
  

 

Multi-objective optimization of aluminum foam-filled battery boxes 
for electric vehicle safety 

İsmail Yaya https://orcid.org/0000-0002-4467-2672, Emre Demircia,b* https://orcid.org/0000-0002-1968-0291, 
Ahmet Remzi Özcanb https://orcid.org/0000-0002-4093-1059 

a Department of Mechanical Engineering, Bursa Technical University, Bursa, 16310, Turkiye. ismlyay@gmail.com, emre.demirci@btu.edu.tr 
b Automotive Application and Research Center, Bursa Technical University, Bursa, 16310, Turkiye. emre.demirci@btu.edu.tr 
c Department of Mechatronics Engineering, Bursa Technical University, Bursa, 16310, Turkiye. ahmet.ozcan@btu.edu.tr 

* Corresponding author 

Abstract 
In this study, a multi-objective optimization methodology is used to assess the crashworthiness of an 
aluminum foam-filled battery box designed for passenger cars. Unlike most research focusing on axial 
crushing, this work investigates the less-explored side pole impact scenario in electric vehicle battery boxes. 
Finite element simulations are conducted to reduce peak crushing force (PCF) and increase specific energy 
absorption (SEA) compared to the initial design. Key design variables include aluminum foam densities, wall 
thickness, and cross-sectional dimensions of battery box components.  Four surrogate models are evaluated 
to approximate the simulation results, and the Non-Dominated Sorting Genetic Algorithm (NSGA-II) is 
employed to achieve optimal outcomes. The results show that the optimized design significantly improves 
crashworthiness, achieving a 50.71% increase in SEA and an 11.56% reduction in PCF. Foam density plays a 
crucial role in controlling deformation behavior under impact conditions. These findings offer a new approach 
to designing battery boxes with enhanced crashworthiness for electric vehicles. 
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1 INTRODUCTION 

The widespread use of electric vehicles (EV) in recent years has led to new research and development topics in the 
automotive industry. One of the most important of these issues is undoubtedly battery safety. Many structures in 
automobiles are categorized as crash energy-absorbing elements for vehicle passive safety. In the traditional automotive 
industry approach, the primary focus of crashworthiness assessment is on energy absorbing structures such as bumpers, 
crash boxes and pillars (Abdullah et al., 2020; Safari et al., 2018; Sun et al., 2018). On the other hand, in the case of side 
or frontal impact scenarios, the battery boxes are also expected to act as crash elements, minimizing potential battery 
damage (Gong et al., 2021; Victor Chombo et al. 2021). Most of the studies on battery boxes in the literature focus on 
energy efficiency and cooling of battery boxes (Arora et al. 2016; Sharma and Prabhakar, 2021). However, studies on the 
mechanical design, lightweighting and crashworthiness of the battery case are relatively few. Yang et al. investigated the 
behavior of a finite element (FE) model of a battery box under bumpy road, sharp curve, and sudden braking conditions 
(Yang et al., 2019). They performed static strength analysis on the battery box for various loading conditions. In addition, 
the modal properties and vibration of the battery box were analyzed, and the performance of the battery box was 
comprehensively examined, leading to improvements in its weak points. In another study, the mechanical behavior of 
the designed battery box in various vehicle collision scenarios was investigated (Navale et al., 2021). In order to achieve 
better crash performance in tests conducted in accordance with Euro NCAP norms, various design modifications were 
implemented, including the redesign of different structural elements such as front rails, cross members, subframe, door 
sill area. In a different study, a side collision was considered in the crashworthy design developed in accordance with the 
Euro NCAP standard and an impact energy absorbing foam filling material and aluminum honeycomb structure were 
proposed to be applied on the sides of the batteries to reduce the risk of battery explosion (Setiawan and Salim, 2017). 
In a recent publication, Farzaneh et al. presented a novel design for strengthening structural integrity and improving the 
thermal regulation of EV batteries. This design employs thin-walled aluminum tubes filled with phase change material 
(PCM) (Farzaneh et al., 2024). 

The majority of studies on crashworthiness have concentrated on two key elements: improving safety performance 
and reducing weight through lightweight design. To achieve these two seemingly contradictory goals, one of the issues 
researchers are focusing on is new-generation materials (Magliaro et al., 2022; Yao et al., 2023). A wide range of materials 
have been investigated, including new generation steels (Doruk and Demir, 2024; Erzincanlioğlu et al., 2022), lightweight 
alloys (Demirci and Yıldız, 2018; Li et al., 2024a), composites (Mou et al., 2016; Li et al., 2024b), bio-inspired materials 
(Huang et al., 2022; Saber et al., 2024) and metallic foams (Djamaluddin et al., 2016; Linul et al., 2021) all aimed at 
developing weight-reduced crashworthy structures. Aluminum alloy materials are extensively utilized in the automotive 
industry for lightweight design and crashworthiness applications. The use of aluminum alloys in lightweight design aligns 
with the automotive industry’s requirements for improved fuel efficiency, reduced emissions, and enhanced vehicle 
performance (Chen, 2023). Aluminum alloys offer advantages such as a high strength stiffness-to-weight ratio, good 
formability, and recyclability, making them suitable replacements for heavier materials like steels in vehicles to meet 
weight reduction demands (Kovács and Lukács, 2022). In terms of crashworthiness, thin-walled aluminum alloy 
structures are essential for industries requiring high energy absorption efficiency and lightweight components, including 
the automotive sector (Demirci and Yıldız, 2018; K. Li et al., 2020). The hybridization of aluminum with materials like 
carbon fiber-reinforced composites is considered a novel design concept that fulfills the requirements for lightweight 
construction and crashworthiness in automotive applications (Bidadi et al., 2024). The use of carbon fiber-reinforced 
aluminum matrix composites is also gaining traction, as these materials combine the light-weight properties of aluminum 
with the high strength of carbon fibers, leading to improved crash performance (Yu and Jiang, 2024). Moreover, 
aluminum foam materials have garnered significant attention in the automotive industry, particularly for their potential 
to enhance crashworthiness. These materials exhibit unique properties that make them suitable for energy absorption 
and structural reinforcement during impact events. An et al. (2012) indicates that aluminum foams exhibit a high 
strength-to-weight ratio, allowing them to sustain large plastic deformations under compressive loading, which is crucial 
for absorbing substantial impact energy compared to conventional materials. Additionally, aluminum foam-filled 
structures have been shown to improve crash performance by providing better stability and energy absorption 
characteristics, making them suitable for applications in crashworthiness structures (Fragoso-Medina and Velázquez-
Villegas, 2023; Sharma et al., 2022). Altın et al. (2017) conducted an experimental study to investigate the energy 
absorption capacity of thin-walled square and circular tubes with different ratios of foam filling in axial compression. 
Their findings emphasized that foam-filled designs exhibited enhanced specific energy absorption and crushing force 
efficiency performance values compared to unfilled designs. Neu et al. (2024) explores the potential of aluminum foam 
sandwiches (AFS) as lightweight materials for automotive applications. The study emphasizes that AFS can significantly 
contribute to weight reduction, and they are suitable for structural applications in EV battery boxes and car bodies. 



  

Baumeister et al. (2014) found that aluminum hybrid foam sandwiches (AHFS) offer significant advantages in 
crashworthiness and weight reduction compared to traditional materials, enhancing energy absorption during collisions 
to protect battery modules from damage. The study highlights that AHFS achieve an optimal balance between lightweight 
design and structural integrity, making them well-suited for use in battery housings for electric vehicles. 

Structural optimization is another area of focus for researchers to improve safety performance and reduce weight 
through lightweight design. Current advancements in structural optimization, particularly in the context of 
crashworthiness, emphasize the integration of multi-objective and robust optimization methods. These approaches are 
essential in developing designs that balance the demands of safety and efficiency, as highlighted by recent studies in the 
field (Fang et al., 2017). Multi-objective optimization techniques, such as multi-objective particle swarm optimization 
(MOPSO) and nondominated sorting genetic algorithms (NSGA), have proven highly effective in addressing the complex 
trade-offs in crashworthiness design by optimizing criteria like energy absorption, weight reduction, and peak 
deceleration (Liao et al., 2008; Sun et al., 2011). Surrogate modeling approaches, such as Kriging and response surface 
methodology (RSM), play a crucial role in approximating complex crashworthiness functions, reducing computational 
costs, and handling nonlinearities effectively (Kurtaran et al., 2002; Liao et al., 2008; Raponi et al., 2019). These advanced 
optimization strategies have been successfully applied across various structures, such as thin-walled structures (Yildirim 
et al., 2023; Yıldız, 2020), cellular structures (Albak, 2023; Wang et al., 2023), foam-filled structures (Djamaluddin, 2024; 
Meriç and Gedikli, 2022), composite and functional gradient materials (Gao and Huaiwei, 2023; Zhou et al., 2022) to 
improve crash performance. There are only a few studies in the literature on the optimization of battery boxes for electric 
vehicles. Qiao et al. (2021) explored the safety improvement of battery boxes in side collisions by introducing design 
optimizations, such as evenly distributing bosses around the battery box and adding interlocking structures between the 
upper and lower parts. Their finite element analysis demonstrated significant reductions in stress and deformation during 
side impacts. Wang et al. (2024) focused on multi-objective lightweight design for battery pack enclosures, using the 
NSGA-II algorithm and the TOPSIS method to reduce both weight and deformation. In the study by Biharta et al. (2022), 
the researchers developed a lightweight and crash-resistant battery protector using 3D auxetic structures. These auxetic 
materials enhance energy absorption and deformation resistance, leading to improved safety during impacts, while also 
reducing the overall weight. In an other study, the researchers developed a modified particle swarm optimization 
algorithm for optimizing the reliability of composite battery boxes, focusing on both structural integrity and lightweight 
design (Liu et al., 2018). 

This paper advances the crashworthiness optimization of aluminum foam-filled battery boxes for electric vehicles 
by implementing a robust multi-objective framework. Unlike many studies that focus on axial crushing, especially in the 
context of conventional crash boxes, this research addresses the critical but less explored side pole impact scenario for 
electric vehicle battery boxes, aiming to enhance specific energy absorption (SEA) and reduce peak crushing force (PCF). 
The need to address this specific scenario arises from the increasing prevalence of electric vehicles, where battery 
systems play a central role in both vehicle functionality and safety. While side pole impacts have been widely studied for 
conventional vehicles, their implications for electric vehicles remain underexplored, particularly due to the unique 
structural and safety requirements of battery enclosures. By focusing on this underexplored area, the study aims to 
provide actionable insights that contribute to both the academic understanding and practical design of safer EV battery 
systems. To achieve this objective, a numerical model is developed using the finite element method (FEM) to simulate 
the crashworthiness performance of the battery box under side pole impact conditions. Key design variables, such as the 
thicknesses of the battery box components, aluminum foam densities, and shape parameters, are optimized using the 
Non-Dominated Sorting Genetic Algorithm (NSGA-II). Additionally, various surrogate modeling techniques, including 
Response Surface Methodology (RSM), Kriging, Radial Basis Function (RBF), and Support Vector Regression (SVR), are 
employed to model complex relationships between the design variables and crashworthiness outcomes. By evaluating 
the prediction performance of these surrogate models, the research identifies the most reliable and efficient models for 
the optimization process. This comprehensive approach not only improves the crash performance of battery boxes but 
also fills a gap in the literature by addressing side impact conditions, particularly for electric vehicles, offering practical 
insights for enhancing the safety of these battery systems.  

2 MODELLING OF THE BATTERY BOX AND CRASH SIMULATION 

2.1 Geometric Description 

A review of the literature on vehicle battery box design revealed that the front and side sections of the battery box 
outer frame are typically constructed with an "L" profile (Bala and Chaitanya Kamaraju, 2020; Navale et al., 2021; Safari 
et al., 2018). One of the most significant advantages of this design is that it enhances the vehicle’s crash resistance. The 



  

battery separator and support beams located within the interior of the structure are typically designed with rectangular 
profiles. In this study, a battery box model, depicted in Figure 1a, is devised through the utilization of computer-aided 
design software, with due consideration given to the fundamental design elements as elucidated in the extant literature. 
The battery box comprises a number of key components, including top and bottom plates, side and front frame beams, 
support beams, and a dedicated battery management section. Battery cell packs are not included in the finite element 
(FE) analyses. The design of the battery box model is based on the dimensions of a passenger car as a dimensional 
constraint. For this purpose, since there is no accessible finite element model of an electric vehicle, the dimensions of 
the Toyota Yaris developed by the National Crash Analysis Center (NCAC) (Marzougui et al., 2013), which has an internal 
combustion engine, are used as a basis. The outer frames of the battery box have been designed to fit into an area 
measuring 1300×1235mm. The layout of the battery box as it is to be positioned on the vehicle is illustrated Figure 1b. 
 

 
Figure 1 Battery box design (a) components (b) layout on the vehicle and outer dimensions. 

 
Due to the considerable number of mesh elements in the finite element model of the vehicle and the high 

computational cost of the numerical solution, the crash analyses conducted solely with regard to a side impact on the 
battery box, rather than on the vehicle as a whole. Figure 2 illustrates the cross-sectional view of the "L" beam utilized 
in the construction of the battery box outer frame. The "L" beam is designed with a height of 70 mm and a width of 60 
mm. The frame wall thickness (𝑡1) and 𝑥1, 𝑥2 and 𝑥3 lengths are defined as the design variables. 
 

 
Figure 2 Cross-sectional view of the ’L’ beam and design variables (All dimensions are in millimeters). 



  

2.2 Crashworthiness Criteria 

A number of criteria are used to assess the performance of structural components subjected to a crash (Albak, 2021; 
White and Jones, 1999). Among these criteria, energy absorption (EA), specific energy absorption (SEA), and peak 
crushing force (PCF) are some of the most common and are used in this study. EA refers to the total amount of kinetic 
energy that a structure or material can dissipate during deformation under an external load, typically during an impact 
or crash scenario. It is a critical parameter in crashworthiness analysis as it reflects the capability of a system to reduce 
the intensity of forces transmitted to occupants or sensitive components. It can be expressed mathematically as: 
 

( )EA F x dx=      (1) 

 
where 𝐹(𝑥) is the force as a function of displacement 𝑥, and the integral is taken over the range of deformation. Specific 
energy absorption (SEA) is a normalized measure of a structure’s energy absorption capacity per unit mass. It is used to 
evaluate the efficiency of lightweight structures in crashworthiness applications, particularly in the automotive and 
aerospace industries. The expression for SEA is: 
 

/SEA EA m=     (2) 

 
where 𝑚 is the mass of the structure or material. PCF is the maximum force experienced by a structure during the initial 
phase of deformation under a crushing load, which can be written as: 
 

max( ( ))PCF F x=     (3) 

 
In the context of crashworthiness, PCF is a critical factor, as excessively high forces can lead to catastrophic failure 

or increased risk of injury. The goal in designing crashworthy structures is to lower the peak crushing force while 
maintain-ing adequate energy absorption, thereby controlling the force transmission during impact. 

2.3 Finite Element Modelling 

The crashworthiness analyses of the designed battery box are carried out by finite element method (FE) using 
Radioss, an explicit dynamic finite element solver (Altair, 2019). Battery box sections are typically thin-walled structures. 
The aluminum foam materials mounted on the front and side frames of the battery box are defined as solid structures. 
All shell elements are designed as mid-surfaces, thereby allowing the thickness to be modified parametrically. The mesh 
structure of the shell elements is created using four-node shell elements (type quad4) with five integration points 
through the thickness. The mesh structure of the solid aluminum foam model is created using 8-node solid elements. 
The dimensions of the mesh structure are closely related to the accuracy of finite element analysis. In general, decreasing 
the size of the mesh structure results in more accurate analysis results. Nevertheless, an excessive reduction in the mesh 
size has the effect of considerably extending the solution time, which in turn results in the loss of time and an increase 
in the computational cost. The battery box model used in this study is designed based on the dimensions of a full-scale 
finite element model of a Toyota Yaris vehicle. In the original vehicle model, a global mesh size of 10 mm is applied for 
the structural components. Following this approach, a mesh convergence analysis is performed, starting with a mesh size 
of 10 mm and progressively refining it in steps of 2.5 mm down to a minimum of 2.5 mm. Four different mesh sizes (10 
mm, 7.5 mm, 5 mm, and 2.5 mm) are examined to evaluate the effect of mesh refinement on SEA and computational 
cost. The results of the mesh convergence analysis are presented in Figure 3. As shown, SEA values exhibited minimal 
variation across different mesh sizes, indicating that further refinement beyond a certain level does not significantly 
enhance accuracy. However, the computational time (CPU time) increased substantially as the mesh size decreased, with 
the smallest mesh size requiring the highest computational resources. Since the optimization process involves dynamic 
mesh updates using HyperMorph, using a very large mesh size would lead to significant mesh distortion, negatively 
affecting the accuracy of the results. On the other hand, employing a very fine mesh size would result in excessive 
computational cost. Based on these considerations, a global mesh size of 5 mm is selected as the optimal balance 
between accuracy and computational efficiency.  

 



  

 
Figure 3 Mesh convergence analysis 

 
Figure 4 illustrates the views of the mesh structures of the shell and solid components. Node to surface and edge to 

edge definitions are created for the contact interface of the battery box sheet metal parts and aluminum foam material 
with each other and with the striking pole during the crash. The assembling of the battery box sheet metal parts is carried 
out by point-by-point spot welding definition between the nodal points. the potential softening effect due to welding 
between the aluminum components was not explicitly modeled. The structural components were assumed to have 
uniform material properties throughout, as the focus of the study was on the overall crashworthiness optimization rather 
than local effects near weld zones. The finite element model assumes an idealized geometry of the battery bgox, which 
does not account for manufacturing imperfections or detailed connection elements such as screws.  

 

 
Figure 4 Mesh structure (a) frames and top-bottom plates (b) aluminum foam 

 

In this study, a medium-strength aluminum alloy, AA7003-T1, is employed for the battery box sheet components, 
exhibiting the following mechanical properties: density 𝜌=2.770 kg/m3, Young’s modulus 𝐸=71000 MPa, yield stress 
𝜎𝑦=202 MPa and Poisson’s ratio 𝑣=0.33. The isotropic elasto-plastic material card (MAT36) is employed to model the 

nonlinear behavior of the aluminum alloy material during the impact. The mechanical properties of the material are 
utilized to characterize the elastic region, whereas the true stress-strain curve (Kokkula et al., 2006) is employed to define 
the behavior exhibited in the plastic region. Three aluminum foams with densities of 0.17 g/cm3, 0.34 g/cm3 and 0.51 
g/cm3 are used to create the metallic foam material. The mechanical properties of aluminum foam materials are 
presented in Table 1 (Reyes et al., 2003). The Deshpande-Fleck foam law material card (MAT115) is used for the FE 
modelling of aluminum foam materials. To determine the foam material parameters, the following equation is employed, 
which provides the yield stress value in dependence on the hardening (Ahmad and Thambiratnam, 2009): 
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where 𝜎𝑦 is yield stress, 𝜎𝑝 is plateau stress,  𝜀̂ is equivalent strain. 𝛼2, 𝛽 and 𝛾 are material parameters. The densification 

strain, 𝜀𝐷, obtained by uniaxial compression test is expressed as follows: 
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where 𝜌𝑓 is the density of the foam and 𝜌0 is the density of the base material. Since aluminum foam material will be used 

within the scope of this study, 𝜌0 value will be taken as 2.7 g/cm3. 

Table 1 Mechanical properties of the aluminum foam materials.  

𝝆𝒇 
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𝑬 
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𝜺𝑫 

[MPa] 

𝜶𝟐  

[MPa] 

𝜷 

[MPa] 

𝝈𝒑 

[MPa] 

0.17 377 1.87 2.77 93.5 5.79 1.15 

0.34 1516 3.92 2.07 60.2 4.39 5.76 

0.51 5562 5.37 1.67 66.9 2.99 14.82 

 
The battery box side crash analyses examined in this study are modelled in accordance with the Euro NCAP side 

pole crash standards (Euro NCAP, 2015). Therefore, a rigid pole with a diameter of 254 mm is formed and impacted at a 
speed of 32 km/h at an angle of 75˚ with the vehicle longitudinal centreline. In real-world side pole impact tests, the pole 
typically strikes the vehicle as a whole, causing damage to body in white components before transferring forces to the 
battery enclosure. However, in this study, the analysis is focused solely on the battery enclosure, isolated from the 
surrounding vehicle structure.  Consequently, boundary conditions are simplified. The crash occurred through the left 
side frame of the battery box. Conversely, all degrees of freedom of movement are constrained on the opposite side of 
the battery box. FE model of the battery box subjected to pole impact. This approach ensures computational feasibility 
and isolates the performance of the battery enclosure itself, but it may not fully replicate the complex interactions 
present in a complete vehicle crash scenario. Future studies could incorporate the full vehicle structure to provide a more 
comprehensive understanding of the enclosure’s behavior under realistic impact conditions. Figure 5 illustrates the pre-
collision FE model representation of the impacting pole and battery box. The dynamic effects and thermal properties of 
individual battery cells are not explicitly modeled in this study. The finite element analysis focuses on the structural 
behavior of the battery enclosure under impact conditions, assuming that the interactions within the cells do not 
significantly influence the overall crashworthiness performance. This simplification reduces computational complexity 
while maintaining the study's focus on optimizing the structural components of the box. 

 

 
Figure 5 FE model of the battery box subjected to pole impact. 



  

2.4 Validation of the FE Model 

To ensure the accuracy of the finite element method, it is essential to compare the results of the analyses conducted 
with physical tests or verified numerical solutions in the literature. A FE model of the experimental tests conducted by 
Altin et al. (2017) is created to validate the shell elements and assess the accuracy of the model. Due to the unavailability 
of impact test data applied to a battery box frame, a finite element model of an empty aluminum circular tube is utilized 
to represent the experimental conditions. The thin-walled circular structure is designed as a cylinder with a wall thickness 
of 1.35 mm, a length of 100 mm, and a diameter of 75 mm, similar to the one used in the experimental test. In the quasi-
static experiments conducted by Altin et al. (20147), the deformation speed of the rigid plate ise applied as 2 mm/min. 
To simulate the impact condition in the validation study presented in this work, a rigid plate was moved in the axial 
direction to generate an impact force from the top of the tube, as shown in Figure 6. In this simulation, the deformation 
speed was selected as 2 mm/s to reduce computational cost. This approach is consistent with validation studies in the 
literature (Altin et al., 2018; Acar et al., 2019). The plate continued its movement until the specimen is deformed to a 
length of 50 mm, representing half its original length. The isotropic elasto-plastic material card (MAT36) is used for the 
aluminum alloy material. The interaction between the circular tube and the moving rigid plate is defined with a friction 
coefficient of 0.3 (Altin et al., 2017). 

 

 
Figure 6 FE model of the thin-walled circular tube used in the validation study. 

 
The collapse behavior of the tubes and the force-displacement curves for the validation and reference experimental 

studies are illustrated in Figure 7 and Figure 8, respectively. A comparison of the deformation types observed in the 
experimental test and the finite element model prepared for the validation study revealed a high degree of similarity in 
the observed crushing behavior. Furthermore, a notable correlation is observed between the shape and number of 
fluctuations in the curves represented in the force-displacement graph. In their experiments, Altin et al. (2017) observed 
that the peak crushing force (PCF) value is approximately 56.5kN. In FE analysis, the PCF value is obtained as 54.3kN. The 
results indicate a relative error of 3.89%, which suggests a high degree of agreement between the FE model and the test 
data. Additionally, the SEA value is calculated as 13.92 kJ/kg in the experimental test, while it is obtained as 13.21 kJ/kg 
in the validation study. This corresponds to a relative error of 5.09%, further confirming the accuracy and reliability of 
the finite element model in replicating the experimental observations. 

 

 
Figure 7 Comparison of deformation modes (a) experimental test (Altin et al., 2017) (b) FE model. 



  

 
Figure 8 Force-displacement curves of FE analysis and experimental test (Altin et al., 2017). 

 
A validation study is also carried out for aluminum foam material with different densities. Finite element models of 

aluminum foam materials, for which the mechanical properties are given in Table 1, are subjected to numerical 
compression tests and the results are compared with the findings of the experimental study (Hansen et al., 2002). In their 
study, Hansen et al. (2002) designed a cubic part with a dimension of 70x70x70 mm and positioned it on a fixed plate. 
The part was then subjected to quasi-static uniaxial compression loading with a moving plate applied from the upper 
face, at a deformation speed of 20 mm/min. In this validation study, finite element models of aluminum foam parts with 
the same dimensions as the experimental specimens are created using fully integrated solid elements. The foam parts 
are positioned with their lower faces fixed on a rigid plate, while the upper faces are compressed by a moving rigid wall 
at a deformation speed of 2 mm/s, as illustrated in Figure 9. This deformation speed is chosen to optimize computational 
cost while allowing for a feasible simulation time. The friction coefficient between the moving rigid wall and the 
aluminum foam is selected as 0.2, following the reference study by Reyes et al. (2003). For the aluminum foam materials, 
the Deshpande-Fleck foam law material card (MAT115) is utilized to accurately model their compressive behavior under 
uniaxial loading. As a result of the analyses, force-displacement graphs are drawn for a displacement of 50 mm and the 
results are compared with the curves obtained from the experimental tests. Figure 10 illustrates the force-displacement 
curves for three differing densities of aluminum foam material. The results of the analyses performed with 0.17 g/cm3 
and 0.34 g/cm3 density foam materials showed high agreement with the reference study. In the FE analysis of the 0.51 
g/cm3 density foam material, the crush forces in the initial 20mm deformation distance exhibited a high degree of 
similarity with the experimental test results. However, due to fracture in the experimental foam specimen after 20 mm 
is considered to cause deviation in the results (Hansen et al., 2002). In this study, the aluminum foam material is placed 
within a closed frame, which provides structural constraints that reduce localized deformation and fracture risks. Peroni 
et al. (2008) demonstrated that structural constraints help to control deformation and prevent fracture during 
compression. The frame also mitigates bending collapse mechanisms, ensuring greater stability and energy absorption. 
As a result, it is expected that the fracture effects observed in standalone foam tests will be significantly reduced in this 
configuration. It is therefore considered that FE models of aluminum foam materials are reliable and can be used in the 
simulations carried out in this study. 

 

 
Figure 9 FE model of aluminum foam validation study. 



  

 
Figure 10 Comparison of experimental (Hanssen et al., 2002) and FE model force-displacement curves for aluminum foam materials. 

3 OPTIMIZATION DESIGN 

3.1 Definition of Optimization Problem 

The objective of optimizing the aluminum foam-filled battery box for electric vehicles is to enhance its 
crashworthiness. This involves balancing two primary objectives: maximizing the energy absorption during a crash and 
minimizing the peak force experienced by the battery box. Achieving this balance is crucial for ensuring the safety of both 
vehicle occupants and the structural integrity of the battery box. 

In this study, seven design variables are identified to achieve the objectives. The first three variables are dimensional 
parameters related to material thickness. These are the frame wall thickness (𝑡1), the support beam wall thickness (𝑡2), 
and the bottom-top plate thickness (𝑡3), as illustrated in Figure 11. These parameters are considered continuous 
variables, with a lower limit of 1 mm an upper limit of 2 mm, and an initial value of 1.5 mm. In a side impact, the structural 
element that first encounters the effect on the battery box is the side frame beam. The lengths 𝑥1, 𝑥2, 𝑥3 on the side 
frame beam, as illustrated in Figure 2, are defined as shape variables, with their respective limits specified in Table 2. For 
the aluminum foam material, foam densities of 0.17, 0.34 and 0.51 g/cm3 have been determined as discrete design 
variables. To ensure the design meets necessary safety standards and maintains structural feasibility, two constraints 
have been imposed on the design variables. These constraints specify that the deformation at the support beam end 
points 𝑑1 and 𝑑2, as shown in Figure 11. These constraints are established in order to evaluate how much the beam will 
deform towards the battery cells when the battery box is subjected to a side impact. 

Table 2 Design variables.  

Design Variable Initial Value Variable Range Type 

Thickness, 𝒕𝟏 1.5 mm 1 mm to 2 mm Continuous 

Thickness, 𝒕𝟐 1.5 mm 1 mm to 2 mm Continuous 

Thickness, 𝒕𝟑 1.5 mm 1 mm to 2 mm Continuous 

Length, 𝒙𝟏 25 mm 21 mm to 29 mm Continuous 

Length, 𝒙𝟐 18.91 mm 14.91 mm to 22.91 mm Continuous 

Length, 𝒙𝟑 40.00 mm 36 mm to 44 mm Continuous 

Density, 𝝆 0.34 g/cm𝟑 0.17, 0.34 and 0.54 g/cm𝟑 Discrete 



  

 
Figure 11 The representation of thickness and density design variables and constraints on the battery box. 

 
The optimization process aims to maximize SEA and minimize PCF. A higher SEA value indicates the battery box’s 

increased energy absorption capacity. Conversely, a lower PCF value indicates that the battery and surrounding 
components will be subjected to a lower peak force. Both objectives contribute to improving the battery box safety 
performance. Consequently, an equilibrium is sought in battery box optimization where SEA is minimized, and PCF is 
maximized. As a multi-objective optimization, the battery box optimization problem is expressed by the following: 
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3.2 Surrogate Models 

In the crashworthiness optimization of the aluminum foam-filled battery box, surrogate models are employed 
instead of FE simulations with high computational costs. Surrogate models that approximate the response of complex 
simulations are, therefore, also called meta-models. This simplified representation allows for rapid and more efficient 
predictions in optimization processes. In order to achieve a successful result in the optimization process, it is essential to 
use a sufficiently representative surrogate model. 

The initial step in surrogate modeling is to create the appropriate design space. At this stage, the ranges of input 
parameters and the target outputs corresponding to these are determined. The objective is to construct a comprehensive 
data set that can be used to develop a model capable of representing the behavior of the complex system. To obtain the 
data set required to build surrogate models, numerical simulations are performed for specific sample points within the 
design space. The Latin hypercube sampling (LHS) method is used to construct the design space in the multi-dimensional 
input parameter space, ensuring that the sample points are distributed homogeneously throughout the design space 
(McKay et al., 2000). 

In engineering optimization, several surrogate modeling techniques have been widely adopted, including RSM 
(Myers et al., 2016), Kriging (Forrester et al., 2008), RBF (Buhmann, 2003), and SVR (Roy et al., 2019; Smola and Schölkopf, 
2004). The RSM method employs polynomial functions to approximate the response surface of the simulation data, 
thereby providing a reasonably accurate model for problems exhibiting relatively smooth response surfaces. Kriging 
generates a more sophisticated surrogate model by modeling the response surface as a Gaussian process. In addition to 
generating precise predictions for the existing simulation data, the model also provides the uncertainties of these 
predictions, thus enabling an estimation of the model’s reliability. By employing radial basis functions to interpolate the 



  

response surface of the simulation data, the RBF method can better represent nonlinear relationships in the data. The 
SVR method, which adapts the principles of support vector machines to regression problems, provides an effective 
solution for high-dimensional data and nonlinear problems.  

The optimal parameters for surrogate models are identified using a hyperparameter search. This systematically 
varies each model’s hyperparameters to find the most appropriate. For the RSM model, this is achieved by choosing 
different polynomial degrees: linear, quadratic and cubic. Within the Kriging model, the hyperparameter search is 
performed on the kernel parameters such as constant value, constant boundaries, length scale and length scale 
boundaries. Prediction performance for the RBF model is obtained for a range of alpha and gamma parameters. In the 
SVR model, a hyperparameter search is applied to the following parameters: gamma, epsilon, penalty parameter C, and 
kernel (linear, RBF, or sigmoid). The prediction accuracy of the surrogate models in the optimization process depends on 
their generalization capabilities. In order to measure the generalization performance and select the optimal parameters 
for each surrogate model, grid search and K-fold cross-validation with 𝑘=5 are utilized (Claesen and De Moor, 2015; 
Hastie et al., 2009). This ensures that each surrogate model is tailored to provide accurate predictions for the battery 
pack crashworthiness optimization problem. The specific hyperparameters and search ranges for each model are detailed 
in Table 3. 

Table 3 Hyperparameter search ranges for surrogate models.  

Model Parameter Search Range 

RSM degree of polynomial {𝟏, 𝟐, 𝟑} 

Kriging constant value {𝟎. 𝟏, 𝟎. 𝟑𝟏𝟔, 𝟏. 𝟎, 𝟑. 𝟏𝟔𝟐, 𝟏𝟎} 

constant bounds (𝟏𝟎−𝟑, 𝟏𝟎𝟑) 

length scale {𝟎. 𝟏, 𝟎. 𝟑𝟏𝟔, 𝟏. 𝟎, 𝟑. 𝟏𝟔𝟐, 𝟏𝟎} 

length scale bounds (𝟏𝟎−𝟐, 𝟏𝟎𝟐) 

RBF alpha {𝟎. 𝟎𝟎𝟏, 𝟎. 𝟎𝟏, 𝟎. 𝟏, 𝟏, 𝟏𝟎, 𝟏𝟎𝟎} 

 gamma {𝟎. 𝟎𝟏, 𝟎. 𝟏, 𝟏, 𝟏𝟎, 𝟏𝟎𝟎} 

SVR kernel {’𝒍𝒊𝒏𝒆𝒂𝒓’, ’𝒔𝒊𝒈𝒎𝒐𝒊𝒅’, ’𝒓𝒃𝒇’} 

 C {𝟎. 𝟎𝟎𝟏, 𝟎. 𝟎𝟏, 𝟎. 𝟏, 𝟏, 𝟏𝟎, 𝟏𝟎𝟎, 𝟏𝟎𝟎𝟎} 

 epsilon {𝟎. 𝟎𝟎𝟎𝟏, 𝟎. 𝟎𝟎𝟏, 𝟎. 𝟎𝟏, 𝟎. 𝟏, 𝟏, 𝟏𝟎} 

 gamma {𝟎. 𝟎𝟎𝟎𝟏, 𝟎. 𝟎𝟎𝟏, 𝟎. 𝟎𝟏, 𝟎. 𝟏, 𝟏, 𝟏𝟎} 

4 RESULTS AND DISCUSSION 

4.1 Performance Evaluation of Surrogate Models 

In order to assess the predictive accuracy of surrogate models, several key performance indicators are employed. 
Coefficient of determination (𝑅2) measures the extent to which a model accounts for the variance in the dependent 
variable. A higher 𝑅2 value indicates a better fit to the data set. Explained Variance evaluates the efficacy of a specified 
model in elucidating the observed variability within a given data set. Mean absolute error (MAE) represents the mean of 
the absolute differences between the predicted and actual values. In contrast, root mean square error (RMSE) is a more 
effective measure for identifying significant errors due to its quadratic nature. Mean absolute percentage error (MAPE) 
allows an intuitive comparison of model performance by presenting prediction errors as percentages. 

This study considers a multi-objective optimization problem in which two objective functions, PCF and SEA, are 
simultaneously optimized, while deformations 𝑑1 and 𝑑2 are required to satisfy specified constraints. The primary 
objective of this section is to evaluate the representational capabilities of different surrogate models and determine the 
model that most accurately predicts the system behavior across the design space. In order to reduce the relative error 
between optimization results and FE analysis, the best surrogate model should represent the objective functions and 
constraints. A total of 120 sample points in the entire design space are identified by the LHS method for constructing 
surrogate models. FE analyses are performed on these sample points to obtain the corresponding system responses. 
Comparison of the surrogate model performances in predicting PCF, SEA, and deformation constraints, 𝑑1 and 𝑑2, are 
presented in Figure 12, with the detailed numerical values provided in Table A1 in appendix. 



  

 
Figure 12 Comparison of surrogate model performances for the objective function SEA, PCF, and deformation c 

 

The previously discussed metrics, including 𝑅2, explained variance, RMSE, MAE, and MAPE, are employed to 
evaluate the models. By the 𝑅2 metric, the ranking of surrogate modeling algorithms in terms of their performance in 
predicting PCF, SEA, 𝑑1 and 𝑑2 is presented in Table 4. High 𝑅2 values indicate that the evaluated surrogate models 
accurately capture the relationships between design variables and optimization objectives and are sufficiently 
representative for optimizing the system. A comprehensive evaluation of the prediction performance confirms that SVR 
is the optimal surrogate model for predicting PCF and SEA, achieving remarkable 𝑅2 values of 0.905 and 0.977, 
respectively. For the deformation constraints 𝑑1 and 𝑑2, RBF emerges as the superior choice, as reflected in its 𝑅2 values 
of 0.937 and 0.949, making it the most reliable option for these specific outputs. The efficacy of SVR and RBF in modeling 
complex dependencies and localized non-linear relationships is emphasized by the findings, thereby supporting their 
applicability in this study. 

Table 4 Ranking of surrogate model performance for the objective function PCF, SEA, and deformation constraints 𝑑1 and 𝑑2 using 
the R² metric.  

 

Higher to lower performance 

Target 1 2 3 4 

PCF SVR RBF RSM Kriging 

SEA SVR RBF RSM Kriging 

𝒅𝟏 RBF SVR RSM Kriging 

𝒅𝟐 RBF SVR RSM Kriging 

 

 



  

4.2 Optimization Results 

In the literature, multi-objective optimization problems are frequently addressed using established methods such 
as NSGA-II (Pang et al., 2017; Xingtao Liao and Zhang, 2008) and MOPSO (Sun et al., 2010; Xiao et al., 2015). This research 
employs the NSGA-II algorithm, initially introduced by Deb et al. (2002), to identify the optimal solution, selected for its 
swift convergence and its proficiency in producing well-distributed Pareto fronts. The key parameters, including 
population size, number of offsprings, and crossover probability, are detailed in Table 5. Furthermore, the performance 
of NSGA-II is compared to MOPSO under identical conditions. While both algorithms yield comparable SEA values for 
DC25, NSGA-II shows a significant runtime advantage, completing the optimization in about a third of the time required 
by MOPSO. For DC30, NSGA-II not only achieves a shorter runtime, but also a slightly better optimization result. These 
results, summarized in Table 6, highlight that NSGA-II provides better optimization results and computational efficiency 
for this study, making it the more appropriate choice for the defined objectives and constraints. Figure 13 shows the 
Pareto fronts for the optimization problem, where the deformation constraints 𝑑1 and 𝑑2 are represented by DC25 and 
DC30, corresponding to limits of 25 mm and 30 mm, respectively. In this notation, “DCXX” indicates the deformation 
constraints applied during the optimization process, where “XX” represents the specific value of the constraints in 
millimeters. For example, “DC25” means that both 𝑑1 and 𝑑2 are set to 25 mm. These Pareto fronts illustrate the optimal 
boundaries in the design space and provide designers with valuable insight into the trade-offs between different 
objectives under varying deformation constraints. Consistent with previous studies, PCF and SEA are found to be two 
competing objectives in this study. This conflict is manifested in the positive correlation between PCF and SEA, where an 
increase in PCF is typically accompanied by a corresponding increase in SEA. In the crashworthiness optimization of the 
battery box, the aim is to maximize the SEA while minimizing the PCF. Since optimization algorithms are inherently 
designed to minimize objective functions, SEA is used in the optimization process by taking its negative value to comply 
with this framework. Each point on the Pareto front represents an optimal solution to the optimization problem as 
determined by the optimization algorithm. The selection of the optimum point depends on the balance between 
maximizing SEA and minimizing PCF, guided by the design priorities. If higher PCF values are acceptable, solutions from 
the upper part of the Pareto front are appropriate, while solutions from the lower part are preferable if minimizing PCF 
is a priority. 

Table 5 Parameters of the NSGA-II algorithm used in the optimizations. 

Parameter Value 

Population size 1000 

Number of offsprings 100 

Crossover probability 0.9 

Crossover distribution index 15 

Mutation distribution index 20 

Parameter Value 

Table 6 Comparison of optimization results for MOPSO and NSGA-II 

Algorithm 
DC25 DC30 

SEA (kJ/kg) PCF (kN) Runtime (s) SEA (kJ/kg) PCF (kN) Runtime (s) 

MOPSO 0.307 64.969 123 0.317 64.994 123 

NSGA-II 0.307 64.987 35 0.325 64.966 33 

An analysis of the Pareto front curves obtained from the optimization with varying deformation constraints 𝑑1 and 
𝑑2  reveals that when these constraints are set to higher limits, the battery box exhibits both increased SEA and elevated 
PCF values. With higher deformation constraints, the structure can undergo greater deformation and thus absorb more 
energy. This increased energy absorption is primarily due to a larger portion of the energy being dissipated through 
plastic deformation, leading to higher SEA values. For the same PCF value, this increased energy absorption is directly 
related to the improved deformability of the system. Thus, allowing for greater flexibility in deformation enables the 
structure to absorb more energy effectively. On the other hand, when examining the Pareto front within lower PCF 
values, it is observed that changes in the 𝑑1 and 𝑑2  constraints do not significantly affect the energy absorption capacity. 
This is because, at these lower PCF values, the structure’s energy absorption mechanisms, such as plastic deformation or 



  

buckling, are not constrained by the deformation limits. In essence, the structure already has sufficient deformation 
capacity to absorb energy, so changing the 𝑑1 and 𝑑2 constraints does not make a noticeable difference in energy 
absorption at these lower PCF values. 

 
Figure 13 The Pareto fronts for the optimization problem, with deformation constraints 𝑑1 and 𝑑2 represented by DC25 and DC30, 
correspond to limits of 25 mm and 30 mm, respectively. 

 

In the scenario where the PCF is required to be limited to below 65 kN, the Pareto points corresponding to the 
optimal design solutions are indicated by the red line in Figure 13. Table 7 gives the initial and predicted optimal design 
variables for the case where the PCF is constrained to be less than 65 kN. Table 8 provides the corresponding optimization 
and FE analysis results, including the relative errors. Both tables show the initial design and the optimized scenarios DC25 
and DC30, demonstrating how the optimization process improves the performance metrics compared to the initial 
design. 

Table 7 Initial and optimal design variables for the case where PCF < 65 kN.  

Design Variable Initial Values DC25 DC30 

𝒕𝟏  [mm] 1.500 2.000 1.998 

𝒕𝟐  [mm] 1.500 1.992 1.410 

𝒕𝟑  [mm] 1.500 1.002 1.000 

𝒙𝟏 [mm] 25.000 28.760 21.318 

𝒙𝟐 [mm] 18.910 15.970 15.148 

𝒙𝟑 [mm] 40.000 42.157 36.168 

𝝆  [g/cm3] 0.34 0.17 0.34 

Table 8 Optimization results, including FE analysis and relative errors, for the case where PCF < 65 kN.  

Targets 
Initial 
Values 

DC25 DC30 

Opt. FEA RE (%) Opt. FEA RE (%) 

SEA (kJ/kg) 0.211 0.307 0.297 3.35 0.325 0.318 2.04 

PCF (kN) 72.830 64.987 66.679 2.61 64.966 64.409 0.90 

𝑑1 (mm) 28.630 24.999 24.019 3.92 29.365 30.331 3.29 

𝑑2 (mm) 28.500 14.765 14.199 3.83 19.592 20.929 6.82 



  

In comparison to the initial design of the aluminum foam-filled battery box, for the deformation constraints 𝑑1 and 
𝑑2 with a value of 25 mm (DC25), SEA improves by 40.76%, increasing from 0.211 kJ/kg to 0.297 kJ/kg, while PCF 
decreases by 8.45%. When the deformation constraints are defined as 30 mm (DC30), SEA demonstrates a 50.71% 
improvement, rising from 0.211 kJ/kg to 0.318 kJ/kg, accompanied by an 11.56% reduction in PCF. The maximum relative 
error for the optimization outputs SEA, PCF, and constraints 𝑑1 and 𝑑2 are observed as 3.35%, 2.61%, 3.92%, and 6.82%, 
respectively. Similarly, the MAPE values for the surrogate models used in the optimization are shown in Fig. 10 for PCF, 
SEA, 𝑑1 and 𝑑2, with values of 4.67%, 2.82%, 5.47%, and 6.61%. Consequently, the relative error values between the 
optimization results and FEA are within expected ranges, demonstrating that the optimal results are achieved with a high 
degree of accuracy. The deformation modes of the optimal structures in consequence of the crash simulation are 
illustrated in Figure 14. 
 

 
Figure 14 Top and side view of post-crash deformation, (a) DC25 optimal, (b) DC30 optimal. 

5 CONCLUSION 

This study aimed to optimize the crashworthiness of aluminum foam-filled battery boxes for electric vehicles under 
side pole impact conditions, an area that has seen relatively few studies compared to traditional axial crushing analyses. 
By employing a multi-objective optimization framework with the NSGA-II algorithm, the study focused on improving 
specific energy absorption (SEA) and reducing peak crushing force (PCF) – typically conflicting goals in crashworthiness 
optimization. Seven key design variables are investigated, including the wall thicknesses of the structural components, 
the aluminum foam density, and the cross-sectional dimensions of the side frame. A unique aspect of this research is the 
use of three different aluminum foam densities as design variables, offering flexibility in controlling deformation under 
varying impact conditions. The performances of RSM, Kriging, RBF and SVR surrogate models are evaluated to capture 
the complex relationships between design variables and crash outcomes. The optimization framework presented here 
provides valuable insights for the development of safer and more efficient battery enclosures in electric vehicle designs. 
Key findings from this study include: 

• As a result of the multi-objective optimization, significant improvements in both SEA and PCF were achieved. For 
the DC25 constraint, the SEA increased by 40.76%, from 0.211 kJ/kg to 0.297 kJ/kg, while the PCF decreased by 
8.45%, from 63.56 kN to 58.20 kN. Similarly, under the DC30 constraint, the SEA improved by 50.71%, reaching 
0.318 kJ/kg, and the PCF was reduced by 11.56%, dropping to 56.16 kN. These results demonstrate the 
effectiveness of the optimization framework in enhancing crashworthiness performance by balancing energy 
absorption and peak force reduction. 

• The best crash strength is obtained for both the DC25 and DC30 boundary conditions when the wall thickness of 
the frame plate is at the upper limit and the thickness of the bottom-up plates is at the lower limit. On the other 
hand, the optimum wall thickness value of the support beam is found to be dependent on the deformation 
constraint. 

• In the case where a smaller amount of collapse is required (DC25), the side frame lengths 𝑥1 and 𝑥3 increased 
and 0.17gr/cm3 density aluminum foam gave better results within the enlarged area. On the contrary, in the 



  

case where more collapse occurred (DC30), the lengths of the side frames 𝑥1 and 𝑥3 decreased and accordingly 
the use of aluminum foam with a density of 0.34gr/cm3 in the shrinking volume gave the optimal result. The 
variable 𝑥2 is close to the lower limit in both cases according to the initial design. 

• The surrogate model performance analysis revealed that SVR and RBF are the most accurate surrogate models 
for the objective functions and deformation constraints, respectively. 

The key finding of this study is that optimizing the structural design of aluminum foam-filled battery enclosures for 
electric vehicles significantly enhances their crashworthiness under side pole impact conditions, addressing a critical 
aspect of EV safety.  

Further experimental studies are necessary to validate the findings of this study and assess their applicability under 
diverse real-world conditions. 
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APPENDIX 

Table A1 Comparison of surrogate models based on performance metrics for objective functions SEA, PCF, and deformation 
constraints 𝑑1 and 𝑑2. 

Target Model MAE MAPE (%) EV RMSE 𝑹𝟐 

PCF 

Kriging 3.344 5.191 0.875 4.746 0.869 

RBF 3.121 4.671 0.901 4.210 0.901 

SVR 3.169 4.992 0.907 4.175 0.905 

RSM 3.643 5.486 0.877 4.563 0.876 

SEA 

Kriging 0.009 4.389 0.951 0.0117 0.946 

RBF 0.006 2.819 0.979 0.0079 0.977 

SVR 0.006 2.821 0.979 0.0078 0.977 

RSM 0.009 4.236 0.960 0.0106 0.957 

𝑑1 

Kriging 2.184 7.158 0.900 2.708 0.894 

RBF 1.710 5.427 0.941 2.117 0.937 

SVR 1.775 5.583 0.937 2.217 0.932 

RSM 2.159 7.139 0.900 2.738 0.895 

𝑑2 

Kriging 2.832 10.083 0.898 3.545 0.893 

RBF 1.989 6.613 0.952 2.487 0.949 

SVR 2.220 7.632 0.940 2.797 0.935 

RSM 2.421 8.619 0.930 3.011 0.926 

 


