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Abstract 
This paper presents a precise and effective formulation for modeling and simulating impact with friction for planar multibody systems. Non-
linear equations of motion are formulated using normal impulse at contact point as a time-like independent variable. The derived equations 
demonstrate that sliding during impact period could persist, or it could cease leading either to a persistence of sticking or to a reverse sliding. 
To distinguish between these different modes, Routh’s incremental method is employed. A critical coefficient of friction, dependent solely 
on the system configuration, is identified and used to determine whether the contact mode is sliding or sticking. Three definitions of coeffi-
cient of restitution are introduced to model the plasticity of the impact. Analytical algebraic solutions and a computational strategy are 
offered to identify the mode of impact and to evaluate the impact variables. An example is thoroughly examined to demonstrate the effec-
tiveness of the formulation, validate the algebraic solutions, and evaluate the outcomes of the three definitions of the coefficient of restitu-
tion.  
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1 INTRODUCTION 

The modeling and simulation of many multibody systems often involve impacts with friction. These contact-impacts phenomena can result 
from unexpected collisions or be inherent to their functional processes. Such phenomena are prevalent across nearly all fields of engineering. 
Intended impacts occur in various applications, such as walking machines, spot welding, drilling devices, tool manipulation, forging machines, 
writing on surfaces, assembling components, cooperative manipulators, and impulsive manipulation. 
Impacts generate large forces, energy dissipation, and abrupt changes in velocities and accelerations, among other challenges. Additionally, 
friction management is complex due to the existence of two distinct modes: sticking and slipping. The nature of the problem, and conse-
quently the solution, differs between these two modes. For example, a rigid body sliding on a surface could encounter the Painlevé paradox 
if friction is considered, a paradox that was solved recently and still is a focus of considerable research (Charles et al., 2018; Elkaranshawy et 
al., 2017a). When impact occurs alongside friction, the discontinuity of Coulomb friction introduces nonlinearity, further compounded by the 
nonlinearity caused by velocity discontinuities. 
During planar impact, sliding may cease and continue until the end of the impact period or restart in the opposite direction. As a result, 
friction force laws cannot be directly applied to friction impulses calculated throughout the impact. However, the conventional approach to 
modeling rough collisions assumes that the contact point either continuously slides or remains non-sliding throughout the collision. This 
method has been widely used in classical dynamics texts, such as those by Whittaker (1904), Goldsmith (1960), and Kane and Levinson (1985). 
Recognizing that the sliding may cease or change direction during a collision, Routh (1897) proposed an incremental method that differenti-
ates between various types of contact. He applied a semi-graphical, semi-algebraic technique to solve planar rough collisions. Kane and 
Levinson (1985) considered a case in which sliding reversed direction during a planar collision, and they observed that Whittaker’s method 
could lead to an increase in energy. To address this issue, Wang and Mason (1992) advocated returning to Routh’s method. They demon-
strated that using Newton’s coefficient of restitution with Routh’s method fails to resolve this energy inconsistency, whereas employing 
Poisson’s coefficient of restitution with Routh’s method prevents the possibility of energy increase during a collision. Meanwhile, Stronge 
(1990) showed that with the Poisson-Routh method, the normal component of the impulse can dissipate energy even in purely elastic colli-
sions. He proposed an energetic coefficient of restitution that works with Routh’s method to resolve the energy inconsistency. A three-
dimensional impact with friction is more complicated as the contact point continuously changes its sliding direction. Hence, sliding velocity 
in three-dimensional is the primary concern in many research work (Battle 1996; Elkaranshawy et al. 2017b; Jia and Wang 2017).  
Impact with friction can be considered among the most critical challenges modeled in multibody systems. Rigorous mathematical models 
were developed for the dynamics of multibody systems with impact and friction (Battle 1996; Elkaranshawy et al. 2017b; Aghili 2020, Elka-
ranshawy 2007; Elkaranshawy 2011; Peng et al. 2020; Passas and Natsiavas 2022). Admirable review papers have been composed (Corral et 
al. 2021; Flores 2021; Flores et al. 2023). However, analytical solutions are only readily available in three-dimensional cases for certain special 
scenarios. While it is possible to develop analytical solutions for planar multibody systems, only a few attempts have been made to create a 
general approach that can be easily applied to various multibody systems. For instance, Aghili (2020) developed a unified frictional impact 
model that is consistent in both slip and stick states. However, the model needs to impose specific constraints on the coefficient of friction 
and the coefficient of restitution. 
In this article, single-point rough collisions in planar rigid multibody systems are considered. Coulomb’s law of friction and the assumption of 
infinite tangential stiffness are applied. The Newton’s, Poisson’s, and energetic coefficients of restitution are used to determine the end of 
the collision, and Routh’s incremental method is employed to model the contact modes at the collision point. The equations of motion are 
derived, with the normal impulse serving as the integrating variable instead of time. It is shown that algebraic solutions for planar multibody 
collisions exist. The equations necessary to identify these invariant directions are derived. Without losing generality, assuming a sliding start, 
the conditions for reaching the sticking mode are determined, along with the coefficient of friction required to maintain this non-sliding 
mode. If the friction is not sufficient to keep the non-sliding, the sliding resumes in the reverse direction. A classification of all possible sliding 
behaviors is provided, and algebraic solutions and computational strategy are presented. A numerical simulation for an illustrated example 
is conducted to demonstrate the effectiveness of the formulation and verify the algebraic solutions. Additionally, it is used to assess the 
output of the three definitions of the coefficient of restitution. 
 

2 EQUATIONS OF MOTION 

The n-dimensional change in generalized joint velocities q  during single-point rough impact can be written as 

1Δ Tq I M J  (1) 

The differential form of this equation is: 

1 Td d

dt dt
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q I
M J  (2) 



  

where  qM  is the inertia matrix of the multi-body system;  . n nM R ,  Tn tI II  is the impulse at the impact point, and 

  T
   

T Tq αJ β  is the Jacobian matrix that transforms generalized joint velocities to the velocity of the impact point 

 Tn tv vv  as  

v qJ  (3) 

where  nv   and tv   are the normal and tangential components of the velocity of the impact point respectively, and  nI  and tI  are the 

normal and tangential components of that impulse respectively, 
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Equations (2) and (3) gives: 
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where D  is the Jacobian inertia 3 3D R  which depends only upon system configuration and is a symmetric positive definite matrix 
given by: 
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D JM J  (5) 

where 

1 1 1,   ,   ,T T Ta b c    α α αM β M β β M  (6) 

and 
1 1a R , 

1 1b R , 
1 1c R . 

3 CONTACT MODES  

Coulomb’s friction law with stiction and infinite tangential stiffness at the impact point are assumed. Accordingly, one can recognize three 
contact modes as follows.  

3.1 Sliding Mode 
 The following form is used in sliding mode: 

σt n
D I

dI dI

dt dt
   (7) 

where D  is the kinetic coefficient of friction and σ t
I

t

v

v
   is the unit vector defining the sliding direction which could be either 1 or -1. 

Therefore 

 σt
D I

n
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dI
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The scalar nI  has been selected as an impact parameter, since it is a time-like variable that starts with zero at the starting of impact and 

continuously increases through the impact period until the end of impact. Substituting Eq. (8) in Eq. (2) yields 
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In this paper ()s  is preserved for the sliding while ()ns is preserved for the non-sliding (sticking). Substituting Eq. (8) in Eq. (4) yields 
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Equation (10) shows that nv  depends upon the sliding direction σI , i.e., upon tv  . On the other hand, tv  does not depend upon nv  as 

can be seen in Eq. (11).  

3.2 Non-sliding Mode  
For the non-sliding (sticking mode), the following are valid: 

0,   0t
t

dv
v

dt
   (12) 

Hence, substituting  Tn tv vv and  Tn tI II in Eq. (4) and utilizing (12) gives 
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a critical coefficient of friction can be introduced as 

1
c b c    (14) 

However, according to Coulomb friction law during non-sliding 

t n
s

dI dI

dt dt
  (15) 

where s  is the static coefficient of friction. For sticking mode to persist once it has been reached, the following must be satisfied: 

s c   (16) 

Otherwise, the friction would not be enough to keep the non-sliding mode and the sliding restarts in an altered direction. Substituting Eq. 
(13) in Eq. (2) yields 
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Substituting Eq. (13) in Eq. (4) yields 
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3.3 Reverse Sliding Mode  
For the reverse sliding mode, the equations given in section 3.1 are valid up to the vanishing of the sliding velocity. In this case: 

 s c   (19) 

Hence, the friction would not be enough to keep the non-sliding mode and the sliding restarts in the reverse direction. In this case Eq. (9) to 
Eq. (11) can be rewritten as: 
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where 

σ σF I   (23) 

 



  

4 RESTITUTION LAW 

The deformation of an object involves two phases: compression and restitution. At the end of the compression phase 0nv  , and the 

restitution phase started after that and continues to the end of impact. The coefficient of restitution specifies the end of impact. There are 
three definitions for the coefficient of restitution: namely the Newton’s coefficient, the Poisson’s coefficient, and the energetic coefficient. 
These coefficients are given as  

Newton’s coefficient 

ne
N

ni

v
e

v
   (24) 

Poisson’s coefficient 

ne nc
P

nc

I I
e

I


  (25) 

energetic coefficient 

2 nR ne nc
E
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W W W
e

W W


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where niv  and nev  are the normal components of the velocity of the impact point at the beginning and at the end of impact respectively, 

ncI  and neI  are the normal impulses at the end of compression period and at the end of impact respectively; neW  ( 0nW  ),  ncW  (

0ncW  ) and  nRW ( 0nRW  ) are the work done by the normal component of reaction force during impact period, compression period, 

and restitution period, respectively. Utilizing Eq. (10), Eq. (18), and Eq. (21) to obtain the following:  
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where    0n nW W   is the work done by the the normal component of reaction force during impact at any instant, and   could be 
s
I

, 
s
F , or 

ns
F . Also, it can be noticed that friction does not dissipate work during sticking, while it dissipates work during sliding given by   

0 0
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where ,  t teI I  are the tangential impulse at any instant and at the end of impact respectively;     0  and  0t t te teW W W W   are 

the work done by the friction force during impact at any instant and during impact period respectively.  
 

5 ALGEBRAIC SOLUTIONS AND COMPUTATIONAL STRATEGY 

Let us assume that the impact starts with sliding in a specific direction I  , if the tangential velocity vanishes during impact, the normal 

impulse nhI  and the normal velocity nhv  at this instant can be obtained by integrating Eq. (10) and Eq. (11). It is important to notice that 

during that period the tangential velocity persists in its original direction I  until it vanishes, consequently  
s s

I   is constant and   
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If it is assumed that the tangential velocity does not vanish up to the end of compression phase, the normal impulse at this instant npI  can 

be obtained by integrating Eq. (10) as 

s
np I niI v   (33) 

Also, if it is assumed that the tangential velocity does not vanish up to the end of impact, the normal impulse at this instant  nfI can be 

obtained by integrating Eq. (10) as 

 s
nf I nf niI v v   (34) 

It can be noticed that if  nh nfI I  the sliding will continue up to the end if impact, if nh npI I the sliding halts in the compression period, 

and if  np nh nfI I I   the sliding halts in the restitution period. Hence,  , ,   np nh nfI I and I , which depend upon multibody system 

inertia and orientation, initial velocity, and coefficient of restitution, identify whether sliding or sticking is encountered. At the same time, if 
the sliding does not halt up to the end of impact, it is easy to prove that the three definitions for the coefficient of restitution are identical 

since 
s
I  is constant. In this case, the normal velocity at the end of impact nfv  can be obtained from Eq. (24), Eq. (25), or Eq. (26) as 

nf niv ev   (35) 

where e  could be either Ne , Pe , or Ee . Accordingly, if the initial sliding in σI  direction halts during the contact period, the sticking mode 

continues and persists as long as s c  , otherwise the friction would not be enough to keep the sticking mode, and a reverse sliding 

exists. Therefore, for this planar impact, one can recognize five types of motion given as: 

 Permanent sliding  if nh nfI I . 

 Non-sliding in restitution if np nh nfI I I   and s c  . 

 Reverse in restitution if np nh nfI I I   and s c  . 

 Non-sliding in compression if nh npI I  and s c  . 

 Reverse in compression if nh npI I  and s c  . 

If the tangential velocity vanishes in compression phase, the normal impulses at the end of compression period and at the end of impact, 
and the work done by the normal component of reaction force during compression and restitution can be obtained from Eq. (27) - Eq. (29) 
as 
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2nR F neW v  (39) 

While, if the tangential velocity vanishes in restitution phase, these quantities can be obtained from Eq. (27) - Eq. (29) as 
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where F  either 
s
F  or 

ns
F in Eq. (36) to Eq. (43). Utilizing Eq. (8), Eq. (11), and Eq. (30) can give the work done by the frictional compo-

nent of impact as 
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It is valuable to identify the following quantities: 
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Hence, the algebraic solutions for the equations of motion for the five types of motion for the planar impact can be obtained. Newton’s 
coefficient gives: 

ne N niv e v   (48) 

Poisson’s coefficient gives:  
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Energetic coefficient gives:  
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where n  is the sign of nv , which could be 1  or 1  and given by: 

n
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v

v
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The tangential velocity for the non-sliding,  

0tev   (52) 

and for the sliding 
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For all types of motion 
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For the permanent sliding: ,    ,   s s
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halts in compression, then  1P PE e  and 1E EE e , and if the tangential velocity halts in restitution, then 2P PE e and 2E EE e .  

The computational strategy developed in this section is shown in Fig. 1 shows. The strategy can be used to identify the type of impact and to 
evaluate the impact variables at the end of impact period.  

 
Figure 1: Computational strategy 

 



  

 
6 NUMERICAL SIMULATIONS 
The free end B  of a rod shown in Fig. 2 strikes the ground while the angular velocity of rod OA  is zero and the horizontal and vertical 

components of the velocity of the center of mass are 0.6 m / s   and 1 m / s  , respectively. The uniform rod has a mass of 1 kg  and a 

length of 1 m , and the initial orientation of the rod is 45   .  This problem has been examined before to show the paradox in mechanics 

when impact with friction is considered (Wang and Mason 1992). The coefficient of restitution is assumed to be 0.82,  e  and the coeffi-

cients of static and dynamic friction are 0.73,  0.7s D   .  

 

Figure 2: Impact between a rigid rod and a frictional ground floor  

We solve the problem using the traditional method used in textbooks like [3,4]. In the traditional method, there are two impact modes only, 

continuous sticking or continuous sliding. We assume a sticking, and the solution fulfills the conditions that te
s

ne

I

I
 . The change in the 

kinetic energy of the system  e iT T T   is calculated, where T  is given by 

 T1

2
T  q q M   

It has been found that 0.010125 N.mT  , and the positive T  means that the energy increases, which is not acceptable.  
To solve this energetically inconsistency, we went back to Routh’s method, and tested the three definitions for the coefficient of restitution. 
The initial generalized joint velocities, mass matrix, the Jacobian matrix, and the Jacobian inertia matrix are given by: 
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the initial normal velocity, the initial tangential velocity, and the normal velocity nhv  if the tangential velocity vanishes during impact are: 

1  m / s,  inv    0.6 m / s,  itv   0.344615 m / snhv    

the critical coefficient of friction is: 0.6,c   the normal impulse nhI  if the tangential velocity vanishes during impact, the normal impulse 

npI  if the tangential velocity does not vanish up to the end of compression phase, and the normal impulse nfI  if the tangential velocity 

does not vanish up to the end of impact are: 

0.184615 N.s,nhI   0.28169 N.s,   andnpI   0.422535 N.snfI   

 Hence  



  

      and nh npI I  s c   

Therefore, the type of impact is non-sliding in compression and the parameters 
s
I , 

s
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s
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s
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T  s
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T sLF  

The solutions for the impact variables depend upon the final velocity, which is not the same for the three impact laws. Results for the three 
impact laws are shown in Table 1.  
 
 

Table 1 Impact variables for the three impact laws. 

 

The results show that the inconsistency in the energy increase encountered in the traditional method has not been solved 
using Newton’s coefficient of restitution with Routh’s method. However, both Poisson’s and energetic coefficients of 
restitution overcome this inconsistency. To go into details about the energy dissipation when using different coefficients 
of restitution, we consider  e 1 . Hence, the frictional impact component is the only energy dissipation source. The 
results using the three coefficients of restitution are given in Table 2. 

Table 2 Impact variables when e 1  

 
Impact variables Units Newton’s Poisson’s Energetic 
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2.758

 
  
  

  

0.84

0.2

2.376

 
  
  

  

0.869

0.151

2.458

 
  
  

 

 teW   N.m   0.0388   0.0388   0.0388  

 T   N.m   0.1125   0.072   0.0388  

Hence, Newton’s coefficient produces an energy increase due to impact, which violates physics laws. Poisson’s co-
efficient does not produce an energy increase; however, 𝛥𝑇>𝑊𝑡𝑒, which means that energy dissipation is generated 
due to non-frictional force, which also violates the physics laws. Contrarily, the energetic coefficient obeys the phys-
ics laws, and the dissipation of energy is only due to the frictional component of impact.   
 
 

7 CONCLUSIONS  

Impact variables Units Newton’s Poisson’s Energetic 

  nev   m / s   0.82   0.5248   0.589  

  tev   m / s   0   0   0  

  neI   N.s   0.9125   0.728   0.7681  

  teI   N.s   0.3075   0.1968   0.2209  

 eq   

m / s

m / s

rad / s

 
 
 
  

  

0.9075

0.0875

2.5668

 
  
  

  

0.7968

0.272

2.2537

 
  
  

  

0.8209

0.2319

2.3218

 
  
  

 

 neW   N.m   0.0489   0.0752   0.0528  

 T   N.m   0.0101   0.1139   0.0916  



  

A mathematical model and a simulation technique for planar  multibody systems subjected to impact with  friction 
have been presented. Formulation of the equations of motion has been developed. To correctly apply Coulomb fric-
tion law, Routh incremental method has been used. The equations of motion for both sticking and sliding have been 
developed with the normal impulse at collision point as the independent variable The plasticity of the collision in 
the normal direction has been introduced using the coefficient of restitution.  The three definitions for the coeffi-
cient of restitution have been considered, namely the Newton’s, the Poisson’s, and the energetic coefficients. The 
sliding that starts could continue until the end of collision or sticking point could be reached. A critical value of the 
coefficient of friction has been determined that relies only on system configuration. If the coefficient of friction is at 
least equals to that critical value, the non-sliding mode will continue until the end of collision once it has been 
reached. Otherwise, the sliding will resume in the reverse direction. Hence, five types of impact-contact modes have 
been identified, and the conditions leading to each of them have being specified. These conditions depend upon 
multibody system inertia and orientation, initial velocity, and coefficient of restitution. Algebraic solutions have 
been obtained for all the types of impact.  
An illustration example has been considered to demonstrate the capabilities of the proposed formulation and anal-
ysis. The considered case has been solved with traditional method used in standard textbooks, and the results show 
an increase in the kinetic energy which contradicts the physics laws. Hence, the problem has been solved using the 
algebraic solutions obtained for Routh incremental method, and the solutions using the three definitions for the 
coefficient of restitution have been obtained, analyzed, and compared. A particular case with no dissipation of en-
ergy in the normal direction, i.e. 1e  , has been investigated. Only, the energetic coefficient has obeyed the physics 
laws. Newton’s coefficient could lead to energy increase, and Poisson’s coefficient could lead to energy dissipation 
in the normal direction even if 1e  . The results and analysis have brought to light the influence of different be-
haviors of the sliding of the contact point during impact period on impact variables and on the global motion of the 
system. The method presented can be used for operation support, performance analysis, as well as design and ver-
ification of planar multibody systems. The results obtained confirmed the applicability and efficiency of the formu-
lation and the associated algebraic solutions. 
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