11 (2014) 459 - 487

Latin American Journal of
Solids and Structures

www.lajss.org

Modified Couple Stress-Based Third-Order Theory for
Nonlinear Analysis of Functionally Graded Beams

Abstract A. Arbind, J.N. Reddy"

A microstructure-dependent nonlinear third-order beam theory and A. R. Srinivasa

which accounts for through-thickness power-law variation of a ) S
Department of Mechanical Engineering Texas

o o A&M University, College Station, TX 77843-
The formulation is based on a modified couple stress theory, pow- 3123, USA

two-constituent material is developed using Hamilton’s principle.

er-law variation of the material, and the von Karman nonlinear
strains. The modified couple stress theory contains a material Received in 02 Apr 2013

length scale parameter that can capture the size effect in a func- In revised form 30 Apr 2013
tionally graded material beam. The influence of the material N
length scale parameter on linear bending is investigated. The finite Author email: jnreddy@tamu.edu
element models are also developed to determine the effect of the
geometric nonlinearity and microstructure-dependent constitutive

relations on linear and nonlinear response.
Keywords

Modified couple stress theory, equations of motion, general third-
order beam theory, von Kérman nonlinearity, functionally graded
beam, nonlinear finite element model.

1 BACKGROUND
1.1 Microstructural Effects

In recent years a number of attempts have been made to bring microstructural length scales into
the continuum description of beams and plates. Microstructure-dependent theories were developed
for the Bernoulli-Euler beam by Park and Gao(2006 and 2008) and for the Timoshenko and Red-
dy-Levinson beams and Mindlin plates by Ma, Gao, and Reddy (2008, 2010 and 2011), using a
modified couple stress theory proposed by Yang et al. (2002), which contains only one material
length scale parameter. Recently, Reddy (2011) developed a complete formulation of functionally
graded beams with microstructure-dependent constitutive relations for Bernoulli-Euler and Timo-
shenko beams. The formulation accounted for temperature-dependent material properties and the
von Karman nonlinearity, which may have significant contribution to the response of beam-like

elements used in micro- and nano-scale devices such as biosensors and atomic force microscopes
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(see, e.g., Li et al. (2003) and Pei et al. (2004)). The present paper is an extension of the work of
Reddy (2011) to a general third-order theory that contains the Reddy third-order beam theory as
well as the Bernoulli-Euler and Timoshenko beam theories as special cases. The following review
of literature provides a background for the present study.

1.2 An Overview of Beam Theories

Mathematical models used to determine the response of beams under external loads are deduced
from the three-dimensional elasticity theory through a series assumption concerning the kinemat-
ics of deformation and constitutive behavior. The kinematic assumptions exploit the fact that
such structures do not experience significant strains or stresses associated with the cross-sectional
dimensions (e.g., transverse normal and shear strains and stresses). For example, the solution of
the three-dimensional elasticity problem associated with a straight beam is reformulated as a one-
dimensional problem in terms of displacements whose form is presumed on the basis of an educat-
ed guess concerning the nature of the deformation.

The theories based on assumed form of the displacement field have received the most atten-
tion, especially in the context finite element model development. In these theories, the displace-
ment field of the beam is expanded in terms of increasing powers of the coordinate in the thick-
ness (i.e., height) direction. The higher-order terms would have diminishing returns compared to
the lower-order terms due to the smallness of thickness compared to the length. The third-order
expansion of the displacement field is optimal because it gives quadratic variation of transverse
strain and stress, and requires no “shear correction factor” compared to the Timoshenko theory,
where the transverse strains and stresses are constant through the plate thickness (see Reddy
(2002 and 2007)).

The simplest shear deformation beam theory is the Timoshenko beam theory, which is based
on the displacement field

u=u, € +u,€,+uzé&; where, 1)
U (x,y,2) = u(x,y) +26,(x,y),  u =0, uz(xyz)=wky)

Here 6, is the rotation of a transverse normal line

Jduy
0 = r (2)

The Bernoulli-Euler hypothesis of straight lines normal to the axis of the beam before defor-
mation remain (a) straight after deformation, (b) inextensible, and (c) rotate as rigid lines to
remain perpendicular the bent axis of the beam (see Fig. 1) require

ow
0, = % (3)
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Consequently, the transverse shear strain y,, is zero.

~ Displacements and rotations
are exaggerated

T

u "o

— \7<
w I \{x

—>

26

Figure 1 Kinematics of the Euler—Bernoulli beam theory

The Timoshenko beam theory is based on the first two assumptions of the Bernoulli-Euler hy-
pothesis, and the normality of the assumption is not invoked, making the rotation 8, to be inde-
pendent of dw/dx. As a result, the transverse shear strain y,, is nonzero but independent of z.
This leads to the introduction of a shear correction factor in the evaluation of the transverse
shear force. The finite element models of the theory require only C°-continuity, that is, the varia-
bles of the theory (u,w,8,) be continuous between elements; however, they can exhibit spurious
transverse shear strains even in pure bending, known as the shear locking, as the beam length-to-
height ratio, L/h, becomes very large. The spurious transverse shear stiffness stems from an in-
terpolation inconsistency that prevents the condition of Eq. (2) from being satisfied as the beam
becomes thin, that is, L/h — oo. The shear locking phenomenon can be alleviated by using a re-
duced integration in the evaluation of transverse shear stiffness terms in the element stiffness
matrix or by using higher-order approximations of the variables (u,w,6,). Although the reduced
integration solution is the most economical alternative, the process allows some elements to ex-
hibit spurious displacement modes, i.e., deformation modes that result in zero strain at the nu-
merical integration points.

Second-order and higher-order beam theories relax the Bernoulli-Euler hypothesis further by
allowing the straight lines normal to the beam axis before deformation to become curves after
deformation. However, most published theories still assume inextensibility of these lines. Second-
order plate theories are not popular because of the fact that they too require shear correction
factors and while not improving over the Timoshenko beam theory. The third-order theories pro-
vide a slight increase in accuracy relative to the Timoshenko beam theory, at the expense of an
increase in computational effort, but do not require a shear correction factor. From the finite
element model development standpoint, the third-order beam theory of Reddy (see Reddy (1984,
1987, 1990, 2002 and 2011)), which is based on the displacement field

u=u;& +u, & +uz;é&; where,

473 GW) ’ (4)

u1=u+26’x—m(ex+a u, =0, Uz =w
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requires Cl-continuity of the transverse displacement component but less sensitive to shear lock-
ing. In the Reddy beam theory, the transverse shear stresses are zero at the top and bottom of
the beam.

In this study, we consider a general third-order theory based on the following displacement
field

u=u;& +u,e,+uz;é&; where, 5
Uy = U+ 20, + z2¢, + 23y, u, =0, us =w+ z60, + z%¢, (5)

Finite element model of this theory requires only CC%-continuity of all field variables
(u,w, 8y, by, Py, 6,,¢,), and no shear correction factors are needed.

1.3 Functionally Graded Materials

Elimination of stress concentrations in structural elements is mitigated by suitable design of ma-
terials, and functionally gradient materials (FGMs) are a class of materials that are designed to
eliminate stress concentrations (see Hasselman and Youngblood (1978), Yamanouchi et al. (1990)
and Koizumi (1993)). These materials were proposed as thermal barrier materials for applications
in space planes, space structures, nuclear reactors, turbine rotors, flywheels, and gears, to name
only a few. One reason for increased interest in FGMs is that it may be possible to create certain
types of FGM structures capable of adapting to operating conditions. A most common FGM is
one in which two materials are mixed to achieve a composition that provides certain functionali-
ty. For example, for thermal-barrier structures, two-constituent FGMs are made of a mixture of
ceramic and metals. The ceramic constituent of the material provides the high temperature re-
sistance due to its low thermal conductivity. The ductile metal constituent, on the other hand,
prevents fracture due to high temperature gradient in a very short period of time. The gradation
in properties of the material reduces thermal stresses, residual stresses, and stress concentrations.
A number of other investigations dealing with thermal stresses and deformations in beams, plates,
and cylinders have been published in the literature (see, for example, Noda and Tsuji (1991),
Obta, Noda, and Tsuji (1991), Reddy and Chin (1998), Praveen and Reddy (1998), Praveen,
Chin, and Reddy (1999), Reddy (2000), and Aliaga and Reddy (2004), among others). The work
of Praveen and Reddy (1998), Reddy (2000) and Aliaga and Reddy (2004) considered von Ké-
rman nonlinearity, and Aliaga and Reddy (2004) used the third-order plate theory of Reddy
(1984, 1987, 1990 and 2011).

1.4 Present Study

The objective of the present study is to develop a general third-order beam theory that accounts
for through-thickness power-law variation of a two-constituent material with temperature de-
pendent material properties, modified couple stress theory, and the von Kérman nonlinear strains.
In particular, we extend the modified couple stress theory of Yang et al. (2002) to the case of
functionally graded beams (Reddy (2011)) using the third-order kinematics with the von Karman
nonlinearity and derive the equations of motion using Hamilton’s principle (see Reddy (2002 and
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2013)). Also, a nonlinear finite element model is developed for the general third-order theory of
beams. To date no such study is reported in the literature. Since most nanoscale devices involve
beam-like elements that may be functionally graded and undergo moderately large rotations, the
newly developed third-order beam theory can be used to capture the size effects in functionally
graded microbeams. Moreover, the bending-extensional coupling is captured through the von Ka-
rméan nonlinear strains.

2 CONSTITUTIVE MODELS
2.1 Material Variation through the Thickness

Consider a straight beam of rectangular cross section, with width b and total height (or thick-
ness) h. The x coordinates is taken along the length of the beam and it passes through the geo-
metric centroid of the cross section, and the z-axis is taken transverse to the beam length such
that the beam cross section is in the yz plane. We assume that the material of the beam is iso-
tropic but varies from one kind of material at the bottom,z = —h/2 to another material on the
top, z = h/2. A typical material property of the FGM through the beam thickness is assumed to
be represented by a power-law (see Praveen and Reddy (1998) and Reddy (2000))

n

1 z
P(z,T) = [P(T) = Po(DIf(2) + Pu(T), f(2) = (E + E) (©)

Where, P, and P, are the values of a typical material property, such as the modulus, density,
and conductivity, of a ceramic material and metal, respectively;n denotes the volume fraction
exponent, called power-law index. Whenn =0, we obtain the single-material plate (with
ty P.). When FGMs are used in high-temperature environment, the material properties are tem-
perature-dependent and they can be expressed as (see Reddy (2011))

Py(T) = colc_1 TV + 14 ;T + ¢, T? + ¢3T3), a=corm (7)

where ¢y is a constant appearing in the cubic fit of the material property with temperature; and
C_1, €1, C3, and c3 coefficients of T~1, T, T?, and T3, obtained after factoring out c, from the cu-
bic curve fit of the property. The modulus of elasticity, conductivity, and the coefficient of ther-
mal expansion are considered to vary according to Eqgs. (6) and (7).

The present study is concerned with the development of the equations of motion associated
with a general third-order beam theory which accounts for microstructural length scale, two-
constituent material variation through beam height, and the von Kérmén nonlinearity. Solutions
of bending, vibration, and buckling are presented for the linear case to study various parametric
effects on the response. Following this introduction, the governing equations of the general third-
order FGM beams with the microstructure-dependent length scale parameter are presented. Ex-
isting beam theories are derived as special cases of the theory presented herein. The equations
derived are then specialized to the linear case to develop the bending, buckling, and vibration
frequencies.
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3 THE GENERAL THIRD-ORDER BEAM THEORY
3.1 Modified Couple Stress Theory

According to the modified couple stress theory, the strain energy of an elastic beam can be ex-
pressed as

1 L
UZEJ J(O'Usu+ml])(u)dAdx (8)
0 YA

where o;; are the components of the symmetric part of the Cauchy stress tensor, m;; denote the
components of the deviatoric part of the symmetric couple stress tensor, and yx;; are the compo-

nents of the symmetric curvature tensor

1 (aa)i dw;

Xij = E )! I’l_] = 11273 (9)

a.x]' axl-
where w; are the components of the rotation vector

dx, 0Oxg

dx; 0x;

1(6u3 6u2) 1(6u1 6u3) © _1(6u2 aul)
’ ’ 0x; 0xy

©1=3 w2 =3 =3

(10)

In the following sections we replace (xq,X3,x3) with (X,,2),X12 = Xxy: X23 = Xyz, and w, =
wy.
3.2 Equations of Equilibrium

We begin with the following displacement field for a straight beam bent by forces in the xz plane
(i.e., bending about the y-axis):

u=1u € +u,e&,+u;€; where,
m p

u, = Z zt gb,(ci)(x, t), u; =0, uz;= Z Zil,bz(i)(x, t)

i=0 i=0

(11)

where (qb,(co) =u, 1/)50) = w) are midplane displacements along the x and z directions, respectively,

and (,b,(ci) and ¢,(Ci) have the meaning

; 1 [d'u ; 1 [(d'u

@ _ 1 o _ 3

X T i ’ zZ T ) i (12)
(DH!'\ 0z 1m0 (DH!'\ 0z ym0

For a general third order beam theory, we take m =3 and p =2 in Eq. (11). Then the dis-
placement field would be same as (5) with ¢J({0) =u, ¢>(1) = O,, ¢(2) = ¢y, @) — Yy, © =,

X X X z
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;1) =0, and v,béz) = ¢,. The nonzero von Karmén nonlinear strains (i.e., simplified Green-

Lagrange strain tensor components) associated with the displacement field (11) are

gu, 10\ & .
Exry = -t + = z = Z 7t s(l)
o 9x o 2\ ox xx

9 s o i;O = "
u1 u3 . ; u.3 . P
S TR raD RS Te D
i=0 i=0
and rotation and curvature components are
7]
wy =2 (28T 2N s
Y 2\ 0z 0x y
i=0
P
Jw G
Xxy = 2x12 =a_xy=ZZLX)(c;2 (14)
i=0
do, <
w
Xyz :2)(23_ ayzzzl)(g(/lz)
i=0
Where P = max (m — 1,p) and
o 0P 1(ap®)* 1, ifi=0
i _ X N z N — , -
B = PO\ ) 00 {0, ifi#0
. . . oy . ' .
rg =G+ De = ) = Dyt
®
i 1 i d
@ _ =) (i+1) _ z
wy” =3 {(L + 1), I } (15)

o _1).. ap gyl
Xy _E(H_) ax  0x2

o _1 w2 0PtV
l . . L VA
Xyz = E(l + 1) (l + 2)¢x - Ox

Next, Hamilton’s Principle is used to derive the equations of motion, incorporating modified
couple stress terms and through-thickness variation of the material (see Reddy (2002)):

ty
0= | (=6K+6U+4dV)dt (16)

ity
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Where 6K is the virtual kinetic energy, dU is the virtual strain energy, and &V is the virtual
work done by external forces. The virtual kinetic energy expression is

L
5K =f fpu'lé‘u'l dA dx

LIErer) B )o Gw)Bomt e

i= Jj=0 i=0 j=0
m
f Sy i 6056 +ZZml+, 0530 | dx
i=0 j=0 i=0 j=0
where
= J pz'dA (18)
A

The expression for the virtual strain energy is

L
U = f f(axx Oux + 05,06, + 05,0Y5y + My 0 ), + My, 5Xyz) dAdx
0 “A

e S 8 (19)
= [T M85+ S D 560+ Y w0 80 ZM@ ® ZM% 0| ax
0 [i=o i=0 i=0
Various stress resultants used in Eq. (19) are defined as
MY = J ziondd, M) = J zim,,dA
A A
@ _ i ® _ i
M,;, = | z'0y,dA, My, = | z'm,,dA (20)
A A
MY —Jzio dA
zz - zz
A
and virtual work done by external forces is
’ t h b h
= | [(fxduy + f;0u3 + ¢ dwy + qx5u1(x'§) + 4z 0uy (%, —3)
0
+q;0us(x, _) +q8us(x, __)] (21)
L p P m i
—J [foz s +fZZz s + ¢ Zz sl + q,’gz (E) 5
o =0 i=0 i=0 i=0
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m 14

I LR
i=0 i
FD 56O @ o @© ® (l)
X +zp U+ s

where

o _ i F O _ i 7 O _ i =
fx —Lzlfdi, 1, —Lzlfdi, Cy —LzlcydA,

N . (22)
FO =10+ (3) laf + -D'a?] ¢ =x2)

Here j_”x, ]_CZ, and ¢, denote the distributed axial load, transverse load, and body couple about
the y axis (all measured per unit volume of the beam), respectively. Substituting the
sions 8U, 8V, and 6K into Hamilton’s principle (16), performing integration-by-parts with respect
tot as well as x to relieve the generalized displacements ¢)(l)and l,l)m of any differentiations, and

using the fundamental lemma of calculus variations, we obtain the following equations of motion:

(l (i—l)
0= () _OMex ey 1My 1 ey
- ml+] ¢ +1 Xz 2 ox 2 Cy

+§i(i - 1)M§;‘2) - FY (i =0 to m)

(i-1)
%) MO Py (-1 , 10My;
O—mel” BRRET: ( o )*l(’”zz NP

_ aM;(ch) 19*My) £ _ 14c)”

0x 2 0x? z 2 0x

(23)

(24)

In Eqs.(23) and(24), i varies from 0 to m and 0 to p, respectively. There are a total of (m +
p + 2) equations of motion.The natural boundary conditions involve specifying the following gen-
eralized forces (when the corresponding generalized displacements are not specified):

N
s¢ MY + EM,E; D (i =0 tom)
0) . (i-1)
dy ; i e 1dM 1 4
. 0 1 Yz
s 8@ (M,Ex) — >+ My =My P 45— = o) (25)
0

A&} 1

Ix : —EM,(C;? (i=0top)
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3.3 Generalized Force-Displacement Relations

For the general third-order beam theory, 2-D plane stress state is assumed to write the relations

between symmetric part of stress and strain for isotropic and linear elastic material as

Oxx E ]1/ 11/ 8 Exx — AT

{O‘ZZ} =12 1 -v) {822 - a’AT} (26)
Oxz 0 0 2 Vxz

{mxy} = G2 {2)(12} (27)
my, 2X23

where ¢ is a material length scale parameter, which is the square root of the ratio of the modulus
of curvature to the modulus of shear, and it is a physical a property measuring the effect of cou-
ple stress (see Mindlin (1963)).

The stress resultants can be expressed as

Mg Oax prifaly A 0 ](570) (x©
g o e M R S et 29
M)(clz) xz k=i 0 0 Bl(llc) ]/,g_l) 0
() Pt (k—0)
Mxy} j )z 1 (k) ) Xxy
(= dA = =S ) (29)
W {m }Z Z 1) (ki)
{MJ/Z YRS k=i 2 Xyz
where
1
A = =2 sz E(z,T)dA, A% = — sz E(z,T)dA
1 {;2
() k (k) k
B =— E(z,T)dA, S = — E(z,T)dA
11 2(1+V)LZ (z,T) 11 (1+V)Lz (z,T) (30)

1
(k) _ (k) _
X; =27y = msz E(z,T) a(z, T)AT dA

3.4 Virtual work statements: weak forms

The weak forms of equations of motion (23)-(24) for static case are (see Reddy (2004))

Xp
0= |
X

a

0x 2 Ox xy

® o)
99 : 5. -1y 108 P T
e M9 + i<5¢$)M§‘Z Dy 1000\ -1 _ 554’5%5 1))

1 o N . . . .
45 = D3OPOME? = 5L EP | dx - 561 (v, 008 - 56 (1,000
(i=0tom)
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0x 0x 2 ox yz

® 250)® 2
26 y 109%6 ac
aﬁ M) 5 aﬁz MY - syPE® — &p(‘) ldx (32)

Xp 46 ® (0 198 ® .
0 ZJ [6() Y, MO Y, i sp@miD _ Y, 00, ", i-1)
X

a

26 a6
—59P (x0, )G = 5P (x, QP — ¢Z (x0 QS — % (0, )Q

(i=0top)
where the generalized force are
i 1 1 )
((ll) = [ M(l) (l o, (L) [M(l) + = M(l ) (i=0tom)
Xa Xb
(0) @i-1)
(i dy i 1dM 1 4
. 0 1
P =- [6(1) (M,Ex) — >+ MY — ol 4 S —;cﬁ"l :
- (33)
0 . (i-1)
A® — 6(1) M(O) dl'bz + M(l) _ LM(i_l) + ldMyZ _ lC(i)
b dx XY 2 dx 277
Xb
H» [2 M@, 0¥ = [ > MY (i =0 to p)
In terms of displacement the weak forms can be given as
; i ; 2
*b 98 @ (M Kl (k—=1) 1/9 O]
0= j 00s" Z Ag’;) .. SR ¢ ) L2
X ox I ox ox
a k=i
p—1+i
+ Z AB e — i+ Dyl _ xO
m+i—2 p+i-1 w(k i+1)
+ispl Z BY (k—i+2)+ Z gz~ —
k=i-1
i -2 p+i—1
, L05gy] mi 599 G- 14 29 20 Z st 2 7 o
8 ox L 1 6x2
k=i—1
m+i—4
—l(l — 150 Z SE (k=i +3)(k— i+ 4)p
p+i-3 (k—i+3) ;
k D) (i i) (i-1
- Z S5 (k= i+ 3) = | = 8¢V F" — =69 7V | dx
k=i-2
—5” (xa, Q5 = 664” (x, Q; (i=0tom)
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0 (m k 0)\ 2
0=be 6(i)a&p(l) 0" ZA(k) 9% ’(‘)+6(k)1 2%
y dx  Ox 11\ 9x 2\ ox

k=0
p+i—-2
+Z AL (k + Dyl — xO b+ isyl? Z AL (k — i+ 2)pl?
k=i-1
m+i-1 (k—i-1) 1/9 (0) 2
() (i-1)
+ZA ———+8k—i—-1= (ax> -7y
(i) [m+i=3 pti-2 (k—i+2)
idd d
-5 all:c Z SE (k—i+2)(k—i+3)pl) — Z S (k - i +2)—5——
k=i-1 k=i-1 (35)
o m+i—1 p+i (k—0)
65
all:c Z B (= { + 1)p kD +Z gl _ ll’
m+i—1 k—i+1 p+l k—
16251,0(1) Z s© (k—i+1) et )_ NG 92yl
8 9x? ox 11 dx2

k=i

(l)
6¢(1)F(1) 61!)(1) l 51!)(1) (xa' t)Q(L) (Sll)(l) (xb' t)Q(l)

(l) 66 (l)
(20, 0P — —Z—(x,, QP (i=0top)

6x

3.5 Finite element model

Let’s approximate the degrees of freedom for static case as following
m; Di
o0~ 40600, 9P~ 4,000 (36)
j=1 j=1

where ¢J(Ci].) (x) and gog.) (x) are the interpolation functions for (,i)fci) and zpz(i) respectively. In case of
conventional beam (i.e. without microstructure dependance) the interpolation function can be
taken as Lagrange interpolation polynomials, whereas in case of microstructure dependent beam
gox] (x) are Lagrange polynomials and go( )(x) are Hermite interpolation polynomials as the first
derivative of l,lJZ are also primary variable in the virtual work statement (35). xE.L) and Azg.l) are

the nodal values associated with ¢>,(Ci) and zpf) respectively (see Reddy (2004)). Substituting ¢,§”
and wg‘) in the virtual work statement (34) and (35), we get the finite element equation as

K11 K12 KlN Al F1

21 22 2N 2 2
Ks Ks N Kz A B F (37)
KNl KNZ KNN AN FN
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where N = (m + p + 2) is the total no. of equations of motion and
; Ag_l), fori=1tom+1
A =0 lieme2) . (38)
A , fori=m+2tom+p+2
The components of the elemental stiffness matrix K in (37) are
(a 1) B-1)
1 do
Kb zf ACED L g 15— b
i =) AP g@-ne - y 2P TP
_ 1
+Ha - D@ - DB - @26 - 2)5(‘”’? Mol Vol Vdx
fora,f =1to (m+1)
k= | "85 —m -2 3 A% ap” dol " doy)
gl dx dx dx
(rp-m-n) D05 " (pom-2)
a m-— -m-
+(B —m—2)A], ch(;c 2
1 dp®
+(a_1){B(a+B m— 4)+§(a’—2)([>’—m 2)S(t7t+ﬁ m— 6)} (a 1)T
(a-1) 42 ,,(B—m=2)
_l(a _ 1)5(0‘"‘5—"1—4) a2 d Pzj 1dx
8 1 dx dx? ’
fora=1tom+1l,andf=m+2tom+p+2
x dp® dp® d(p(ﬁ 1
kP = f [6(a —m—2)A%™" e
~ dx dx dx
B-1)
do,;
(a+p-m—4) ( 2)
+Ha-—m—2)A5 " T Ve dx (39)
1 qo (a—m-2)
+B - DBEFTY —@-m -2 (B - s
2 (B-1)
2 (8- DS dzwif‘ "Ry
dx? dx ’
fora—m+2to m+p+2andf=1tom+1
X 1 d (0) dgo(o) d(p(o)
K.“.B=f ~8(a@—m—2)8 -2)AY
=] g )8( —m =AY (=) —E—E
A dol  (pom-
+6(@—m—2)(B—m—2)A™ ——— B
(0) (0)
1 d d(P
+58( —m—2)(a —m— DAL =L —2
+p-2 6 2 2
Ha—m=2)(p —m = DA g
1 d amz)dgo(ﬁmz)
{B(a+ﬁ 2m—4) +§(a —m—-2)(B-m-— Z)S(‘”ﬁ 2m- 6)} ‘PZl L
(a-m-2) j2 ,(B—-m—=2)
+15(“+ﬁ—2m—4) 2 7 dx
g 11 dx? dx? ’
fora,f =m+2tom+p+2
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The components of force vector are

-1
(@) _ xb (a-1) d(pz(coil : @1 1 (@-2)) ,(a-1)
FO=| [X77 —=2—+ (K" +s(a- ey ¥y ldx
xy dx 2
fora=1tom+1
Xp dyp® dp® —m-— -m-—
F@ = J [8(a—m—2)xO Lo 4 (o 57D plem) (40)
xy dx dx
(a-m-2)
1dc
(a-m-2) y (a-m-2)
+<Fz +ET> I

fora=m+2tom+p+2

The nonlinear equations (37) are solved using Newton’s iterative method (see Reddy (2004)),
which involves the computation of the coefficients of the element tangent stiffness matrix T¢,

which has similar structure as the stiffness matrix in Eq. (37). By applying Newton’s iterative
method, the algebraic equation for (s + 1)th iteration can be given as

T T2 N san) ™Y R\ @
T2 T# .. T?N|)8A? _ JR? (41)
™t T o TWIeAN) 1y \RN (649

where T¢ is the tangent matrix and its components are

af — aRia

Here R? is the residual vector

(m+p+2) ny

R = Z ZK&VAZ—F?
y=1 k=1

(m+1) My—q (m+p+2) Py-1

_ -1 (y—-m-2)
= Z Z Ki?cy Axk + Z Z Ki‘;[cy Azk - Fia
y=1 k=1

y=m+2 k=1

Hence, the components of tangent matrix are
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T = K.Dfﬁ, fora,f=1tom+p+2, and f#m+2

ij ij
©) ; (a-1) 4,,(0)
T = Kaﬁ+jx"lA<a—1)d¢z Aoy 3%z
X,

271 dx dx dx
forf=m+2, anda=1tom+1

a

(0) (0)
e dY N 1%
3 2
Kaﬁ+J —(a—m Z)A(‘; m )—d; gaz(f‘ m-2) d;] 1dx
Ya 44
forf=m+ 2, anda—m+2 (44)
(m+1) (m+n+2)
Xp d 'V 1) d (0)
“ﬁ+j {y A% ¢" —x 4 Z (8(y —m—2)AY lpx
Xa y=1 y=m+2
0 (O]
dog do,;

+( = m =AY - iy —E— 2 d,
for f=m+2 anda=m+3to m+p+2

4 SPECIALIZATIONS TO OTHER BEAM THEORIES
4.1 Reddy Third-Order Beam Theory

The Reddy third-order beam theory is based on the displacement field

u=u, € +u,€,+uzé&; where

w
U =u+z0, — ;23 (Hx + 5), u, =0, Uz = w (45)
which is a special case of the general beam theory with m = 3,p = 0, and
ow
0 1 2 3 0
Ocu 6Pz0, o0=0 P=-a(6+), WO=w )
The nonzero strains are
du 1 /0w\? 26, Wy o
= |—=+2(= g—X 4 327X ()+ (1)+3(3)
R P 2(6x) ] ox ox Lo T 27E
ow 0 2
Yz =0x+ a + 3Zz¢x yagz) zyagz)
1 ow
0, =3 (ex — ot 3z2¢x) = 0’ + 220 (47)
96, 9*w aY
2 7vx) _ (O 2,,(2)
Xxy (W_W-I_% ¥>_Xxy + 2 Xxy

1
Xyz = Ezwx = Z)()(/z)

where
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Lo _ Ou l(a_w)z Lo _ 00 @ 0 (96, 0w
xx dx 2\ox/) '’ xx ox’ xx dx ox  ox2
ow ow
0 2
V;gz) =0, + L Y)Sz) =3Py = —C2 (9x + a) c; =3¢

and

1 ow 3 c ow
0 2 2
a))(]) __(gx )’ w§/)__¢x___(gx+_)

2\ ax 2 2 dx
NOR. 90, 0°w 2 230U 2 (06, o’w
xy 2\ dx 09x?%)’ o2 0x 2\ dx  0Ox?

(1) ow
15 =3 = = (0 + o)

The equations of motion of the Reddy third-order beam theory take the form

9%u  _ 9%, ?*w oMl
Mogez T g ~AMagagy ~ g, =0
azu 620 63W aM(l) (0) (1)
J— ~ X — pa ‘v
my W +m, _6t2 —cimy —ajgg)tz - I + M, —F,
@ laMxy 1

_ a0 _
M, > ox +2cy 0

9%w u  _ 9%, o*w
Mogez T\ M3 5252 T ™ Gxaz M gxar?
. 5 =(0) ) -(0)
i(M(O) a_W) oy . PMY o 107 Lo oMy 108”
ox \ ** ox 0x 1 9x2 z 2 0x2 Z 9x 2 Ox
where

_ L — — (0 0 2 ~(0 0 2
m; =m; — My, M; =M; — C1Mjyo, CJ(, ) = CJ(/ ) czc§ ), CJ(, ) = CJ(, ) + czcj(, )

My, = M3 - MG, A = M - MG

5 (0 0 2 ~( i i+2
M) =M —e ;M2 HY) = MY + MG

The natural boundary conditions involve specifying the following generalized forces:

(50)

(51)

(52)
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ou: MJ(C?C)
—m 1.0
50, M, +§M§y)
ow oM 1omY
(0 0 xy 1 ~(0
ow: MJ(CZ)+MJ(cx)a+C1 a;x E ax —Cp S(/Z)+ECJ(/) (54)
3) 62u _ 629x 63W
talkta\mgE G T A g0
adw 1
. oy® g
S My 4oy

4.2 The Timoshenko (First-Order) Beam Theory

The Timoshenko first-order beam theory is based on the displacement field (see Reddy (2011))

u=1u €& +u,& +u3;€; where

u(x,z,t) =u(x,t)+z0,(x,t), u, =0, uz(x,t) = w(x,t) (55)
which is again a special case of the general third-order beam theory with m = 1, p = 0, and
D=u e =6, P =w (56)
The nonzero strains are
du 1/ow\’] 96
0) €] 0
e = g5 () |# e e =
1 adw
— _ O
wy = E(Bx - a) = a)y (57)
1 aax aZW (0)
Yo =3\ Gx Taxz) T Ho
where
ou 10w\’ Gl dw
0 1 0
2 =5t3(e) . =g rP=ety 8
Yo T\ T o) Xy =4\ ox ~ ax?

The shear stress resultant M)(C(Z)) in the Timoshenko beam theory is defined as
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MY =K J Oy dA (59)
A

and K is the shear correction factor. The equations of motion of the Timoshenko beam theory are

9%u 920, MY

XX o _
Moge T Mg~ o =0 (60)
92u 020, oMY 1M 1
0 (1) xy o) _
migEt Mg g tMa —f e = (61

moaz_w_i( (o)a_W)_aM_J(coz)_ (o)_lazMa(cgf)_laCJ(IO): (62)
ot dx\ ¥ ox dx z 2 0x? 2 0x
The natural boundary conditions involve specifying the following generalized forces:
du: MJ(C?C)
56, MY + %M}f;) (63)
CONTCLL L AR
4.3 The Bernoulli-Euler Beam Theory
The Bernoulli-Euler beam theory is based on the displacement field
u=1u, € +u,e&,+u;€; where, (64)

ui(x,z,t) =u(x,t)+z0,(x,t), u, =0, uz(x,t) = w(x,t)

This displacement field is a special case of the general third order beam theory with m =
1,p =0, and

dW
0 1 0
()_u‘ @® _ , ()_W (65)

The equations of motion can be obtained from the Reddy third-order beam theory by some
changes. We have

a%u #3w oMY
©
— — — =0 66
MGz T M™gizaxr T ax (66)
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W o u 0w _i( (0)6_W)_62MJ(01€)_F(0)_6fx(1)
0 9t2 L oxot? ZaxzatZ(O) dx (0’)”‘ dx dx? z dx (67)
p
_6 My, B dcy, _
0x? 0x
The natural boundary conditions are
du: MJ(C?C)
€] 0 2 3
ow oM M 0“u 2°w
. (Ohdd xx @® xy e (0)
ow: X 3y + o +f, 0+ o +my 52 +m, x0E2 +c, (68)
aéw 0 0

In all of the special cases considered in this section, the transverse normal strain is zero,
&,, = 0; this requires us to use the one-dimensional stress-strain relations oy, = F&y, and
Oyz; = GYyy. That is, we set v = 0 in the definition of Ag’?, Ag’;), and X;k) of Eq. (29).

5 ANALYTICAL SOLUTION

Analytical solution for a simply supported beam is obtained for a general third-order beam theory
neglecting geometric nonlinearity. The equations of equilibrium for linear static case are

oM o 1aMEY 1 - :
0=——24i(MEY -2 — IV ) s - M P - EO

ox *z 2 0Ox 27 2 (69)
(i=0tom)
0=i|MEY 4+ laMﬁiZ_l) oMy lazM’Eiy) _p® _ lac_y)
B zz 2 Ox ox 2 0x2 zZ 2 ox (70)
(i=0top)
Static linear equations of motion in terms of displacement
m+i k—i) n—1+i (k—i+1)
d2 ¢! di
k . k
0=-— Z A% — o+ Z (k—i+1)A% —— (71)
k=i k=i
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m+i-2 n+i-1 ll)(k i+1)
Z B (k — i +2)pl P + Z po 2z
k=i-1
m+i-2 (k—i+2) Tnii-l (ke—i+1)
(k) : ¢ (k) 1/’ oD
Z Sip (k= i4 ) — 7 —- Z S g | T2
k=i—1
1 m+i—4
+5i-1) Z Sk —i+3)(k—i+ )l
k=i-2
nti-3 (k—i+3)

k . j .
ZS() L+3)Zd—x —Fx(L) (i=0tom)
k=i-2

m+i—1 (k i-1) n+i-2
Z iR - Z AL (k — i+ 2)pl?
k=i-1
i m+i-3 (k—-i+3) niiz2 ¢ﬁk i+2)
(k) ; x (k)
+§ Z Sy (k— l+2)(k—l+3)T— Z Sy (k— l+2)T
k=i-1 k=i-1
m+i—-1 (k i+1) n+i (k )
Z B® (k - a2 S ZB
k=i
m+i—1 k—i+1 n+i k—i (i-1)
Z 5<k>(k_l+1)$_zs<k>c”‘l’_§o _po 146
dx3 - 1 dxt z 2 dx
=i
(i=0top)

Let the solution for the degrees of freedom be of the form

i i rIX rIX
J(Cl)(x) = Z Ur(l) cos A (l) (x) = Z W(l) sin —

r=1

and the applied transverse force is given as

c X
fx) = Z F, sin I
r=1

Substituting ¢§i) and 1/)50 in the above equation, we get

(72)

(74)
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o m+i p—1+i
_ ) (TN (k=) _ Z _ (k) (k=i+1)
O—Z[ ZAU(L)U (k—i+1)a% ( D) w,
r=1 k=i
m+i-2 p+i-1
Z (k - l+2)B(k)U(k i+2) | Z (k) (k i+1)
k=i—1 k=i—1
. [m+i-2 p+i-1 3
l T i
+3 Z s® (ke - L+2)( ) y oD _ Z sy () wit (75)
k=i—1 k=i—1
1 m+i—4
+5ii-1) Z SOk —i+3)k—i+4UuEHY
k=i-2
p+i-3
X
Z S(k) l+3)( )W(k t+3) ] cos — (i=0tom)
L
© m+i—1 p+i-2
i i
0=l Y —a® (vt Z A (e - i + 2w
r=1 k=i—1
m+i—-3
k k—i+3
——(Z S()(k—l+2)(k—1+3)( ) gkt
k=i—1
p+i—-2
(k) (k—i+2)
S —i+2 w,!
-2 ) (F) W) -
m+i-1 p+i
+ Z BY (ke — l+1)( Juls +ZB(k) Wr(k_l)
k=i
m+i—1 p+i
T i X
Z s (k—l+1)( U“‘ 4 Zs“‘) ) Wr(k V)= EO1sin —

(i=0top)

For the above equations to be true, each coefficient of sine and cosine term should be equal to
th —_
zero. Hence, for the r coefficient we have

KM K} .. KMN7At F}
R Eet m
kvt ke g \av) o gy

where
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a a+ 1 a+ z
K = (@ B2)+§(a_1)(ﬁ_1)5( 34)}( )

Ha - DB~ DBTH + 5 @ - 2@ - T

fora,f=1to (m+1)

1 a+p-m— 3

5 (@ — s ‘”(L)

+(a — (BT _ (a—Z)(ﬁ’ m— 2)5(‘”’“"6)}( )
fora—1t0m+1and,6’ m+2toN

3

K:{ﬁ:_(a_ Z)A(a+ﬂm4)( ) (ﬁ 1)S(a+ﬁm4)(L)

K —_(ﬁ m— 2)A(oc+[i’ m— 4)(L)

(78)
+(8 - DB - m—m—mw 255 ()
fora—m+2toNandﬁ—1tom+1
1 T
aﬁ _ _ (a+p-2m-6) (a+f-2m-4)
=(@a—m~— 2)(/3 m —2)A“ +3Si (L)2
+{B1(f+ﬁ—2m—4) 4= ((Z —m— 2)(3 m— 2)S(oc+,8 2m— 6)}( )
for a,,B’ m+2toN
(a—m-2)
_ -2 _ -
Fo = J E@™ 2 g4 + (E) [(@)r + (D@2 (qy),]
A
fora=m+2toN
and
0} .
; Uu:’, fori=1tom+1
s= {0 (79)
w,”, fori=m+2toN

For the analytical solution, homogeneous and functionally graded simply supported beams
with (n = 1) of following geometric and material parameter are considered:

E; = 14.4 GPa, E, = 1.44 GPa, v = 0.38,

h=176x10"°m, b=2h  L=20h, (80)

Results for nondimensional central transverse deflection (W = wEI/qyL*) are tabulated for uni-
form (q = q¢) and sinusoidal load (q = g sin (x/L)) for q; = 1 N/m for both homogeneous and
FGM beam and also, the general third-order beam theory (TOBT)(considering m = 3 in horizon-
tal displacement, u; and p = 2 in transverse displacement, uz) results are compared with Euler—
Bernoulli beam (EBT) and Timoshenko beam (TBT)(see Reddy (2011)) in Table 1 for the load
acting as body force and also as the normal traction force on the top of the beam. In Table 2, the
non dimensional central transverse deflection for uniform load (acting as body force) for FGM
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beam are tabulated considering m =3 and p = 1,2,3 for the expression of horizontal displace-
ment,u; and transverse displacement, uz [see Eq. (11)] respectively for different microstructural
length scale factor. By comparing the nondimensional central transverse deflection for (p = 1,2,3),
we can see that the term corresponding to p = 3 in the displacement field is not contributing
significantly. So, further in the present study, for all the numerical examples m = 3 and p = 2 are
considered for the horizontal and transverse displacement field.

Table 1 Analytical solution for center deflection wx10? for simply supported homogeneous and FGM beam for general third-
order beam theory.

Uniform load Sinusoidal Load
n | l/h EBT TBT TOBT load | TOBTTractionon EBT TBT TOBT load TOBTTractionon
as top as top
body force body force
0 1.3021 1.3103 1.3098 1.3108 1.0266 1.0333 1.0329 1.0337
0.2 1.1092 1.1162 1.1155 1.1163 0.8745 0.8802 0.8796 0.8803
0.4 0.7679 0.7731 0.7723 0.7729 0.6054 0.6096 0.6090 0.6095
0.6 0.5076 0.5116 0.5109 0.5113 0.4002 0.4034 0.4029 0.4032
0.8 0.3442 0.3475 0.3470 0.3473 0.2714 0.2741 0.2736 0.2739
1 0.2435 0.2464 0.2459 0.2461 0.1920 0.1943 0.1939 0.1941
0 3.0474 3.0624 3.0624 3.0628 2.4027 2.4148 2.4148 2.4152
0.2 2.4900 2.5023 2.5017 2.5020 1.9632 1.9732 1.9726 1.9729
0.4 1.6077 1.6165 1.6155 1.6157 1.2676 1.2747 1.2739 1.2741
0.6 1.0108 1.0175 1.0166 1.0167 0.7970 0.8023 0.8016 0.8018
0.8 0.6651 0.6707 0.6699 0.6700 0.5244 0.5289 0.5283 0.5284
1 0.4620 0.4669 0.4663 0.4663 0.3642 0.3682 0.3677 0.3678

Table 2 Analytical solution for center deflection wx10? for simply supported homogeneous and FGM beam under uniform load-
ing considering m=3 and p=1,2,3 in displacement field.

p Microstructure Power-law Power-law Power-law
length-scale factor, / index,n =0 index,n =1 index, n = 10
1 1.12268684 2.62309658 5.65035580
2 =0 1.31080654 3.06284414 6.59229566
3 1.31080654 3.06284398 6.59229547
1 0.47995749 0.96341184 2.53647121
2 l=0.6h 0.51131386 1.01673651 2.71080148
3 0.51131386 1.01673671 2.71080703
1 0.23867030 0.45493901 1.28693138
2 l=h 0.24611186 0.46632362 1.32976237
3 0.24611186 0.46632389 1.32976950
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6 FINITE ELEMENT SOLUTION
6.1 Linear solution

For numerical example, again the same beam specified as Eq. (80) is considered for the simply
supported boundary condition. The linear finite element and analytical solutions are compared in
Table 3 for microstructure length scale factor (£ = 0,0.6h, h) where, h is the height if the beam.
In case of conventional beam (i.e., £ = 0), thirty quadratic Lagrange elements are used in half
beam (exploiting the symmetry). For microstructure dependent beam, d),(ci) are approximated as
linear Lagrange interpolation function whereas, Hermite cubic interpolation functions are used
for zpf). Forty-five such elements are used for the half domain to get the solution. The boundary

condition can be given as:
w(0) =0, 6,(0) =0, $.(0)=0
u(L/2) =0, 0x(L/2) =0, ¢x(L/2) =0, P (L/2)=0

Womy=o0, rmy=0, 222 =0
Pam=o Tram=o Prum-=

(81)

Table 3 Comparison of analytical and FEM (linear) solution of center deflection wx10? for simply supported homogeneous and
FGM beams for general third order beam theory.

n l/h method Load as body force Load as traction on
top
0 0 Analytical 1.3098 1.3108
FEM (linear) 1.3099 1.3109
0.6 Analytical 0.5109 0.5113
FEM (linear) 0.5109 0.5113
1 Analytical 0.2459 0.2461
FEM (linear) 0.2459 0.2461
1 0 Analytical 3.0624 3.0628
FEM (linear) 3.0625 3.0630
0.6 Analytical 1.0166 1.0167
FEM (linear) 1.0166 1.0167
1 Analytical 0.4663 0.4663
FEM (linear) 0.4662 0.4663

6.2 Nonlinear solution

Nonlinear solutions are presented in this section for pinned—pinned and clamped—clamped bound-
ary conditions for the aforementioned beam. The deflection under uniformly distributed trans-
verse load acting on the top surface of the beam as traction, gy = 1 N/m for homogeneous and
functionally graded beams with power-law index n =1 and n =10 for various microstructure
length scale factors are presented in Figures 2 and 3 for pinned—pinned and clamped—clamped
boundary conditions, respectively. Again, for nonlinear solution also, thirty quadratic Lagrange
elements are considered for conventional beam (i.e., £ = 0) and, forty-five elements are considered
for microstructure dependent beam. The error tolerance for Newton’s method (see Reddy (2004))
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is taken as 107*. The linear solutions are also shown in the same figures with dotted lines for
comparison. Further, to see the effect of nonlinearity the plots for maximum deflection verses
transverse load applied are presented in Figures 4, 5, and 6 for both homogeneous and functional-
ly graded beam considering pinned—pinned and clamped—clamped boundary conditions. Also, in
the figures, nonlinear solution for Euler—Bernoulli and Timoshenko beam (see Reddy (2011)) are
plotted, for comparison, using the same loads.

6.3 Summary

In the present study, the governing equations for a general third order theory for functionally
graded beam considering the modified couple stress theory and von Karmén nonlinearity are de-
veloped using Hamilton’s principle. The nonlinear finite element model is also developed using
weak formulation of the equations. Analytical solution for the linear case is presented for the
pinned-pinned boundary condition, and linear finite element solution is compared with the analyt-
ical solution obtained. Nonlinear finite element solutions for different boundary conditions for
FGM beams with different power-law index n and different microstructure length-scale factor €
are presented. These results are the first of its kind, as there are no solutions available in the

literature.

e b b b b b b s b b L a s v e b b b b bevea b b biaas
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Figure 2 Transverse deflection versus distance along the length of pinned—pinned connected beams
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