian of the 
change of configuration function is . In Fig. 3 one can see the initial and current positions of the truss element, 
which the change of configuration function is represented by f



. Nodes are also indicated to show the large rotation 
present in the kinematic description. 

 
Figure 3 Change of configuration of a truss element 

The relation between the Green-Lagrange strain and the nodal coordinates is given directly by: 

( ) ( ) ( ) ( )( )2 2 22 1 2 1 2 1 2
1 1 2 2 3

2
30 0

2 / 1 / 2/ 1 / 2 Y Y Y YE L L Y Y L − + − + −− −


= 
=   (53) 

Where  is the current coordinate of node  in direction , i.e., the degrees of freedom to be eliminated in the 

immersion process. The adopted strain energies are the one-dimensional SVK and the one-dimensional Alamansi-like 
models, given by: 

ϕ
Yδ


( ) 0int extM Y F Y F⋅ + − =


  



extF


int ( )F Y
 

M Y⋅




0L L

0/L L

k
iY k i



Comprehensive discussion on hyperelastic orthotropic constitutive models for finite strains Eduardo Yuiti Hayashi et al. 

Latin American Journal of Solids and Structures, 2024, 21(10), e565 17/34 

( )( )21( )
2

k k
SVK i iw Y E Y= 

 

or 

( ) ( )2 1 ln 2 1 1
4ALw E E= + − + −  


 (54) 

in which  is the longitudinal elastic modulus. From these expressions, one writes the complete truss positional FEM 
formulation (Coda and Greco, 2004). 

As the specific strain energy of a truss element  is constant, the strain energy of one element is given by: 

( ) ( )2

0 0 ( ) / 2( )=k k
SVK i iW Y E YA L   

or 

( ) ( ) ( )0 0 2 1 ln 2 1 1 / 4ALW A E EL= + − + −  
  (55) 

where  is the cross section area. 

The immersion is understood observing Fig. 4, i.e., a solid finite element undergoes a change of configuration with 
a fiber (truss element) immersed in its interior. 

 
Figure 4 Change of configuration of a fiber conditioned to the solid element movement 

As long as the movement of the fiber nodes is conditioned to the movement of the solid element nodes the strain 
energy of the fiber can be added to the strain energy of the solid as described below. The conditioning of the fiber 
element movement regarding the solid movement is performed by writing the truss nodes’ degrees of freedom (current 
positions) as functions of the solid nodes’ degrees of freedom (solid nodes current positions). Using Eq. (47), rewritten 
here for a particular dimensionless coordinate pξ



, results 

  

and 



0A

ˆ ( )p m m
i

p
iX Xφ ξ=
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 (56) 

in which the upper hat  indicates immersed coordinate and superscript  indicates fiber nodes that will disappear of 

the system of equations. The determination of  is automatically done from the known initial nodes position, inverting 
the first system of equations present in Eq. (56). Substituting Eq. (56) into Eq. (55) results: 

( ( ) )m p m
iW W Yφ ξ= 



 (57) 

i.e., the strain energy of an immersed fiber element (it can be SVK or Almansi) is written as a function of current nodal 
coordinates of a solid element. When various fiber elements are immersed results: 

( ( ) )
n

fiber m p m
iW W Yφ ξ=∑









 (58) 

in which  is the number of immersed fiber elements and  are the solid element degrees of freedom. The solid 
internal force is given by the derivative of the strain energy regarding solid degrees of freedom, thus, by the chain rule 
one write as Paccola et al. (2015), Sampaio et al. (2015) and Paccola and Coda (2020): 

int

1 1 1

( )ˆ ( )ˆ ˆ
( )( )

m m
p i

i ip p

pfib

i

e

i

r n n n
pYYW W Wf

YY
W

Y Y Y
α α

γ
γ γ

γα α α
γ

ξ ξφ δφ
= = =

∂∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂∂ ∂
∑ ∑ ∑

 

  



  





 (59) 

or 

( )int int

1

ˆ
n

p p
i if fα α

γ γ
=

= Ψ∑






 (60) 

i.e., the internal fiber force  energy conjugate to the solid element is given by a sum of ordinary fiber elements 

internal forces  weighted by the transformation tensor ( )p p
i i
α α

γ γφ ξ δ=


Ψ that corresponds to the shape function 

of node  calculated at the immerse node dimensionless position pξ


. 

Performing the second derivative of the strain energy results the fiber Hessian matrix conjugate to solid degrees of 
freedom: 

( )
1

( ) ( )ˆ
n

pq p q
ij i jH Hα β α β

γη γ ηφ ξ δ φ ξ δ
=

   =    ∑






 

 

or 

( )
1

ˆ
n

p pq q
i ij jH Hα β α β

γη γ η
=

= Ψ Ψ∑






 (61) 

in which  is the ordinary Hessian matrix of the immersed fiber  and the weighting has the same meaning described 

for internal forces. 

ˆ ( )p m m
i

p
iY Yφ ξ=



•̂ p
pξ




n m
iY

intf α
γ

intˆ pfγ
α

ˆ pq
ijH 
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7 EXAMPLES 

In this section the tailoring strategy is used as a starting point to validate the homogenized models (g) and (h). After 
that, these models are used to make fictitious experiments at small strains, from which ground constants for models (d), 
(e) and (f) and show their behavior at large strains are computed. Finallythe simulation of a pig myocardium tissue in 
order to show the possibilities of model (g) is carried out. For all examples a cube with unitary dimensions and simple 
linear element discretizations is used. Although our finite element implementation is capable of solving problems with 
complex geometries, this is not the objective of this study. 

7.1 Example 1 – Validating models (g) and (h) using tailoring models as reference 

The geometry of this example is a cube with 1mm  of side and a distribution of 50 50X  fibers (in each orthotropic 

direction) with 5 24 10x mm−  of area each. These fibers’ areas are directed used in the tailoring model (Fig. 5b) as real 
fibers. From these fibers’ areas and spread quantities one calculates the relation ( ) ( )/fibers cont

i ia a for each fiber direction i , 

resulting in equal values of 0.1  for all orthotropic directions. The isotropic (Hartmann-Neff-Rivlin-Saunders) matrix 
properties –used for models (g), (h) and tailoring – are 25 /matrixE N mm=  and 0.25matrixν = ; resulting (from usual 

relations) in 23.333 /matrixK N mm=  and 22 /matrixG N mm= . The fibers’ properties are 2
1 30 /fiberE N mm= , 

2
2 50 /fiberE N mm=  and 2

3 10 /fiberE N mm= . From these values and Eq. (43) one finds 2
1 3 /R N mm= , 

2
2 5 /R N mm= , 2

3 1 /R N mm=  and ( ) 0i iR =


 The last value is null because the tailoring model doesn’t includes shear 

stiffness for fibers and the objective of this example is to compare models (g) and (h) with the tailoring model. When 
using model (g) - in this example - 1iα =  and 1ijγ =  are adopted, i.e., the usual SVK model for fibers. 

Formodels (g) and (h), discretizations are very simple (linear prismatic elements), see Fig. 5(a), as the intention is to 
exclude any geometrical influence from the material behavior. 

The performed stretching follows direction i


 and the fibers’ directions alternate within directions i


, j


 and k


 in 

order to verify the representative continuous models, i.e., if orthotropic direction 1 coincides with direction i


oneapplies

1λ  measuring 11
fiberS , 22

fiberS  and 33
fiberS and so on. Shear tests are preformed constraining all nodes and applying relative 

translations between planes (no alternation of fiber’s directions is performed). For example, the Green-Lagrange strain 

12E  is achieved by making a relative movement of planes orthogonal to direction 1 following direction 2 and strain 21E  
is achieved by a relative movement of planes orthogonal to direction 2 following direction 1.  

Fig. 5(b) presents the adopted discretization for the tailoring strategy (in which tetrahedral elements are employed 
from the adopted computational code) that is also simple, but more elaborated as it is important to keep symmetry in 
order to guaranty the representative volume. Tests for the tailoring strategy are also performed by fiber direction 
permutation.  

 
Figure 5 (a) ModelsSVK (g) andAlmansi (h) discretization, (b) Tailoring model discretization - planes ik , jk  and ij  are sliding for 

stretch tests following direction i


. 
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Fig. 6 shows, for models SVK (g) and Almansi (h) the second Piola-Kirchhoff stress at fibers for an applied stretching 
following orthotropic directions. As expectedfibers in the stretching direction  present positive stresses while the other 
fibers suffer compression due to the matrix Poisson’sshortening at other directions.The corresponding tailoring models 
(SVK and Almansi) results are not shown because they are practically equal to the results of the continuous models SVK 
(g) and Almansi (h). From this observation models (g) and (h) are validated for stretching, i.e., the strategy used to 
introduce fibers in a continuum way is verified.  

 

Figure 6 Piola-Kirchhoff stress at fibers for stretching (tension) following orthotropic directions 

Fig. 7shows results for models SVK (g), Almansi (h) and tailoring when compression takes place in the main fiber 
directions. In this case results are also coincident until the tailoring strategy looses stability. To identify the instability 
points,Fig. 7 uses a black star over the complete curve of the continuous Almansi model (h) and a black square over the 
complete curve of the continuous SVKmodel (g). The instability occurs at the central point of the tetrahedral 
discretization forming a shear band. As the tailoring model is used as benchmark (Paccola et al (2015) and Coda and 
Paccola (2020)) and results are practically coincident for compression, one understands that the proposed continuum 
strategy is also validated in compression. 

 

Figure 7 Piola-Kirchhoff stress at fibers for compression following orthotropic directions 

Fig. 8shows the shear stress results for imposed shear strains. From Fig. 7 and Fig. 6 one expects (and it is confirmed) 
that results of the tailoring model also coincides with continuous models SVK (g) and Almansi (h) in shear situations. In 
this case, as fibers are always stretched, no loss of stability occurs for the tailoring strategy. As tailoring results coincide 
with the proposed models in all applications one concludes that the proposed continuum models are validated.  
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Figure 8 Shear stress versus shear strain ijγ  for SVK (g) and Almansi (h) models 

It is also interesting to note thatin Fig. 8 the shear stiffness is growing as the shear strain grows. It occurs because 
fibers are stretching during shear. From this observation it was possible to propose 1iα ≠  and 1iγ ≠  in model SVK (g), 
opening the possibility to reproduce the experimental result presented in example 5. Other interesting features 
presented in Fig. 8 are the equalities 12 13σ σ= , 21 23σ σ=  and 31 32σ σ= . They occur because for small strains shear 
stiffness depends only on the isotropic matrix and for large strains it depends on which fiber is being stretched. Fig. 14 
of example 5 gives a geometrical clue to understand this observation. 

7.2 Example 2 – Material Characterization for models (d), (e) and (f) from the material employed in example 1 

Example 1 defines an orthotropic material via tailoring discretization in which “real” fibers are spread inside the 
domain. Example 1 also tests continuous models (SVK (g) and Almansi (h)) that use specific enhancements to substitute 
discrete fibers. In this example the material generated in the previous example is usedto extract- at small strainrange -
elastic constants for models (d), (e) and (f). The proposition of these models intends to interconnect large strains and 
small strains orthotropic relations, something missing in the consulted literature. In order to do so one writes the 
compliance matrix (see Eq. A1) in a simplified way (small strains), as follows: 

11 1111 12 13

22 2212 22 23

33 3313 23 33

12 23

13 13

23 12

0 0 0
0 0 0
0 0 0

0 0 0 1/ 2 0 0
0 0 0 0 1/ 2 0
0 0 0 0 0 1/ 2

d d d
d d d
d d d

G
G

G

ε σ
ε σ
ε σ
ε σ
ε σ
ε σ

    
    
    
       =    
    
    
    

       

 (62) 

Fibers of the tailoring model do not work regarding shear at small distortions, thus the shear modulus at small 
strains is the same in all directions and equal to the matrix material shear modulus. 

Applying 3
11 1.65 10x MPaσ −= , 22 0σ =  and 33 0σ =  on the unitary cube of example 1, one achieves 11ε , 22ε  

and 33ε . Using Eq. (62) one finds the compliance values: 
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( )4 3 1
11 11 11 11 112.0 10 1.65 10 1.21 10 /x d x MPa d d x MPaε σ− − −= = = ⇒ =  

( )5 3 2
22 11 12 12 122.7 10 1.65 10 1.66 10 /x d x MPa d d x MPaε σ− − −= − = = ⇒ = −  

( )5 3 2
33 11 13 13 134.9 10 1.65 10 2.99 10 /x d x MPa d d x MPaε σ− − −= − = = ⇒ = −  

Following the same procedure and applying 11 0σ = , 3
22 2.04 10x MPaσ −=  one achieves: 

( )4 3 2
22 22 22 22 222.0 10 2.04 10 9.82 10 /x d x MPa d d x MPaε σ− − −= = = ⇒ =  

( )5 3 2
33 22 23 23 234.7 10 2.04 10 2.33 10 /x d x MPa d d x MPaε σ− − −= − = = ⇒ = −  

Finally, applying 11 0σ = , 22 0σ =  and 3
33 1.27 10x MPaσ −=  one achieves: 

( )4 3 1
33 33 33 33 332.0 10 1.27 10 1.58 10 /x d x GPa d d x GPaε σ− − −= = = ⇒ =

 

Inverting the compliance matrix, results the linear elastic constitutive tensor as: 

 

0 0 0
1111 1122 1133

0 0
2222 2233

0
0 3333

0
2323

0
1313

0
1212

9 2 2 0 0 00 0 0
11 2 0 0 00 0 0

7 0 0 00 0 0
4 0 02 0 0

4 02 0
42

MPa

SymSym

   
   
   
   

= =   
   
   
   
    

H H H

H H

H
H

H

H

H

 (63) 

Using Eq. (16) one finds the bulk modulus 4.333MPaK =  and applying Eq. (34) results: 

0 0 0
1111 1122 1133

0 0
2222 2233

0
0 3333

0
2323

0
1313

0
1212

4.666 2.333 2.333 0 0 00 0 0
6.666 2.333 0 0 00 0 0

2.666 0 0 00 0 0
4 0 02 0 0

4 02 0
42

MPa

SymSym

− −   
   −   
   

= =   
   
   
   
    

H H H

H H

H
H

H

H

H

 (64) 

These values are directly applied into Eqs. (36), (39) and (41) to run models (d), (e) and (f), respectively, in the next 
example. It is interesting to recall that model (d) uses volume invariant to control the growth condition and the SVK-like 
part is conditioned to isochoric Green-Lagrange strains. Model (e) uses the volume invariant to control the growth 
condition and uses regular Green-Lagrange strains at the remaining part of the strain energy. Model (f) is a mix of models 
(d) and (e). 



Comprehensive discussion on hyperelastic orthotropic constitutive models for finite strains Eduardo Yuiti Hayashi et al. 

Latin American Journal of Solids and Structures, 2024, 21(10), e565 23/34 

7.3 Example 3 – Comparing the large strain behavior of models (d), (e) and (f) using ground constants characterized 
at example 2 

The same dimensions and discretization (Fig. 5(a)) of examples 1 and 2 are employed in this example. Models (d), 
(e) and (f) are not expected to be similar to models SVK (g),Almansi (h) and tailoring for stretching at large strains, but 
models (d) and (e) are expected to have the same behavior (among each other) for isochoric shear.  

In this example, using the elastic constants G and K , as well as the stiffness tensor 0H  extracted in example 2 
from the material of example 1, the large strain behavior of models (d), (e) and (f) are compared. 

The stretch behavior in the third orthotropic direction ( 3x ) and the evolution of transverse strains in directions 1x  

and 2x  are depicted in Fig. 9. Figure 10 shows the shear behavior for models (d), (e) and (f). Figure 11 shows the models 
behavior in compression.  

 
Figure 9 Cauchy stress and Poisson’s behavior for stretching applied in orthotropic direction 3 

In Fig. 9(a) the stress behavior of model (g) is also introduced only as a scale reference. Comparing Figs. 9(b) and 9(c) 
one observes that the large stiffness in direction 2 has a larger influence in the “Poisson’s” behavior. As expected, when the 
volume control diminishes (proportion of the volumetric strain energy) in the sequence of models (d), (e) and (f) the cross 
section of the specimen diminishes in a faster rate and the normal Cauchy stress grows accordingly in stretching. 

 
Figure 10 Shear stress behavior for models (d), (e) and (f) 

As one can see in Fig. 10, regarding shear, model (f) has a stiffer behavior than models (d) and (e) meaning that 
parameter β  (adopted as ½) can be used as a calibrating tool. Moreover, one confirms the expected equalities between 
models (d) and (e) in isochoric situations. 
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Figure 11 Cauchy stress and Poisson’s behavior for compression applied in orthotropic direction 3 

In Fig. 11the compression behavior of models are studied. It is possible to observe (Figs. 11(b) and 11(c)) that when 
using 1n =  (see equation (12)) in model (d) the “Poisson’s” behavior is similar to model (e), but with a higher stress 
level (Fig. 11(a)). This behavior leads to material instability (Ogden (1984)), provoking a shear banding in the numerical 
analysis of model (d). Adopting 3n =  in model (d), the “Poisson’s” behavior considerably increases, see Figs. 11(b) and 
11(c). It provides a larger deformed “cross section” for the specimen, eliminating the shear banding for the same Cauchy 
stress level (Fig. 11(a)). In this example the contribution of parameter n  becomes clear, i.e., when its value increases the 
deformed volumetric stiffness also increases. 

7.4 Example 4 –Models (d), (e) and (f) with not equal shear modulus at small strain 

As mentioned before the tailoring model is not able to represent (at small strains) different shear modulus. In order 
to show that the proposed models are more general than the tailoring one, in this example model (g) is used with the 
same fiber longitudinal elastic modulus and relation ( ) ( )/ 0.1fibers cont

i i =a a  for all orthotropic directions of example 1, but 

different fiber’s shear modulus to extract (at small strains) different ground shear constants. The matrix properties are 
25 /matrixE N mm= and 0.25matrixν = ; resulting in 23.333 /matrixK N mm=  and 22 /matrixG N mm= . The fiber’s 

properties are 2
1 30 /fiberE N mm= , 2

2 50 /fiberE N mm= , 2
3 10 /fiberE N mm= , 2

1 20 /fiberG N mm= , 
2

2 30 /fiberG N mm=  and 2
3 5 /fiberG N mm= . From these values and Eq. (42) one finds 2

1 3 /R N mm= , 
2

2 5 /R N mm= , 2
3 1 /R N mm= , 2

1(12) 2 /R N mm= , 2
1(13) 2 /R N mm= , 2

2(21) 3 /R N mm= , 2
2(23) 3 /R N mm= , 

2
3(31) 0.5 /R N mm=  and 2

3(32) 0.5 /R N mm= .  

 Repeating the procedure of example 2 one finds the bulk modulus 24.333 /K N mm=  and 

0 0 0
1111 1122 1133

0 0
2222 2233

0
0 23333

0
2323

0
1313

0
1212

4.666 2.333 2.333 0 0 00 0 0
6.666 2.333 0 0 00 0 0

2.666 0 0 00 0 0
/

14 0 02 0 0
9 02 0

112

N mm

SymSym

− −   
   −   
   

= =   
   
   
   
    

H H H

H H

H
H

H

H

H

 

These constants are used in models (d), (e) and (f) and the isochoric shear stress results are compared in Fig. 12. One should 
observe that in this case the obvious equality ij jiσ σ=  are easily identified at small strains, but for large strains the not so obvious 

equalities 31 32σ σ= , 21 23σ σ=  and 13 12σ σ=  (explained in example 5 for identical fiber shear modulus – Figs. 14 and 15) do 
not take place. It occurs due to different combinations among fiber stretching and shear stiffness. 



Comprehensive discussion on hyperelastic orthotropic constitutive models for finite strains Eduardo Yuiti Hayashi et al. 

Latin American Journal of Solids and Structures, 2024, 21(10), e565 25/34 

 
Figure 12 Shear stress behavior for orthotropic material with different shear constants. 

 As previously mentioned, models (d) and (e) have the same behavior for isochoric strains, thus only one figure 
(Fig 12(a)) is presented for both models. These results allow calibrating and/or adapting models (d), (e), (f) or (g) to 
represent complex models. In particular, the existence of parameters iα  and iγ  gives more flexibility to model (g) and 
no adaptations are necessary. Thus model (g) is used in the next example to simulate the passive pig myocardium tissue 
experimentally tested by Dokos et al. (2002). 

7.5 Example 5 – Modeling the passive pig myocardium using model (g) 

 This example uses experimental data provided by Dokos et al. (2002) and adapted by Holzapfel and Ogden 
(2009). It is used to show the possibility of adopting the proposed modelsto simulate general materials. The detailed 
description of the example indicates how an organized strategy facilitates to characterize the material. The behavior of 
model (g) in example 1 indicates that the increasing of shear modulus when pure distortion increases is direct related to 
fibers stretching and inclining. Observing in Dokos et al. (2002) that the pig myocardium tissue has an orthotropic 
characteristic with a preferential fiber direction and other two less important (secondary and tertiary), one identifies that 
model (g) presents the proper orthotropic stiffening to characterize the material.  

The fiber set orientation can be seen in Fig. 13(a) in which directions s , n  and f  correspond to the orthotropic 

directions 1x , 2x  and 3x . 

 

 
Figure 13 (a) Orientation of myocardium fibers and (b) Linear (8 nodes) discretization 
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In order to built stress-strain (pure distortion) curves, all possible shear strain displacements are imposed on a 
unitarycube. Strains are imposed controlling all nodes positions (eight) of the simple discretization presented in Fig. 13(b). 
The applied strain cases are schematically described in Fig. 14, all four nodes of the plane opposite to the fixed one are 
subject to the same displacement in the sense of the depicted arrows. Shear ij  means that the plane orthogonal to 
direction i  is moved in direction j . The corresponding letters ,s n  and f are also used following the notation adopted 
by Dokos et al. (2002) and Holzapfel and Ogden (2009). 

As the homogeneous (matrix) part of model (g) has linear behavior for shear effects, it is easy to verify that the 
increasing of shear stiffness is given by the stretching of fibers. When there isn’t different shear stiffness for fibers, one 
observes from Figs. 13(a) and 14 that: (i) the large strain behaviors of Shear 31 and Shear 32 are related to the stretching 
of the primary fiber set, (ii) the large strain behaviors of Shear 13 and Shear 12 are related to the stretching of the 
secondary fiber set, and (iii) the large strain behaviors of Shear 21 and Shear 23 are related to the to the stretching of 
the tertiary fiber set. 

Differences among these behaviors given by the experimental result of Dokos et al. (2002) can be attributed to 
different fibers’ shear stiffness (shape effect), not captured by the model proposed by Holzapfel and Ogden (2009) based 
only on strain invariants. The shape effect is inspired in the shear stiffness difference of bars when cross sections do not 
have regular shapes. 

 
Figure 14 Schematically imposition of shear for linear discretization 

In Fig. 15 results are compared with Holzapfel and Ogden (2009). The following constants for model (g) are adopted: 
4.67K kPa= , 0.5G kPa= , 1n = , 2iα = , 4ijγ = , 1 400R kPa= , 2 100R kPa= , 3 1860R kPa=  and 

( ) 50i iR kPa=


. The last adopted constant corresponds to consider the same shear modulus (small strain) in all 
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directions, as the reference model is not able to do different. As mentioned before, this choice makes 13 31σ σ= , 

12 21σ σ=  and 23 32σ σ= .  

 
Figure 15 Comparing results of model (g) and numerical result presented by Holzapfel and Ogden (2009) 

Results of Fig. 15 are in good agreement with the reference numerical solution and the expected results 13 31σ σ≠ , 

12 21σ σ≠  and 23 32σ σ≠  for large strain range takes place. However, experimental results do not confirm equalities 

fs fnσ σ= , sf snσ σ=  and ns nfσ σ= .  

To show that the proposed approach is more general than the reference and is capable to reproduce the experimental data 
of this challenging benchmark, one adopts 4.67K kPa= , 0.5G kPa= , 1n = , 2iα = , 4ijγ = , 1 200R kPa= , 

2 50R kPa= , 3 1460R kPa=  and different shear stiffness for fibers (shape effect) as: 1(12) 80R kPa= , 1(13) 100R kPa= , 

2(21) 80R kPa= , 2(23) 50R kPa= , 3(31) 500R kPa=  and 3(32) 100R kPa= . In Fig. 16 results are compared with the 

experimental values given by Dokos et al. (2002) (adapted from Holzapfel and Ogden (2009)). 
 

 
Figure 16 Comparing results of model (g) with experimental data presented by Doko et al (2002) 

As one can see the proposed model(g), not based only on strain invariants, but taking advantage of the unified form 
(27) to provide spread fibers’ stiffening, is able to reproduce numerical and experimental results of this challenging 
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biomechanical benchmark and can be used for practical purposes. In particular, comparing Figs. 15 and 16, one can see 
that the proposed model is able to reproduce the following experimental inequalities 31 32σ σ≠ , 21 23σ σ≠  and 

13 12σ σ≠ .  

8 CONCLUSIONS 

In the presented study, a unified expression to write large strains orthotropic elastic constitutive models was found. 
From this unified expression, it was verified that classical models based on strain invariants (which are difficult to 
interpret) can be replaced by models that have a direct connection with linear orthotropic elasticity expressions. From 
this finding, constitutive models that include longitudinal and transverse stiffening of spread fibers were proposed. Using 
these alternative models, an important biomechanical benchmark was successfully simulated, validating the proposal. In 
future works, it is intended to expand the formulation to consider random spreading of the fibers and nonlinear physical 
behavior (plasticity and/or damage) for both matrix and the fibers 
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Appendix A: List of symbols and abbreviations (in order of appearance) 

FEM – Finite Element Method 
SVK – Saint-Venant- Kirchhoff 
C  - Cauchy-Green right stretch tensor 
Det  - Determinant of a tensor 
A  - Deformation Gradient 
W  - Specific strain energy  
J  - Jacobian – determinant of the deformation gradient 
E  - Green-Lagrange strain 
I  - Identity tensor of order 2 
A  - Isochoric part of the deformation gradient 
Â  - Volumetric part of the deformation gradient 
C  - Isochoric part of the Cauchy-Green stretch 

Ĉ  - Volumetric part of the Cauchy-Green stretch 

Ŵ  - Volumetric part of specific strain energy 
W  - Isochoric part of specific strain energy 
E  - Isochoric part of the Green-Lagrange strain 
K  - Bulk modulus 
n  - Volumetric strain energy controlling paramenter 
D  - Inverse of the Cauchy-Green stretch 

Ŝ  - Volumetric part of the second Piola Kirchhoff stress 
S  - Isochoric part of the second Piola Kirchhoff stress 

Ĥ  - Volumetric part of the tangent constitutive stiffness tensor 
0Ĥ  - Volumetric part of the tangent constitutive stiffness tensor at zero strain 

H  - Isochoric part of the tangent constitutive stiffness tensor 
*W  - Usual strain energy function without imposing isochoric behavior 

io  - Orthotropic direction i  

ijkT  - Invariant vector T


 belonging to plane jk  

Tr  - Trace of a second order tensor 

iI  - Invariants of the right Cauchy stretch tensor 

iI  - Invariants of the right Cauchy stretch tensor isochoric part 

îI  - Invariants of the right Cauchy stretch tensor volumetric part 

R  - General value for each model that controls the normality condition 

ia  - General elastic constants of unified specific strain energy function 

im  - Elastic constants of specific strain energy of model (a) 

ik  - Elastic constants of specific strain energy of model (b) 

iµ  - Elastic constants of specific strain energy of model (c) 

iβ  - Elastic constants of specific strain energy of model (c) 

λ  - Elastic constants of specific strain energy of model (c) 

iα  - Elastic constants of specific strain energy of model (c) or power strains of model (g) 

ijδ  - Kronecker delta 

G  - Shear elastic modulus 

ijγ  - Power of strains in model (g) 
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( )i iG


 - Shear modulus of fibers i  in direction  . 

( )
fibers
ia  - Total fiber area crossing plane i  

( )
cont
ia  - total area of plane i  

iR  - Longitudinal relative stiffness of fibers in direction i  

( )i iR


 - Shear relative stiffness of fibers i  in direction   

Π  - Total mechanical energy 

0ρ  - Lagrangean density 
y  - Current position of a point inside the continuum 

y  - Acceleration of a point inside the continuum 
0b


 - Body force mapped in the initial configuration acting I current configuration 
0p  - Surface force mapped in the initial configuration acting I current configuration 

x  - Initial position of a point inside the continuum 
f


 - Change of configuration or deformation 
φ  - Finite Element shape function 

Y


 - Current nodal position vector 
X


 - Initial nodal position vector 
ξ


 - Dimensionless coordinates – mapping 
0B


- nodal values of body force 
P


 - Nodal values of surface forces 

Y


  - Nodal Acceleration vector 
intF


 - Internal forces written at nodal positions 
extF


 - External forces at nodal positions 

0L  - Initial length of fiber element 

L  - Current length of fiber element 
  - Longitudinal elastic modulus for fiber elements 

SVKw  - Saint-Venant-Kirchhoff specific strain energy for fiber element 

ALw  - Almansi specific strain energy for fiber element 

SVKW  - Strain energy of a fiber element - Saint-Venant-Kirchhoff 

ALW  - Strain energy of a fiber element - Almansi 

W   - Strain energy of a fiber   it can be ALW  or SVKW  
pξ


 - Dimensionless coordinate for an immersed point 
intf α
γ  - Internal force of a fiber element 

p
i
α

γΨ  - Fiber internal force weight 

H  - Hessian matrix 
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Appendix B: In order to be complete, this appendix shows the usual linear elastic compliance and stiffness constants 
used in parts of this study (Lekhnitskii, 1963). The following equationis the adaptation from orthotropic Hooke’s Law 
to the Saint-Venant-Kirchhoff-like model for orthotropic material using the Voigt’s notation. 

11 1 12 2 13 3 11

22 21 1 2 23 3 22

33 31 1 32 2 3 33

12 23 23

13 13 13

23 12 12

1/ / / 0 0 0
/ 1/ / 0 0 0
/ / 1/ 0 0 0

0 0 0 1/ 2 0 0
0 0 0 0 1/ 2 0
0 0 0 0 0 1/ 2

E E E E S
E E E E S
E E E E S
E G S
E G S
E G S

ν ν
ν ν
ν ν

− −     
     − −     
     − −   =     

    
    
    
         

 (A1) 

in which, by symmetry, ( ) ( )i i j j j iE Eν ν=  for 2v . In this representation, the number of elastic constants is 9, i.e., three 

longitudinal elastic moduli 1E , 2E  and 3E ; three shear elastic moduli 12G . 13G and 23G ; and three Poison ratio 12ν , 

13ν  and 23ν . The terms of the constitutive elastic tensor of Eq. (34) are given explicitly by:  

( )0
1111 1 23 321 /E ν ν= − ∆H  (A2) 

( ) ( )0 0
1122 2211 2 23 31 21 1 13 32 12/ /E Eν ν ν ν ν ν= = + ∆ = + ∆H H  (A3) 

( ) ( )0 0
1133 3311 1 12 23 13 3 21 32 31/ /E Eν ν ν ν ν ν= = + ∆ = + ∆H H  (A4) 

( )0
2222 2 13 311 /E ν ν= − ∆H  (A5) 

( ) ( )0 0
2233 3322 2 13 21 23 3 31 12 32/ /E Eν ν ν ν ν ν= = + ∆ = + ∆H H  (A6) 

( )0
3333 3 12 211 /E ν ν= − ∆H  (A7) 

0
1212 122G=H  (A8) 

0
1313 132G=H  (A9) 

0
2323 232G=H  (A10) 

( ) ( ) ( )23 32 12 21 23 31 13 21 32 311 ν ν ν ν ν ν ν ν ν ν∆ = − − + − +  (A11) 

Positioned in Voigt’s notation as: 
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0 0 0
1111 1122 1133

0 0
2222 2233

0
3333

0
2323

0
1313

0
1212

0 0 0
0 0 0
0 0 0

2 0 0
2 0

2
Sym

 
 
 
 

=  
 
 
 
  

H

H H H

H H

H

H

H

H

 (A12) 


