
www.lajss.org
Latin American Journal of Solids and Structures 2 (2005) 321–337

A numerical inquiry into the flutter phenomenon in long-span bridges
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Abstract

Due to their architectural characteristics and structural performance, cable-stayed and
suspension bridges have become an increasingly usual choice where long-span bridges are
required. This worldwide trend, dating from past decades, has also influenced Brazilian
Engineering practices in the last few years. Several such structures are now either being
designed or built in Brazil. One of the relevant aspects in the structural analysis of long-
span bridges is their behavior under the influence of wind loads. Previous papers published
by the authors dealt with the determination of critical wind speed corresponding to flutter
instability, through the use of reduced mathematical models with two degrees of freedom. The
structure was analyzed through the finite elements method and reduction was performed via
superposition of modes selected to perform the best description of deck movement. Critical
wind speed was then calculated through the determination of complex eigenvalues for several
wind speeds. The present study is meant to go further. Flutter phenomena in long-span
bridges are researched using time domain analysis and time series spectral analysis in order
to determine vibration characteristics in the frequency domain. Those procedures are used
to analyze the Normandy Bridge.

Keywords: Flutter, aeroelastic stability, cable-stayed bridge, suspension bridge, reduced
mathematical model, mode superposition.

1 Foreword

Cable-stayed bridges are ever more present in several constructions in Brazil. They are both
very elegant and slender, and are able to unite very distant margins, uniting them with spans
which reach hundreds of meters.

Among the numberless cable-stayed bridges all over the world, one can refer to the Normandy
bridge in France, (http://bridgepros.com/projects/LePontde%20Normandie/LePontdeNormandie.htm),
which was completed and opened to public usage in 1995. This bridge has three spans, adding
to a full length of 2,140 meters. The center span is 856 meter long, with a metallic section 624
meter long. This bridge presents a slenderness relation around 250 (span lenght on height of the
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transversal section). At the time it was built, the Normandy bridge had the longest span in the
world among cable-stayed bridges. This record was held until May, 1999 when the cable-stayed
Tatara bridge, in Japan, was opened between Honshu and Shikoku, with three spans and a total
length of 1,480 meters, and an 890 meter center span (http://www.hsba.go.jp/bridge/e-tatara.htm).
Tatara bridge was a very successful project: in it, new technologies were used in research, design,
fabrication and construction. This accomplishment must also contribute to make the dream of
a 1,000 meter long span come true. For such slender bridges, studies of their behavior under
wind action become relevant to the structural design, as shown by the collapse of the Tacoma
Narrows bridge in 1940.

Previous studies [4, 6] developed in LMC – the Computational Mechanics Laboratory of
Polytechnic School, São Paulo University, aimed at determining the critical wind speed corre-
sponding to flutter instability. Structure discretizing was obtained through the finite element
method and the drastic reduction of the number of degrees of freedom was achieved through the
method of modal superposition. It should be pointed out that modal selection plays a central
role in the good definition of a reduced mathematical model [5]. Flutter speed was obtained
through the analysis of a problem of complex eigenvalues for several values of wind speed.

This paper amplifies those previous studies. Based on [1, 2], the flutter phenomenon is also
studied by temporal analyses and by spectral analyses on time series. As Chen and Cai point
out, these are not new procedures for analysis, but procedures which, when applied together,
allow the follow up of the structure’s response under wind action and, consequently, enable a
better understanding of the occurrence of the flutter phenomenon. Considering the reduced
mathematical model with two degrees of freedom, these procedures are applied to the study of
the Normandy cable-stayed bridge.

2 Equations of motion for flutter analysis

2.1 Aerodynamic forces

Aerodynamic forces are defined in this paper according to the non-dimensional flutter derivatives,
A∗i e H∗

i (i = 1, 4), for each bridge cross-section, through specific tests in wind tunnels [7].
In order to analyze vibrations in the longitudinal and vertical planes of the bridge under wind

action with an uniform speed U , aerodynamic forces, lift forces Lv and pitch moment around x
Mα, defined in a section of coordinate x, at instant t, are shown by:

Lv(x, t) = 1
2ρU2B[KH∗

1
v̇(x,t)

U + KH∗
2

Bα̇(x,t)
U + K2H∗

3α(y, t) + K2H∗
4

v(x,t)
B ]

Mα(x, t) = 1
2ρU2B2[KA∗1

v̇(x,t)
U + KA∗2

Bα̇(x,t)
U + K2A∗3α(x, t) + K2A∗4

v(x,t)
B ]

(1)

where:
K = Bω

U = B(2πf)
U is the reduced frequency;

B is the deck width;
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ω is the circular frequency of oscillation;
f is the frequency of oscillation;
v (x, t) and α (x, t)are the components of the dynamic parcel of vertical displacement and

the angular displacement according to the longitudinal axis of a nodal point of the deck with an
xcoordinate, at instant t.

It is convenient to put (1) into a matricial shape
{
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(2)

2.2 Equations of motion for the system discretized by the finite element method

The equations of motion for the system, which is characterized by a long-span bridge under a
uniform wind action, discretized by the finite element method around the deformed equilibrium
configuration, may be shown as:

M0∆p̈ + C0∆ṗ + K0∆p = PA (∆ṗ, ∆p) (3)

or, taking (2) into consideration,

M0∆p̈ + C0∆ṗ + K0∆p = CA∆ṗ + KA∆p (4)

where, for the discrete system:
M0 is the mass matrix;
C0 is the damping matrix;
K0 is the stiffness matrix;
CA is the matrix of aerodynamic damping;
KA is the matrix of aerodynamic stiffness;
∆pA is the displacement vector;
PA is the vector of aerodynamic forces.
One should consider that in the type of bridge under study the deck’s displacement is char-

acterized by modes which basically mean bending and twisting. Since there is a great number of
deck elements with the same ` length, displacements of the deck will be well defined by vi, the
vertical displacement of node i, and αi, the rotation around the longitudinal direction of node
i. Under these conditions, matrices CA e KA may described by:

CA =




ca 0 . . . 0
0 ca . . . 0
...

...
. . .

...
0 0 . . . ca


 KA =
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

ka 0 . . . 0
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...
. . .
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
 (5)

where:
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2.3 Equations of motion corresponding to the reduced mathematical model

The system reduction is established through the modal superposition method, which allows the
establishment of:

∆p = ΦY (7)

where Φ is the modal matrix and Y is the vector of generalized modal coordinates.
By replacing (7) in (4) and multiplying to the left all the terms by ΦT, one gets:

ΦTM0ΦŸ + ΦTC0ΦẎ + ΦTK0ΦY = ΦTCAΦẎ + ΦTKAΦY (8)

which may be turned into:

M∗
0Ÿ + C∗

0Ẏ + K∗
0Y = C∗

AẎ + K∗
AY (9)

In this study, two modes are selected according to the criteria established in [5], which allows
one to establish:

∆p = ΦY = φ1Y1 + φ2Y2 (10)

where φi is the modal vector corresponding to mode i and Yi is its respective generalized modal
coordinate. Equation (9) takes the following expanded form:
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where, by leaving aside terms with A∗4 e H∗
4 :

ca∗ij = K
m∑

r=1
(H∗

1φ2r−1,iφ2r−1,j + BH∗
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m∑
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(H∗
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(12)
with m representing the number of deck nodes.

3 Flutter analysis

3.1 Determining the flutter speed through complex eigenvalues

In order to determine the critical flutter speed, one should rewrite equation (9) in this form:

M∗
0Ÿ + (C∗

0 −C∗
A) Ẏ + (K∗

0 −K∗
A)Y = 0 (13)
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The system’s answer is taken as:

Y = Y0eiθt with θ = Ω (U) (1 + iε (U)) (14)

where:
Ω (U) is the circular frequency of the system and
ε (U) is the equivalent damping ratio of the system.
By introducing (14) into (13) and, after some algebraic transformations, the expressions

corresponding to the following complex eigenvalue problems are obtained:
(
(K∗

0)−1 M∗ − λI
)
Y0 = 0 (15)

where:
M∗ = I + i

1
Ω (1 + iε)

C∗
A +

1
Ω2 (1 + iε)2

K∗
A λ =

1 + i2ξ (1 + iε)
Ω2 (1 + iε)2

(16)

The solution of (15) leads to two complex eigenvalues λ1 e λ2, which allows one to obtain effective
modal frequencies Ωj and the effective damping ratios εj of the aerodynamic system according
to wind speed, through expressions:

Ωj(U) =
1√

Re(λj)
εj(U) = ξ − 1

2
Im(λj)
Re(λj)

(17)

By increasing wind speed U , flutter speed occurs for the value of U in which ε (U) is no longer
positive.

The solving of flutter coefficientes A∗i and H∗i for a given wind speed U cannot be done directly,
since coefficients are dependent of the reduced frequencies K1 (U,Ω (U)) and K2 (U,Ω (U)). They
are obtained by an iterative method with initial valuesΩ̄j = ωj and K̄j = BΩ̄j

U , according to the
procedure presented in the diagram of state presented in figure 5.

3.2 Determining flutter speed through temporal series

Temporal series Y1 (t) and Y2 (t) for several wind speeds are obtained by solving (11), which is
done through the Runge-Kutta Method of order 4. The simple exam of Yi (t) for rising wind
speeds allows the determination of flutter speed, characterized by divergence of this series.

Special attention should be paid to determining the modal frequencies and the modal damp-
ing ratios for a given speed, detailed in the state diagram of subsystem DREAMA in figure 5,
for modal matrices K∗

A (U,K) e C∗
A (U,K) obtained from these values.

3.3 Spectral density or potency spectrum

With the temporal series of responses to vibration ranges Y1 (t) e Y2 (t) for rising wind speeds,
the fast Fourier transform is applied in order to obtain the spectral density in the frequency
domain, which assist in the interpretation of occurrence of the flutter phenomenon. The method
used is the variant of the Cooley-Tukey algorithm.
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4 The system developed for numerical inquiry

Numerical inquiry of the bridge deck behavior in order to analyse the flutter phenomenon in
a long span bridge follows the conceptual procedure described in figure 1. Figures 2, 3 and 4
present respectively the functional diagrams of dependence among subsystems, of cases of usage
of analysis process, and of collaboration of usage cases.

The discrete mathematical model is established through the finite element method. Modal
analysis is accomplished using the ADINA R© system.

Modal vectors and other information gathered from the discrete mathematical model are used
to determine the modal selection parameters, according to criteria presented in [5]. Based on this
information, established in subsystem PARMAS the modal selection is performed. Modelling of
the aerodynamic stresses is done according to the description in item 2.1 and the definition of
reduced aerodynamic actions is made according to expressions (4) and (5). It is then possible
to build the reduced aeroelastyc mathematical model.

Flutter analysis by complex eigenvalues is achieved with the help of subsystem DREAMA
which allows determination of effective frequencies and modal damping ratios and also of stiffness
and aeroelastic damping for several wind speeds. The one corresponding to effective zero modal
damping is the critical flutter speed. Details of this procedure are presented in figure 5 by the
state diagram of subsystem DREAMA, which shows the sequence of steps for determination of
damping ratios and modal frequencies.

The analysis of flutter by temporal series is achieved with the help of subsystem DoFETE,
which uses the Runge-Kutta method of order 4 to numerically solve the reduced equations of
motion.

Flutter analysis by espectral analysis in the frequency domain is done by applying the Fast
Fourier Transform and considering the temporal series of generalized modal coordinates, pro-
cessed by the same DoFETE subsystem.

Figure 6 shows the diagram for relationships among subsystems, as well as the interation
between their data.
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Figure 1: Conceptual Procedure
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Figure 2: Diagram of functional procedure
Dependence among subsystems

 

 

Figure 3: Diagram of functional procedure
Cases of usage of analysis process
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Figure 4: Diagram of functional procedure
Collaboration of usage cases

 

 

Figure 5: State Diagram of the DREAMA Subsystem
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Figure 6: Diagram for interation sequence of system data

5 Case study: Cable-stayed bridge of Normandy

Data on the Normandy bridge are presented in [3,8]. Figures 7 and 8 show the lateral view and
the transversal sections of the bridge deck. 
 

 

Figure 7: Lateral view of the Normandy bridge, [8].

In this paper, the Normandy bridge was discretized by spacial frame elements, there being
265 elements for the concrete segment of the deck, 125 elements for its steel segment and 80
elements for the two towers. Eighty spacial truss elements were used to simulate the cables.
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Figure 8: Transversal concrete sections (above) and steel sections (below) [8]
  
 
 

 

Figure 9: Discrete Mathematical Model of the Normandy Bridge

Additionally, 184 bar elements were used to help visualize vibration modes. Figure 9 shows a
perspective of the discretized model. In the analyses run, the damping ratio was taken as 0.25%.

Modes 2 (f2 = 0.2376 Hz) and 14 (f14 = 0.8534 Hz) were selected. These were held to be
the most relevant ones for the flutter studies. Table 1 presents all modal parameters for the
first 20 modes whose analysis led to the selection. It can be noticed that the first two modes
which present a strong participation of the deck in the structure’s movement (R2 = 0.9117 and
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 (a) (b)

Figure 10: Variance in the modal damping ratio and in effective modal frequencies regarding a
uniform wind speed

Table 1: Modal parameters of the 20 modes for selection of two coupling modes

Mode R Rw Ru Rv Rγ Rα Rβ

1 0.9423 1.0000 0.0000 0.0000 0.0000 0.0000 0.0001
2 0.9117 0.0000 0.0002 0.9997 0.0001 0.0000 0.0000
3 0.9259 0.0000 0.0001 0.9995 0.0002 0.0000 0.0000
4 0.9622 0.9999 0.0000 0.0000 0.0000 0.0004 0.0005
5 0.9314 0.0000 0.0009 0.9984 0.0004 0.0000 0.0000
6 0.0079 0.4287 0.0000 0.0017 0.0000 0.5687 0.0004
7 0.0026 0.5315 0.0000 0.0001 0.0000 0.4662 0.0006
8 0.9316 0.0000 0.0032 0.9958 0.0006 0.0000 0.0000
9 0.9064 0.0002 0.0097 0.9889 0.0008 0.0000 0.0000
10 0.9379 0.9617 0.0000 0.0002 0.0000 0.0388 0.0009
11 0.8437 0.0000 0.0767 0.9214 0.0010 0.0000 0.0000
13 0.7416 0.0001 0.1137 0.8821 0.0014 0.0015 0.0000
14 0.7751 0.0761 0.0002 0.0014 0.0000 0.9220 0.0001
15 0.9038 0.0000 0.1994 0.7984 0.0014 0.0000 0.0000
16 0.6922 0.0000 0.1994 0.7984 0.0014 0.0000 0.0000
17 0.7203 0.0000 0.2320 0.7662 0.0010 0.0000 0.0000
18 0.8609 0.0000 0.1212 0.8759 0.0013 0.0000 0.0000
19 0.9512 0.0000 0.0377 0.9583 0.0020 0.0000 0.0000
20 0.6352 0.9858 0.0000 0.0000 0.0000 0.0144 0.0015
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R14 = 0.7751) and, in the deck’s movement, predominant vertical bending (Rv,2 = 0.9997) and
twisting (Rα,14 = 0.9220) are respectively modes 2 and 14.

Processing of the DREAMA subsystem was done for a rising sequence of speeds. Results are
shown in Figure 10.

The wind speed which results in the modal damping ratio of zero twisting is 59m/s, which
corresponds to the critical flutter speed. Figure 10b shows that the effective modal frequency
associated to the vertical mode varies very little with speed oscillation. Also, the effective
frequency associated to the twisting mode decreases with rising speed. It should be noticed
there is no coalescence of the frequencies at the critical flutter speed.

Temporal analyses were made using the DoFETE subsystem, with initial conditions Y1 (0) =
0.01 m and Ẏ1 (0) = 0.00 m/s for mode 1 and Y2 (0) = 0.01 rd and Ẏ2 (0) = 0.00 rd/s for mode
2. Figure 11a shows the temporal series of vibration ranges Y1 (t), associated to the first effective
mode, with the rise of wind speed. Figure 11b shows the respective spectral densities of ranges.
Figure 12a shows the temporal series of vibration ranges Y2 (t), associated to the second effective
mode, with the rising wind speed. Figure 12b shows the respective spectral densities of ranges.
It can be noticed that the ranges of temporal series of Y1 (t) e Y2 (t) decrease rapidly for rising
wind speeds up to approximately 45 m/s. Also, the system damping grows quite smaller for
U = 50 m/s and, finally, these ranges grow in time up to U = 60 m/s, which characterizes an
unstable state. Therefore it can be noticed that the critical flutter speed is inside the range
50 m/s ≤ U ≤ 60 m/s. It may be clearly observed in figures 11b and 12b, the dominion of the
second mode in the system’s response. There is no effective coalescence: what happens, in this
case, is the dominion of the second effective mode, with f2,effective = 0.55 Hz in the response in
figure 13a.

Figure 13 shows the graphics of vibration ranges for the first and second effective modes
and their respective spectral densities of ranges for U = 40 m/s and for the critical flutter speed
Ufl = 59 m/s. It is important to observe in the flutter wind speed the absence of damping in the
aerodynamic system and the dominion of the second effective mode in the system’s response.
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Figure 11: Vibration ranges for the first effective mode and its respective spectral densities of
ranges for several values of wind speed
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Figure 12: Vibration ranges for the second effective mode and its respective spectral densities of
ranges for several values of wind speed
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Figure 13: Vibration ranges for the first and second effective modes and their respective spectral
densities for U = 40 m/s and at the critical flutter speed Udr = 59 m/s
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