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1 INTRODUCTION

Orthotropic plates are widely used in structural applications because of their advantageous prop-
erties such as high stiffness and strength to weight ratios. Main failure mechanisms in orthotropic
plates are bending, buckling and free vibration. Unlike any other isotropic plate, the buckling and
free vibration analysis of orthotropic plate is more complicated due to inherently anisotropic.
Thus, an accurate buckling and free vibration analysis of the orthotropic plates is an important
part of the structural design.

Classical plate theory (CPT) which neglects the effect of transverse shear deformation, overes-
timates natural frequencies and critical buckling loads. The errors in natural frequencies and criti-
cal buckling loads are quite significant for plate made out of composite materials. The Reissner
(1945) and Mindlin (1951) have developed first order shear deformation plate theories (FSDTSs)
considering the transverse shear and rotary inertia effects by the way of linear variation of in-
plane displacements through the thickness of plate. Since these models violate the equilibrium
conditions at the top and bottom surfaces of the plate, shear correction factors are required to
correct the unrealistic variation of transverse shear stresses and shear strains through the thick-
ness.

To overcome the limitations of classical plate theory and first order shear deformation theory, a
many higher-order shear deformation plate theories which involve the higher-order terms in power
series of the coordinate normal to the middle plane, have been proposed. . A critical review of
these higher-order shear deformation plate theories has been given by Vasil’ev (1992), Noor and
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Burton (1989), Liew et al. (1995), Ghugal and Shimpi (2002), Chen and Zhen (2008), Kreja
(2011). Ghugal and Sayyad (2010, 2011a and 2011b) have developed trigonometric shear defor-
mation theory considering effect of transverse shear and transverse normal strain/stress for the
static flexure and free vibration analysis of thick plates. Ghugal and Pawar (2011) employed hy-
perbolic shear deformation theory for the buckling and free vibration analysis of orthotropic
plates. Shimpi and Patel (2006a and 2006b) have developed a two variable refined plate theory
for static and dynamic analysis of orthotropic plates whereas Kim et al. (2009) extended it for the
buckling analysis of orthotropic plates using Navier’s solution. Thai and Kim (2011) also em-
ployed Levy type solution for the buckling analysis of orthotropic plates based on two variable
plate theory.

There exists another class of refined shear deformation theories, wherein use of an exponential
function is made to take into account shear deformation effect. Karama et al. (2009) have used
exponential function to predict the mechanical behavior multilayered laminated composite plates.
Sayyad and Ghugal (2012a and 2012b) has carried out bending, buckling and free vibration anal-
ysis of isotropic plates using an exponential function in-terms of thickness coordinates to repre-
sent the effect of shear deformation. Sayyad (2013) also applied exponential shear deformation
theory for the flexural analysis of orthotropic plates.

The purpose of the present study is to derive the analytical solutions of exponential shear de-
formation theory (Sayyad and Ghugal, 2012a and 2012b; Sayyad, 2013) for buckling and free
vibration analysis of simply supported orthotropic plates. The displacement model contains expo-
nential terms in addition to classical plate theory terms. The number of unknown variables is
same as that of first order shear deformation theory. Governing equations and associated bounda-
ry conditions are derived from dynamic version of principle of virtual work. The Navier type solu-
tion is employed for solving the governing equations of simply supported rectangular orthotropic
plates. The Navier type solution for orthotropic plate based on higher order shear deformation
theory (HSDT) of Reddy (1984), trigonometric shear deformation theory (TSDT) of Ghugal and
Sayyad (2011b), first order shear deformation theory (FSDT) of Mindlin (1951) and classical
plate theory are generated for the verification purpose. The natural frequencies and critical buck-
ling loads of orthotropic plates for various modular and aspect ratios are studied and discussed in
detail. Exact elasticity solution for vibration of simply supported homogeneous thick rectangular
plate is provided by Srinivas et al. (1970) whereas exact elasticity solution for buckling analysis of
plates is not available in the literature.

2 Orthotropic Plate under Consideration
Consider a rectangular plate of sides ‘a’ and ‘b’ and a constant thickness of ‘A’. The plate is sub-
N, andNg ). The co-ordinate

system (z, y, z) chosen and the coordinate parameters are such that, the plate occupies a region
given by Eq. (1).

jected to transverse load (g) and in-plane compressive forces (N2

XX !

0<x<a; 0<y<b; —-h/2<z<h/2 (1)

2.1 Assumptions made in theoretical formulation

Assumptions of the exponential shear deformation theory are as follows:

1. The displacements are small in comparison with the plate thickness ‘h
involved are infinitesimal.

2. The in-plane displacement u in z direction as well as displacement v in y direction each con-
sists of bending and shear components

)

and, therefore, strains
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U=U, +U;V=V, +V, (2)
a) The bending components U, and V, are assumed to be similar to the displacements

given by the classical plate theory. Therefore, the expression for U, and V, can be
given as.
ow(x,y.t) ow(x,y.t) 3)
u=-z————-%;, vy =-z——"—=*
2 oy
b) Shear components U and V, are assumed to be exponential in nature with respect
to thickness coordinate, such that the maximum shear stress occurs at neutral

plane. Consequently, the expressions for Ug and V, can be given as.

Us = ZeXp{—Z(%ﬂﬂx,y,t); v, = zexp{—Z(%jz}//(x,y,t) @

where, ¢ and y are the unknown functions associated with the shear slopes.

3. The transverse displacement w in z direction is assumed to be a function of coordinates
z and y and time t.

w(X,y,z,t)=w(xy,t) (5)

2.2 Kinematics:
Based on the above mentioned assumptions, the displacement field can be obtained using Egs.

(2)-(5) as:
(6)

ow(x,y,t

_ ) _(5}2
u(xy,zt)=-z v +zexp| -2 A d(xy.t)

8W v, 2
v(x,y,z,t)=—z%+zexp —2(%) w(xpt)

w(Xx,y,t)=w(xy,t)
This displacement field accounts for zero traction boundary conditions on the top and bottom

surfaces of the plate and the parabolic variation of transverse shear strains and stresses through
the thickness of plates. The kinematic relations can be obtained as follows:

ex=2ky +1(2)ky; ey=zk)+1(2)k;; & =0 (7

z

Vg =2k + 1 (2)ky: vu=09(2)8 7,.=9(2)w.

where,
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2 2
ko= OW. s 0P OW, ®)
OX OX oy

2
oy oxdy oy | ox

()2 2(2] | o) e| (2] |1-4(2] |

2.3 Constitutive relations
The constitutive relations for orthotropic materials are as follows:

o) [Q, Q, 0 0 0]fe 9)
O_Y 621 622 O 0 0 8)’
=0 0 Qs 0 0|17,
0 0 0 Q, 0|7,
-~ 0 0 0 0 Qu]V«

where, (jij are the plane stress reduced elastic constants in the material axes of the plate, and are
defined as:
E . S B S E, . (10)

Q = - = ’
. 1- sty 145, . 1- 1 ” 1— g 1

666 = GlZ; 655 = Gl3; (544 = st-

3 Derivation of Governing Equations and Boundary Conditions
The governing equations and boundary conditions are derived using principle of virtual work.
Let O be the arbitrary variations

[]] (su-ow+sT)=0
v
where the virtual strain energy OU , virtual potential energy OW due to the transverse load

(11)

q(x, y) and constant inplane compressive and shear forces (NSX,NSy and ny) and the virtual

kinetic energy OT are given by
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h/2

b a
I I J. (ax Oty T 0y 08y + Ty, OYy, T T OF 3 T Tyy Oy )dxdy dz
00

-h/2

a b a 2 2 2
fq (x,y)owdxdy +1I f& fo[a—wj +NJ, ow +2N§, oW Swdxdy
) 24 3 ox oy axdy

(12)

oW =

o'—.c

a 2 2 2
[ | St su+ Sl sv+ 2 s |dxdy e
Yl e T a

Substituting Eq. (12) in Eq. (11)
h/2 b

]

-h/2

(ax 06 0,08y +T, OFy, TT5 OV px T T4 O7yy )dx dy dz

Oty

b a

—'[ Iq xy6wdxdy E.T
0 0 2O

ot—

h/i2 b a 2 2
o°u o°v o'W
+,0_J‘ .[ J‘ |:¥5 +?5 +8t—5W:|dXdde:O

Substituting Egs. (6) - (10) into the Eq. (13) and integrating through the thickness of the plate,
the principle of virtual work of the plate can be rewritten as

2 2 2 (14)
M, 0 iW—Nsx 85¢+My8 52W—Nsy a5y/+2Mxya 5W—Nsxy@
b a oX OX oy oy OXoy oy
.[f dxdy
00
BE)
_Nsxy a_:(// - NTcx 6¢_ NTcy 5W
b a
+H a(x y) 5w+ N ow dsw Ngyamaaw LN ow (awaaw aNa5wH5wdxdy
X X ox oy oy oxoy\ ox oy oy ox
[ o*w ow osw |, &w g oow ¢
L w1 — Sp—1,— =
b al = ot Zoxot? ox  Coxot? b= ot ox ¢
_JI dxdy =0
00 3 3 2 2
., 0W285W_|38W2 _|3a:/2/65W |46V2/5l//
oyt oy Coyat o oy Cat |

where, stress resultants (M M M v Noo N, s N s Npoy s NTcy)are defined as:

sx1 ' Vsy? ' Vsxy?
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h/2 h/2 (15)
(Mvavaxy): J. (Gx,Gy,TXy)Z dz; (NSX,NSy,NSXy)z I (Gx,ay,rxy)f(z)dz;
-h/2 —-h/2
"¢ oM, oM, oW oW
(NTCX,NTCy):L(rzx,rw)g(z)dz; V, = ~ +2WV—N§’X&—N%E,
oM oM, ow ow h2
V, = 8yy +2FV—N&E—N%8—X; (1,15, |3,|4)=p_hJ./2(1, 2%, 2 f(z), fz(z))dz.

Substituting Egs. (7) and (9) into Eq. (15) and integrating through the thickness of the plate, the
stress resultants are related to the generalized displacements (W, ¢ and ) by the relations

M, D, Bs;, D, Bs, ||k (16)
M, _ D, Bs, D, Bs,|k M _ Dss  Bsgs | | Ky
Ny | |Bsy Ass;, Bs, Ass,||k5| [Ny | [Bss Assg | ks |
N, Bs, Ass, Bs, Ass, | |k;
N | | Accs 0 ¢
Nr, Lo Acc, | (v
Various stiffnesses used in Eq. (16) are expressed below
+h/2 (17)

(Dll’ Dyy: Dy, D66): ((3111 Q_12’ 622’ (366) I 2* dz,

-h/2

+h/2

(Bsn’ Bsy,, BS,,, Bsse) = (611’ (5121 622’ 666) _[ zf (Z)dZ;
—-h/2
_ _ _ _ +h/2
(Ass,,, Ass;y, Assy,, Assg ) = (Qyr Qs Q. Qg ) I £2(z) dz;

—h/2
_ _ +h/2

(ACC44’ ACC55) = (Q44’ st) J- gz(z)dz.
—h/2

Integrating the Eq. (14) by parts, collecting the coefficients of ow, d@, anddy the equations of

motion and boundary conditions for the orthotropic plate are obtained as follows:
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2 2M 52M 2 2 2 (18)
oM, 2% My OMy  (ky) e NG T e O oo OW
ox axay oy? OX oy* OXoy
2 4 4 3 3
:Ila\;v_l2 82w2+ 52W2 l, a¢2+aw2
ot ox2ot? - oylot oxot? oyt
oN 3 2 (19)
aNsx sXy_NTcx:_IB 8W2+|4%
X oy oxot ot
ONg, ON o*w o’y (20)

— Y TN, =] +1, —
oy ox @ gt ar

The associated boundary conditions of a plate are as follows:
r=0and z =a y=0andy=1>

Either VX =0 or w is prescribed Either Vy =0 or

is prescribed

Either M 5 = 0 or is prescribed Either M y = 0 or is prescribed

is prescribed Either Nsxy =0 or is prescribed

ow
OX
Either Nsx =0 or ¢
74

S%%|% g

Either Nsxy =0 or is prescribed Either N 5 = 0 or is prescribed

Substituting Eq. (16) into Egs. (18)-(20), the governing equations of the plate in-terms of general-
ized displacements are as follows:
o°p

o'w o'w 84 W 0°
s11 ¢ (8312 + 28566 )8—

D 2D,, +4D
llax ( 12 66)8X26 y2 22 ay Xa y2 (21)
831// O’y o°w o'w  o'w
—Bs,, —+ p (le2 + 28566)6 0y +1, o | PV + Y
2 2 2
1, ﬂ :q(x,y) foa 2+N0 ow 2nyaw
oxat? ayat ox ay? oxdy
&*w &*w 8% 8%

Bs,, P +(Bs,, +2Bsg )W — Ass,, P AsS a_yz + Acc,, ¢ )

oy o*w o°d
-1, s+, —=
oXoy oxot ot

—(Ass,, + Assg, )
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oy oy
M AsSg, v — Ass,, 252 —+Acc, v (23)

3 3
Bs,, gyw (le2 + 28366) ow

0*¢ o*w %%
_(A8312+A3866)8X6y_|38y6t2 +1, e =0

4 Navier solution for simply supported square orthotropic plates

The Navier method is only applied for simply supported boundary conditions on all four edges of
the rectangular plate. The following are the boundary conditions of the simply supported ortho-
tropic plates.

W:W:MX=NSX:0 atz=0and z=a (24)

W=¢=|\/|y=|\|sy=0 aty=0and y=1"> (25)

In order to solve the governing equations with the prescribed boundary conditions, a generalized
Navier’s approach is employed to obtain the closed-form solutions.

Example 1: Free vibration analysis of simply supported square orthotropic plates
The governing equations for free vibration analysis of plates can be obtained by setting the ap-

plied transverse load (¢) and in-plane compressive forces ( N? Ngy and ny) equal to zero in Egs.

XX

(21)-(23).
o*w o*w o*w o°p 09 &y (26)
D11W+(2D12 +4Dg, ) Xy +Dy v Bsﬂm—(lez +28366)—a oy Bs,, PN
3 2 4 4
(Bs, + 285, )~ TW_y (oW ow (29 0
oxoy ot ox‘ot® oy‘ot oxot 6yat
o*w o*w o’ o’ (27)
Bs,, P +(Bs,, +2Bs )W — Ass,, P AsSg, oy + Acc,, ¢
O’y ow ¢
—( Ass,, + Ass —1 +1 =
(Assy 66)axay Soxot?  * at?
o°w o*w 02 02 (28)
8822 W + ( BSlZ + 28866)7@ ASS% ox l/g ASS l/g + ACC44 v
o*w | oy

—(Ass,, + Assg, ) 0’ — +
12 66 8X8y 36y6t2 4 8t2 -

The following displacement functions W(X, y), ¢(X, y) and l//(X, y) are chosen to automatically
satisfy boundary conditions in Egs. (24) and (25).
Latin American Journal of Solids and Structures 11 (2014) 1298-1314



1306 A. Sayyad, Y. Ghugal / Buckling and free vibration analysis of orthotropic plates by using exponential shear deformation theory

SRS . mzX . nzy . (29)
w(x y,t)=> > Wy, sin % sin X sin @,
m=1 n=1 a b
= & mzx . nzy .
(x,y,t)= Pn cosismﬂsma)mnt;
m=l n=1 a b
= < . MmzX __ nry .
w(xy.t)=> > wp,sin——cos—=sina,t
m=1 n=l a b

where W,__ is the amplitude of translation and @ ,¥,, are the amplitudes of rotation. @, is

the natural frequency of m™ and n™ mode of vibration. Substitution of this solution form into the

Eqgs. (26)-(28), results in following standard Eigen value problem.

Ky Ky K My, M;, Mg, Winn 0 (30)
Ky Ky Kyi|- a)rin My M, My Gon =10
Ka Ksg Ky M, M, Mg, Yo 0

where I:Kij] is the stiffness matrix, [Mij:l is the mass matrix. Elements of [Kij] and I:Mij:l are

given as below:

4 _4 4 _4 31)
m*z m?n?z* n‘z (
K11: D11 (2D12+4D66) 2 +D22 7
a’ a’b b
3 _3 2_3
m*z mn®z
K,, =—Bs,, ———(Bs,, + 2BS,. )} ———
12 11 a3 ( 12 66) ab2
3_3 2 3
n’zr m°nz®
K., =—Bs,, o —(lez+28566)—a2b ,
2_2 2_2 2
m°z n°r _ mnz’
K,, = Ass,, — + Ass,, o +ACCy; Ky =(AsS, + Assg, ) ——;
27Z'2 2 _2
Kz = AsSy, 2 + Assgg tAcC,; Ky=K, Ky=Kg K=Ky,
2 _2 2 _2
m°z n°z mz nz
M (I +1 +1, > ]; M, =-1, ; Mp=-1,—;M,, =1,
a b b
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From the solution of Eq. (30), lowest natural frequency for all modes of vibration can be ob-
tained. The orthotropic plate has following material properties.

E,/E,=052500, G,/E,=0.26293, G,,/E,=0.15991, (32)

G, /E,=0.26681 1, =0.44046, 1, =0.23124

The bending mode and shear mode frequencies of orthotropic plate are presented in the following
non-dimensional form.
_ - E (33)
@y = Oy N L yhere Q=—"—
Qu 1— oty

Example 2: Buckling Analysis of simply supported orthotropic plates subjected in-plane
compressive forces

When a plate is subjected to in-plane compressive forces, and if the forces are small enough, the
equilibrium of the plate is stable and the plate remains flat until ascertains load is reached. At
that load, called the critical buckling load, the stable state of the plate is disturbed and plate
seeks an alternative equilibrium configuration accompanied by a change in the load-deflection
behavior. A simply supported rectangular plate subjected to the loading conditions, as shown in
Fig. 1, is considered to illustrate the accuracy of the present theory in predicting the buckling
behavior of the orthotropic plate

PIir i

ND N bl
| | L.
b x
b x a
e a > .
LITTTTTT M
(a) Uniaxial compression along z-axis (b) Uniaxial compression along y-axis

RN RRRR

N, ; N
H i

a

L A

(c) Biaxial compression

Fig. 1 The loading conditions of rectangular plate: (a) uniaxial compression along z-axis, (b) uniaxial compression
along y-axis (c) biaxial compression
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The governing equations of plate in case of static buckling are obtained by settingq( X, y) =0,

Ng =kNy, NJ =k,Ng, and N} =0 in Egs. (21) - (23).

o'w o'w o'w O’ ¢
D11W+(2D12 +4D66)8X2—ay2+ 22 8_y4_ Bs,, m‘(lez +2Bsg ) %0 y2 (33)
&y &y o*w o*w
_BS22 6_y3_(BSlz + ZBSGG)aXTay—kl 0 y—kzNo W =0
aSW a3W 62¢ 82¢
Bs,, = +(Bs,, + 2Bsg )—6 oy — Ass,, P Ass; W + Acc,, ¢ "
‘v
—( ASSlZ + ASSSG )ax—ay =0
3 3 2 2
Bs,, W 1 (Bs,, + 2By )=~ Ass,, SV ass, TV 4 Acc,
oy oX° oy OX oy (35)
—(Ass,, + Assg;) 0'¢ =0
12 66 a X6 y

The following displacement functions W(X, y), ¢(X, y) and (X, y) are chosen to automatically

satisfy the boundary conditions in Egs. (24) and (25).

M= N=0w0 (36)
w(x,y)=>. W, sinMsinm;
m=l n=l a b
m=oo N=00
d(xy)= B cos X sjn D2V
m=1 n=l a b
LSS . MzXx Nz
w(xy)=Y, a//mnsm—cos—y.
m=l n=1 a
Substituting Eq. (36) into Egs. (33)-(35), the following system is obtained:
Ky Ky Ky Ny O O} |W, 0 (37)
Ky Kp Ky |=Ng| 0 0 O0f|<dy, ;=10
Ki Ky Ky 0 0 0J) (W 0
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where, I:Kij] are given in Eq. (31) and Ny, as given below:

m2z2 n2r2 (38)
—+K, —
a b

For nontrivial solution, the determinant of the coefficient matrix in Eq. (37) must be zero. This
gives the following equation for buckling load:

N11 =- k1

K K K, K K, K
K11 Kzz K23 —K12 K21 Kza " K13 Kzl Kzz
N. = 32 33 31 33 31 32 (39)
0 K, K
N11 Kzz Kzs
32 33

For each choice of m and n, there is a corresponding unique value of N,. The critical buckling
load is the smallest value of N, (m, n). For verification purposes, a simply supported rectangular
plate subjected to the uniaxial and biaxial loading conditions, as shown in Fig. 1, is considered to
illustrate the accuracy of the present theory in predicting the buckling behavior of the orthotropic
plate. The following material properties are used.

E,/E,=open, G,/E,=G,/E,=05, G,,/E,=02, ,=0.25 (40)

Critical buckling loads are presented in the following non-dimensional form:

Table 1: Comparison of non-dimensional natural predominantly bending mode frequencies @, of simply-

supported orthotropic square plate (b / a =1, h / a = 0.1)

Exact HSDT TSDT RPT FSDT
(m, n) (Srinivas et al., Present (Reddy, (Ghugal and  (Shimpiand (Mindlin, CPT

1970) 1984)  Sayyad, 2011b) Patel, 2006)  1951)
(1, 1) 0.0474 0.0474 0.0474 0.0474 0.0477 0.0474 0.0497
(1,2) 0.1033 0.1033 0.1033 0.1031 0.1040 0.1032 0.1120
(1, 3) 0.1888 0.1888 0.1888 0.1793 0.1898 0.1884 0.2154
(1, 4) 0.2969 0.2969 0.2969 0.2932 0.2980 0.2959 0.3599
(2, 1) 0.1188 0.1190 0.1189 0.1196 0.1198 0.1187 0.1354
(2, 2) 0.1694 0.1697 0.1695 0.1696 0.1722 0.1692 0.1987
(2, 3) 0.2475 0.2480 0.2477 0.2478 0.2520 0.2469 0.3029
(2, 4) 0.3476 0.3482 0.3479 0.3468 0.3534 0.3463 0.4480
(3, 1) 0.2180 0.2191 0.2184 0.2199 0.2197 0.2178 0.2779
(3, 2) 0.2624 0.2637 0.2629 0.2671 0.2675 0.2619 0.3418
(3, 3) 0.3320 0.3337 0.3326 0.3326 0.3407 0.3310 0.4470
4, 1) 0.3319 0.3351 0.3330 0.3346 0.3344 0.3311 0.4773
(4, 2) 0.3707 0.3743 0.3720 0.3727 0.3774 0.3696 0.5415
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4.2 Discussion of Results

Example 1: In the present study, free vibration analysis of an orthotropic plate with all edges
simply supported is considered. Natural predominantly bending mode (®, ) and thickness shear
modes (cT)¢ and CT)W) frequencies of square plate are obtained for aspect ratio 10. Non-dimensional

frequencies of simply supported square plate are presented in Tables 1-3 and compared with
higher order shear deformation theory (HSDT) of Reddy (1984), trigonometric shear deformation
theory (TSDT) of Ghugal and Sayyad (2011b), refined plate theory (RPT) of Shimpi and Patel
(2006), first order shear deformation theory (FSDT) of Mindlin (1951) and classical plate theory
(CPT).

Table 1 shows comparison of predominantly bending mode frequencies of orthotropic square
plate for various modes of vibration and aspect ratio 10. It is observed that the present theory
yields excellent values of frequencies for all modes of vibration. The present theory and HSDT of
Reddy predicts exact result of bending frequency for (m = 1, n=1), (m =1, n=2), (m=1,n
= 3) and (m = 1, n = 4) modes of vibration whereas RPT and CPT overestimates the same.
From Tables 2-3 it is observed that, thickness shear modes frequencies of orthotropic square plate
obtained by the present theory and HSDT of Reddy are in close agreement with the exact values.
The FSDT marginally overestimates the value of frequencies of this mode compared to the exact
one.

Table 2: Comparison of non-dimensional predominantly thickness shear mode frequencies @, of simply-supported

orthotropic square plate (b / a=1, h / a = 0.1)

(m, n) Exact Present  HSDT TSDT FSDT
(Srinivas et al., (Reddy, (Ghugal and (Mindlin,

1970) 1984) Sayyad, 2011b) 1951)
(1, 1) 1.3077 1.2999 1.3086 1.3077 1.3159
(1,2) 1.3331 1.3290 1.3339 1.3332 1.3410
(1, 3) 1.3665 1.3638 1.3772 1.3766 1.3841
(1, 4) 1.4372 1.4281 1.4379 1.4371 1.4445
(2,1) 1.4205 1.4168 1.4216 1.4203 1.4285
(2, 2) 1.4316 1.4277 1.4323 1.4316 1.4393
(2, 3) 1.4596 1.4562 1.4603 1.4598 1.4671
(2, 4) 1.5068 1.5039 1.5076 1.5063 1.5142
(3, 1) 1.5777 1.5744 1.5789 1.5766 1.5857
3, 2) 1.5651 1.5612 1.5658 1.5644 1.5727
(3, 3) 1.5737 1.5701 1.5744 1.5737 1.5812
(4,1) 1.7179 1.7119 1.7189 1.7168 1.7265
(4, 2) 1.6940 1.6890 1.6947 1.6942 1.7022

Table 3: Comparison of non-dimensional predominantly thickness shear mode frequencies @, of simply-supported

orthotropic square plate (b / a=1,h / a=0.1)

(m, n) Exact Present ~ HSDT TSDT FSDT
(Srinivas et al., (Reddy, (Ghugal and (Mindlin,

1970) 1984)  Sayyad, 2011b)  1951)
(1, 1) 1.6530 1.6448 1.6550 1.6530 1.6647
(1,2) 1.7160 1.7105 1.7209 1.7145 1.7307
(1, 3) 1.8115 1.8052 1.8210 1.8044 1.8307
(1, 4) 1.9306 1.9249 1.9466 1.9121 1.9562
(2,1) 1.6805 1.6728 1.6827 1.6817 1.6922
(2, 2) 1.7509 1.7462 1.7562 1.7513 1.7657
(2, 3) 1.8523 1.8418 1.8622 1.8458 1.8717
(2, 4) 1.9749 1.9701 1.9912 1.9524 2.0004
(3, 1) 1.7334 1.7274 1.7361 1.7373 1.7452
(3, 2) 1.8195 1.8068 1.8255 1.8255 1.8343
(3, 3) 1.9289 1.9203 1.9395 1.9301 1.9418
(4, 1) 1.8458 1.8437 1.8583 1.7163 1.7267
(4, 2) 1.9447 1.9351 1.9514 1.9568 1.9588
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Example 2: Present study also deals with the, buckling analysis of an orthotropic square and
rectangular plate with all edges simply supported. Three different in-plane loading conditions are
used in this numerical study: (1) uniaxial compression along the z-axis; (2) uniaxial compression
along the y-axis; and (3) biaxial compression. For the comparison studies, results are also gener-
ated using higher order shear deformation theory (HSDT) of Reddy (1984), trigonometric shear
deformation theory (TSDT) of Ghugal and Sayyad (2011b), first order shear deformation theory
(FSDT) of Mindlin (1951) and classical plate theory.

Tables 4-5 shows the comparison of non-dimensional critical buckling load for simply supported
square plate subjected to uniaxial and biaxial compression with the variation of modular and aspect
ratios. It can be seen that the present theory gives excellent results of critical buckling load for all
aspect ratios and modular ratio 3, whereas TSDT overestimate and FSDT underestimate the same.
The differences between present theory and HSDT of Reddy will slightly increases with respect to
increase in modular ratios. Classical plate theory overestimates the value of critical buckling load for
all aspect ratios and modular ratios. Tables 6-8 shows the comparison of non-dimensional critical
buckling load for simply supported rectangular plate. Examination of these Tables reveals that,
non-dimensional critical buckling load decreases with increase in ‘b/a’ ratios when subjected to uni-
axial compression along z-axis whereas increases when subjected to uniaxial compression along y-
axis and biaxial buckling. Critical buckling load for rectangular plate increases with increase.

Table 4: Comparison of non-dimensional buckling load factors (N, ) for simply supported orthotropic square

plate under uniaxial compression (b/a = 1,k;=-1, k,=0, m=n=1)

Non-dimensional Critical Buckling Load Factor ( N )

a/h  Model Modular Ratio ( E, / E,)
3 10 20 30 40
5 Present 3.9650 6.3014 8.0946 9.2166 10.049
HSDT (Reddy, 1984) 3.9434 6.2072 7.8292 8.7422 9.3472

TSDT (Ghugal and Sayyad, 2011b) 4.0572 6.3212 7.9324 8.8418 9.4502

RPT (Kim et al., 2009) - 6.3478 - - 10.579
FSDT (Mindlin, 1951) 3.9386 6.1804 7.7450 8.5848 9.1084
CPT 5.4248 11.163 19.383 27.606 35.830
10 Present 4.9612 9.2998 14.080 17.748 20.676
HSDT (Reddy, 1984) 4.9568 9.2772 14.001 17.577 20.386
TSDT (Ghugal and Sayyad, 2011b) 5.0128 9.3646 14.116 17.711 20.534
RPT (Kim et al., 2009) --- 9.3732 - --- 22.258
FSDT (Mindlin, 1951) 4.9562 9.2734 13.982 17.532 20.304
CPT 5.4248 11.163 19.383 27.606 35.830
20 Present 5.3004 10.625 17.681 24.146 30.094
HSDT (Reddy, 1984) 5.2994 10.621 17.664 24.108 30.025
TSDT (Ghugal and Sayyad, 2011b)  5.3194 10.653 17.714 24.175 30.107
RPT (Kim et al., 2009) - 10.653 - - 31.069
FSDT (Mindlin, 1951) 5.2994 10.620 17.662 24.102 30.014
CPT 5.4248 11.163 19.383 27.606 35.830
50 Present 5.4044 11.072 19.087 26.982 34.758
HSDT (Reddy, 1984) 5.4040 11.072 19.085 26.976 34.748

TSDT (Ghugal and Sayyad, 2011b) 5.4116 11.081 19.098 26.993 34.769

RPT (Kim et al., 2009) - 11.078 --- - 34.972
FSDT (Mindlin, 1951) 5.4046 11.072 19.085 26.976 34.748
CPT 5.4248 11.163 19.383 27.606 35.830
100  Present 5.4196 11.400 19.308 27.447 35.5564
HSDT (Reddy, 1984) 5.4192 11.139 19.307 27.466 35.553

TSDT (Ghugal and Sayyad, 2011h) 5.4250 11.145 19.314 27.453 35.562

RPT (Kim et al., 2009) - 11.142 - - 35.612
FSDT (Mindlin, 1951) 5.4206 11.142 19.309 27.448 35.5564
CPT 5.4248 11.163 19.383 27.606 35.830
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Table 5: Comparison of non-dimensional buckling load (N, ) for simply supported orthotropic square plate under

biaxial compression (b / a =1, k=-1 k,=-1, m=n=1)

Non-dimensional Critical Buckling Load ( N, )

a/h  Model Modular Ratio (E, / E,)
3 10 20 30 40

5 Present 1.9825  3.1507 4.0473  4.6083 5.0246
HSDT (Reddy, 1984) 1.9717  3.1036  3.9146  4.3711 4.6736
TSDT (Ghugal and Sayyad, 2011b)  2.0281  3.1606  3.9662  4.4209 4.7251
RPT (Kim et al., 2009) --- 3.1739 --- - 5.2895
FSDT (Mindlin, 1951) 1.9693  3.0902  3.8725 4.2924 4.5542
CPT 2.7124  5.5814  9.6917 13.8034 17.9154

10 Present 2.4806  4.6499  7.0402  8.8741 10.3380
HSDT (Reddy, 1984) 24784 4.6386 7.0002  8.7885  10.1929

TSDT (Ghugal and Sayyad, 2011b)  2.5064 4.6823 7.0582  8.8558  10.2674

RPT (Kim et al., 2009) - 4.6866 - - 11.1290
FSDT (Mindlin, 1951) 24781  4.6367  6.9910  8.7662  10.1522

CPT 2.7124  5.5814  9.6917 13.8034 17.9154

20 Present 2.6502  5.3125 8.8405 12.0731  15.0470
HSDT (Reddy, 1984) 2.6497  5.3101  8.8320 12.0540  15.0127
5.3266  8.8574  12.0875  15.0637

TSDT (Ghugal and Sayyad, 2011b)  2.6597

RPT (Kim et al., 2009) - 5.2265 - - 15.5345
FSDT (Mindlin, 1951) 2.6497 53100 88311 12.0513  15.0070
CPT 2.7124  5.5814  9.6917 13.8034 17.9154
50  Present 2.7022  5.5364  9.5437 13.4911  17.3791
HSDT (Reddy, 1984) 2.7020  5.5360 9.5424  13.4884 17.3744

407 9.5490  13.4969  17.3849
5390 - - 17.4860

(<941
n

TSDT (Ghugal and Sayyad, 2011b)  2.7058 !
RPT (Kim et al., 2009) —

(S

FSDT (Mindlin, 1951) 2.7023  5.5362 9.5425  13.4885  17.3745
CPT 2.7124  5.5814  9.6917 13.8034 17.9154
100 Present 2.7098  5.5700 9.6542 13.7238  17.7779
HSDT (Reddy, 1984) 2.7096  5.5697 9.6533  13.7230 17.7767
=4 <

TSDT (Ghugal and Sayyad, 2011b)  2.7124 727 9.6571  13.7269 17.7811

RPT (Kim et al., 2009) - 5.5710 - - 17.8060
FSDT (Mindlin, 1951) 2.7103  5.5710  9.6544  13.7241  17.7772
CPT 2.7124  5.5814  9.6917 13.8034 17.9154

Table 6: Comparison of non-dimensional critical buckling load (N, ) of simply supported orthotropic rectangular

plates subjected to uniaxial compression along z-axis (a / h=15, k=-1 k, =0, m=n=1)

Non-dimensional Critical Buckling Load ( N, )

Tode (b/ a)
E,/E, Modd 1.0 15 2 2.5 3.0 3.5 10
10 Present 6.3014 5.3026 5.0148 4.8939 4.8317 4.7953 4.7723
HSDT (Reddy, 1984) 6.2072  5.2245 4.9412 4.8223 4.7611 4.7253  4.7026
TSDT (Ghugal and Sayyad, 2011b)  6.3212 52923 4.9940 4.8682 4.8033 4.7654 4.7412
RPT (Kim et al., 2009) 6.3478 - 5.0109 --- --- - -
FSDT (Mindlin, 1951) 6.1804  5.2025 4.9205 4.8021 4.7412 4.7056  4.6831
CPT 11.163  9.3549 8.8428 8.6270 8.5154 8.4500 8.4083
25 Present 8.7062 7.8373 7.6007 7.5047 7.4562 7.4281 7.4109
HSDT (Reddy, 1984) 8.3394  7.4929 7.2631 7.1701 7.1231 7.0961 7.0792
TSDT (Ghugal and Sayyad, 2011b)  8.4398 7.5414 7.2929 7.1909 7.1391 7.1091  7.0905
RPT (Kim et al., 2009) 9.1039 --- 7.5409 - - - -
FSDT (Mindlin, 1951) 8.2199 7.3805 7.1530 7.0610 7.0154 6.9883 6.9713
CPT 23.495  21.690 21.179 20.964 20.854 20.783  20.744
40 Present 10.049  9.2310 9.0145 8.9282 8.8853 8.8608 8.8454
HSDT (Reddy, 1984) 9.3472  8.5541 83455 82628 8.2217 K8.1983  R.1837
TSDT (Ghugal and Sayyad, 2011b)  9.4502  8.6015 8.3719 8.2791 8.2324 8.2056 8.1888
RPT (Kim et al., 2009) 10.579 --- 8.7587 - - - -
FSDT (Mindlin, 1951) 9.1084 8.3237 8.1178 8.0363 7.9958 7.9728  7.9585
CPT 35.830  34.027 33.516 33.300 33.189 33.124  33.082
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Table 7: Comparison of non-dimensional critical buckling load (N ) of simply supported orthotropic rectangular

plates subjected to uniaxial compression along yaxis (a / h =15, k=0, k,=-1, m=n=1)

Non-dimensional Critical Buckling Load ( N )

(b / a)
E,/E, Mode 1.0 15 2 2.5 3.0 3.5 10
10 Present 6.3014  11.930 20.059 30.587 43.485 58.743  76.356
HSDT (Reddy, 1984) 6.2072 11.755 19.765 30.139 42.849 57.885  75.242
TSDT (Ghugal and Sayyad, 2011b)  6.3212 11.907 19.975 30.426 43.229 58.375 75.859
RPT (Kim et al., 2009) 6.3478 - 20.044 - - - -
FSDT (Mindlin, 1951) 6.1804 11.705 19.682 30.013 42.670 57.644 74.929
CPT 11.163  21.048 35.371 53.918 76.638 103.51 134.53
25 Present 8.7062 17.634 30.403 46.904 67.107 90.999 118.57
HSDT (Reddy, 1984) 8.3394 16.859 29.052 44813 64.110 86.931 113.27
TSDT (Ghugal and Sayyad, 2011b)  8.4398 16.968 29.171 44.943 64.253 87.089 113.44
RPT (Kim et al., 2009) 9.1039 --- 30.164 - - --- ---
FSDT (Mindlin, 1951) 8.2199 16.606 28.611 44.131 63.132 85.604 111.54
CPT 23.495 48.803 84.716 131.02 187.66 254.63 331.92
40 Present 10.049  20.769 36.058 55.801 79.968 108.55 141.42
HSDT (Reddy, 1984) 9.3472  19.246  33.382 51.642 73.995 100.42 130.93
TSDT (Ghugal and Sayyad, 2011b)  9.4502 19.353  33.487 51.744 74.092 100.52 131.02
RPT (Kim et al., 2009) 10.579 --- 35.034 - - --- ---
FSDT (Mindlin, 1951) 9.1084 18.728 32471 50.226 71.962 97.667 127.33
CPT 35.830  76.560 134.06 208.12 298.69 405.76  529.31

Table 8: Comparison of non-dimensional critical buckling load (N, ) of simply supported orthotropic rectangular

plates subjected to biaxial compression (a / h =5,k =-1 k,=-1 , m=n=1)

Non-dimensional Critical Buckling Load ( N )

(b/ a)
E,/E, Modd 0 15 2 25 30 35 40
10 Present 3.1507  3.6710 4.0118 4.2189  4.3485 4.4334  4.4915
HSDT (Reddy, 1984) 3.1036  3.6170  3.9530 4.1571 4.2849 4.3687  4.4260
TSDT (Ghugal and Sayyad, 2011b)  3.1606 3.6639  3.9952 4.1967 4.3230 4.4057 4.4623
RPT (Kim et al., 2009) 3.1739 --- 4.0087 - - - -
FSDT (Mindlin, 1951) 3.0902  3.6017 3.9364 4.1398 4.2671 4.3505 4.4076
CPT 5.5814  6.4765 7.0743 7.4371 7.6638 7.8122 7.9137
25 Present 4.3531  5.4258 6.0806 6.4696 6.7107 6.8678  6.9750
HSDT (Reddy, 1984) 4.1697  5.1874 5.8105 6.1811 6.4110 6.5609  6.6631
TSDT (Ghugal and Sayyad, 2011b)  4.2199 5.2210 5.8343  6.1991  6.4253 6.5728 6.6734
RPT (Kim et al., 2009) 4.5519 - 6.0327 - - - -
FSDT (Mindlin, 1951) 4.1099  5.1096 5.7224 6.0870 6.3132 6.4607 6.5613
CPT 11.747 15.016 16.943 18.072 18.767 19.217 19.524
40 Present 5.0246  6.3907 7.2116 7.6967 7.9968 8.1920 8.3251
HSDT (Reddy, 1984) 4.6736  5.9221 6.6764 7.1231 7.3995 7.5796 7.7023
TSDT (Ghugal and Sayyad, 2011b)  4.7251  5.9549  6.6975 7.1372 7.4092 7.5863 7.7071
RPT (Kim et al., 2009) 5.2895 - 7.0069 - - - -
FSDT (Mindlin, 1951) 4.5542  5.7626 6.4942 69278 7.1963 7.3711 7.4903
CPT 17.915  23.557  26.813 28.707 29.870 30.623 31.136

5 CONCLUSION

An exponential shear deformation theory (Sayyad and Ghugal, 2012a and 2012b; Sayyad, 2013)
has been extended in this paper for buckling and free vibration analysis of orthotropic plates. The
theory takes into account of transverse shear effects and parabolic distribution of the transverse
shear strains through the thickness of the plate. From the numerical results and discussion it can
be concluded that, the frequencies obtained by the present theory are accurate as seen from the
comparison with exact results specially in case of natural predominately bending mode. Also, an
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exponential shear deformation theory can accurately predict the critical buckling loads of the
orthotropic plates with various plate aspect ratios and modular ratios.
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